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Abstract: To monitor water quality continuously over the entire sewer network is 

important for efficient management of the system. However, it is practically impossible to 

implement continuous water quality monitoring of all junctions of a sewer system due to 

budget constraints. Therefore, water quality monitoring locations must be selected as those 

points which are the most representative of the dataset throughout a system. However, the 

optimal selection of water quality monitoring locations in urban sewer networks has rarely 

been studied. This study proposes a method for the optimal selection of water quality 

monitoring points in sewer systems based on entropy theory. The proposed model searches 

for a quantitative assessment of data collected from monitoring points. The points that 

maximize the total information among the collected data at multiple locations are selected 

using genetic algorithm (GA) for water quality monitoring. The proposed model is 

demonstrated for a small urban sewer system. 
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1. Introduction 

The increased water pollution due to the inflow of diverse pollutants into groundwater, lakes, rivers 

and seas caused by industrialization has necessitated the establishment of water pollution monitoring 

networks and the operation of continuous monitoring for effective water quality management. Since 

the 1970s, rapid industrialization has led to serious water pollution problems in Korea. In response, the 

Korean government has established a network of water quality monitoring points in rivers, raw water, 

lakes, marshes and urban streams for water quality management. Similarly, continuous monitoring of 
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the sewer system for efficient management of water quantity and quality in conduits as well as 

infiltration and inflow has become more important. 

Sanders et al. [1], Ward et al. [2], Harmancioglu et al. [3] and Strobl and Robillard [4] produced an 

overview of the current network design procedures and developed basic guidelines to be followed in 

both the design and the redesign of water quality monitoring networks. Their studies treat the network 

design problem in a comprehensive and systematic framework, starting with objectives of monitoring 

and elaborating on various technical design features, e.g., selection of sampling sites, sampling 

frequencies, variables to be monitored, and sampling duration. Khalil and Ouarda [5] reviewed the 

statistical approaches utilized for the assessment and redesign of surface water quality monitoring 

(WQM) networks and Khalil et al. [6] explained the various deficiencies in the statistical approaches 

proposed in the literature for the assessment and redesign of surface WQM locations. Beveridge et al. [7] 

used geostatistical methods to quantify redundancy in an intentionally dense network of lake stations. 

Two statistical approaches (kriging and Local Moran’s I) were used to assess redundancy and these 

techniques identified stations that were statistically important or redundant. Ou et al. [8] developed a 

flexible and comprehensive framework for the selection of multiple sampling locations of multiple 

variables which was accomplished by coupling geostatistical approaches with principal component 

analysis (PCA) and fuzzy optimal model (FOM). Amirabdollahian and Datta [9] reviewed different 

source identification and monitoring network design methods in groundwater contaminant sites. 

However, these studies dealt mainly with the assessment and design of water quality monitoring 

networks for the natural watershed such as lake, river and stream. There has been no study on the 

sewer system for the design of water quality monitoring networks. 

To establish water quality monitoring networks within budget constraints, water quality monitoring 

points that can maximize the monitoring effect for a given cost must be selected. Meyer et al. used a 

simulated annealing approach to solve the multi-objective integer programming of optimal monitoring 

network design [10]. Hudak defined the configuration of monitoring wells for a solid water landfill in 

Tarrant County, TX, USA. The objective of investigation was to design a monitoring network which is 

able to minimize the undetected contaminant plumes in the study area [11]. Dhar and Datta [12] 

proposed a chance-constrained single and multi-objective nonlinear optimization models which are 

capable of designing optimal time variant groundwater quality monitoring network. Park et al. [13] 

used the genetic algorithm (GA) for the design of a water quality monitoring network. Wang et al. [14] 

studied an object-oriented design plan to improve the water quality monitoring network of the Han 

River. However, there has been no study on the establishment of an optimum water quality monitoring 

network for a sewer system. This research proposes a design method for the establishment of an 

optimal water quality monitoring network in a sewer system under budget constraints. 

Entropy theory was applied to generate standards for the assessment of the optimal water quality 

monitoring network. The entropy theory considers the trans-information among both locations where 

water quality monitoring facilities are installed and locations without such facilities. Therefore, the 

theory can support the establishment of the water quality monitoring network by reducing the 

uncertainty on the basis of information produced by the network. Entropy is a measure of the degree of 

uncertainty of random hydrological processes. It is also a quantitative measure of the information 

content of a series of data since reduction of uncertainty, by making observations, equals the same 

amount of gain in information [15]. Multivariate trans-information, which is one of the variates 
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defined by the entropy theory, can be referred to as the information transmission and also called the 

mutual information. The multivariate entropy measures can then be used to assess the basic features in a 

network, i.e., sampling sites, sampling frequencies, variables sampled and sampling duration [3]. 

Therefore, many studies across diverse fields have sought to determine the combinations of assessment 

points that maximize the multivariate trans-information. Examples include the design of a precipitation 

monitoring network [16,17] and the assessment of a water quality monitoring network in river  

streams [18,19]. These studies however used the inefficient trial and error method in searching for the 

combinations that maximize the information transfer. With increasing number of combinations more 

sophisticated optimization methods are needed. The existing studies have mainly dealt with the assessment 

and design of a water quality monitoring network in natural basins such as lakes and rivers. Only tens of 

monitoring points are the object of analysis in the natural basins, but tens to hundreds of manhole points are 

the object of analysis in a network of urban sewer system. Therefore, the number of cases of combinations 

of monitoring points can be innumerable in sewer networks unlike in lakes or rivers, so the application 

of an optimization technique is necessary to find an optimal combination effectively. 

With the aim of solving these issues, this research proposes a model for selecting optimized water 

quality monitoring points of sewer network system. The entropy variates are applied to the quantitative 

assessment in the selection of the optimal water quality monitoring points. An optimization method 

using a genetic algorithm (GA) is proposed to select optimized water quality monitoring points that 

can efficiently collect the maximum amount of data when the number of such water quality monitoring 

points is restricted because of budget constraints. 

2. Entropy Measures 

In classical thermodynamics, entropy is the quantity determined by the thermal condition in a 

physical system, which expresses the possibility of converting a given amount of heat into work [20]. 

From the perspective of statistical thermodynamics, entropy refers to the statistical thermodynamic 

degree of disorder or uncertainty [21]. In information theory, entropy is defined as the quantity of 

information possessed by a signal [22]. This concept of entropy defined in information theory is used 

in this study. 

In a definition adopted from information theory, entropy is the numerical expression of information 

on signals inside a system. In using this concept, the process of information exchange is as important 

as the amount of information. Information exchange occurs as signals are sent and statistically the 

extent of embedded uncertainty is reduced with increasing quantity of information in the signals. 

Therefore, the quantity of information can be measured indirectly based on the degree of the reduction of 

uncertainty, i.e., the larger entropy means a greater reduction of the uncertainty in a specific location.  
In information theory, variates such as marginal entropy (Shannon entropy), conditional entropy, 

and trans-information are defined for the quantification of entropy. Firstly, marginal entropy )( 1XH is 

defined as follows for the discrete random variate 1X  [22]: 

)(ln)()( 111 nn
b

an xpxpXH    (1)

where, )( 1nxp  is the probability distribution of }{ 11 nxX   where a  and b  are the lower and upper 

limits of 1X , respectively. The number of variate 1x  that belongs to the scope of 1X  is n . The total of 
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probability values in the scope should be 1, i.e.,   )( 1n
b

an xp . If 1X  is defined as the continuous 

random variate that follows the probability density function )( 1xf , the marginal entropy is defined as 

follows [23]: 





 1111 )(ln)()( dxxfxfXH  (2)

The conditional entropy )|( 21 XXH  of the two given continuous random variates 1X  and 2X  can 

be interpreted as the information loss that occurs during the trans-information process between 1X  and 

2X  under a given condition. Equation (3) is the result of the application of the concept of conditional 

probability density function )|( 21 xxf  [23]. 

 







 21212121 )|(ln),()|( dxdxxxfxxfXXH  (3)

Amorocho and Espildora proposed that the marginal entropy can be expressed as the following 

when the continuous variate 1X  is divided by the pre-determined interval x  [24]: 





 )ln()(ln)();( 1111 xdxxfxfxXH  (4)

Moreover, Chapman proposed the conditional entropy when 1X  and 2X  are divided by the fixed 

interval x  [25]: 

)ln()|(ln),();|( 21212121 xdxdxxxfxxfxXXH   







 (5)

Here, )|( 21 xxf  refers to the joint probability density function of 1X  and 2X . The trans-

information between the two continuous random variates 1X  and 2X  points to the reduction of 

uncertainty of 1X  when 2X  is given as Equation (6) [24]: 

)|()();( 21121 XXHXHXXT   (6)

The conditional entropy and trans-information presented above illustrate cases with two variates. 

These can be generalized for independent variables ),,,( 21 MXXXX   with M  as the number of 

variables [26]. 

To obtain entropy variates from the water quality data time series used in this study, it is necessary 

to know probability density function f( )X  based on continuous random variable X. The FARD2006 

model, jointly developed by the National Institute for Disaster Prevention and Yonsei University was 

used for the goodness of fit test of the water quality determinand of Total Suspended Solids (TSS). To 

estimate the statistical parameters, the method of moment was used. The results of the 2X  test and the 

Kolmogorov-Smirnov (K-S) test confirmed that the water quality data to be used was subject to the 

lognormal distribution. For lognormal distributions, Amorocho and Espildora proposed equations for 

estimating the marginal entropy, conditional entropy, and trans-information of multivariate X , which 

is divided by the regular interval x  [24]. Based on the equation, Chapman applied xx / , which is 

proportional to the scope of the variables, to produce Equations (7) and (8) for the marginal entropy and 

conditional entropy, respectively [25]. 

)/ln()2ln(5.0)/;( 1
2

11 xxexxXH z    (7)
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22

121 xxpexxXXH zwz    (8)

where, z  is the standard deviation of )ln( 1xz   and zwp  the correlation coefficient of z  and 

)ln( 2xw  . From Equations (6) through (8), the trans-information can be derived as follows [25]: 

)1ln(5.0);( 2
21 zwpXXT   (9)

3. Model for Selecting Optimal Water Quality Monitoring Points 

In this study, the entropy theory was applied to the selection of the water quality monitoring points 

in a sewer system. Equation (6) expresses the trans-information between two variates. In the case of 

the sewer system, the number of candidate locations for the installation of water quality monitoring 

facilities is mostly more than two. Hence, Equation (6) should be expanded as an equation for more 

variates. In this study, the multivariate trans-information equation [Equation (10)], developed by  

Al-Zahrani and Husain [17] for the selection of precipitation monitoring locations in the natural stream 

basin, was used for the selection of water quality monitoring points: 

  

 



km

x

k

y yx

k

in n

kjimtotal

yxXXTXH

XXXXXXTI

1 1

21

        ),;()(        

),,,;,,,( 
 (10)

where, m  is the total number of water quality monitoring locations that can be installed in the basin 
and ),,,( kji   is the combination of the selected locations. The selected locations ),,,( kji   form the 

combination that maximize ),,,;,,,( 21 kjim XXXXXXT  , the trans-information of the selected 

locations.  

k

in nXH )(  is the total of the marginal entropy of the selected water quality monitoring 

locations and  

 

km

x

k

y yx XXT
1 1

);(  is the total of the trans-information between the selected locations 

and the locations that were not selected. Alternatively, the sum can be defined as the amount of information 

on unselected locations that can be obtained from the selected water quality monitoring points. 

In this study, the objective function is defined to search the combination of positions that maximize 
the multi-location trans-information totalI  as: 

totalIMaximize   (11)

A constraint is that all entropy variates (marginal entropy, trans-information, etc.) have positive values. 

If only one monitoring point should be selected, a point with the biggest trans-information value shall 

be selected. However, if two monitoring points are maintained, those points cannot be determined by 

simply comparing the trans-information obtainable from each point. This is because the trans-

informations between the selected monitoring points and the remaining points differ depending on the 

choice of monitoring points. That is, when selecting any two points, it shall be determined so that the 

Itotal value may be maximized by considering the relationship between the selected points and the 

remaining points. Accordingly, when selecting n points for a total of m points, the entropy values for 

mCn combinations should be calculated to select the best combination with the maximum Itotal. Then, in 

sewer networks, a network contains tens to hundreds of manhole points in general. Therefore, the 

number of cases of combinations to calculate the value of Itotal increases geometrically in proportion to 

the number of monitoring points to select. For example, when selecting seven monitoring points from a 
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sewer network composed of 80 manhole points, the combination cases of 80C7 = 3.2 × 109 should be 

calculated to find an optimal combination with maximum Itotal. A remarkable time will be required to 

calculate all these cases. If a decision maker wants to analyze entropy by changing the number of 

monitoring points for hundreds of points and make a decision through this, then a decision maker will 

be wanting to a method to calculate it efficiently within a shorter time. This study has composed a 

calculation module by using GA, an optimization technique, to solve this problem and raise the 

efficiency in entropy analysis.  
A very important monitoring item for the management of an urban sewer system and non-point 

source among several indexes for water quality monitoring, we chose the TSS as a measure for the 

selection of the water quality monitoring network. In urban sewer networks, the soil and sediments 

containing non-point source pollutants are flowing into sewer pipes from the road surface. In 

connection with this, TSS is being evaluated as. Therefore, it is necessary to obtain the TSS of the 

target positions (the value of inx ) to evaluate the objective function [Equation (11)]. The Storm Water 

Management Model (SWMM), developed by the US Environmental Protection Agency, was applied in 

this research to calculate the TSS in all positions. To simulate the TSS, it is necessary to express the 

buildup and washoff of pollutants as a function. Among the several empirical functions provided by 

SWMM for the buildup and washoff the pollutants, Tsihrintzis and Hamid recommended using the 

following relationships [27]: 

B
bt DCL   (12)

W
twt QCM   (13)

These relationships were chosen in this study. Here, tL  is the amount of pollutant accumulation 

(kg/ha) during time t , D  the previous non-precipitation days ( days ), tM  the pollution load ( sec/kg ) 

during time t , and tQ  the flow discharge ( sec/3m ) that flows to the target positions from 

subcatchments. B , bC , wC  and W  are model parameters. Tsihrintzis and Hamid showed that these 

parameters exhibit the regression relationship [27]: 

  totPz  (14)

where, z  refers to the four parameters involving pollutant buildup and washoff where   and   are 

regression constants, and totP  is the total rainfall ( mm ) of a single rainfall event. In this study, the 

regression constant proposed by Tsihrintzis and Hamid was applied assuming high density residential 

land use and a minimum of 5 days since the previous rainfall (Table 1) [27]. 

To solve the objective function, a genetic algorithm (GA) was used in this study. A GA is a 

heuristic search method based on the modeling of the Darwinian competition for the survival of the 

fittest [28]. To obtain the optimal solution, a population of potential solutions is maintained during 

several cycles of circulation and each solution is evaluated based on objective function values to 

provide the standard for the goodness of fit. In the process, dominant entities are selected to form a 

new population. Some entities of the new population undergo evolution by cross-fertilization and 

mutation to produce a new solution. Because the GA looks for the optimal solution from all possible 

combinations, it rarely ends in a local optimum, unlike existing nonlinear problem search methods. 
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Table 1. Selection of parameters [27]. 

 tL  tM  

Land use D 
B  bC  wC  W  

                

High density 

residential 

land use 

>5 −0.0173 1.9456 −0.0114 1.7599 −0.0157 2.8651 −72.680 6199.2 

The entropy measures were calculated based on the simulation results of SWMM and the fitness of 

these measures is assessed by a GA. Coupling SWMM and the GA provides the framework for the 

optimization model for the selection of water quality monitoring points (Figure 1). 

Figure 1. Model for the selection of the water quality monitoring points. 

 

4. Applications and Results 

The proposed model was applied to both an example sewer network and a larger real sewer network. 

The example network comprises 13 manhole junctions with a drainage area of 28.7 ha, which can be 

divided into eight sub-basins (Figure 2). The real sewer network is that for the Hagye basin located  

in Seoul (Figure 3). The basin has an area of 161 ha and 80 junctions where facilities of the water 

quality monitoring network can be installed. The used rainfall data were for the period 2002 to 2011.  

When SWMM was carried out, each rainfall event produced different TSS values for each junction. In 

this study, the average of the values was considered as the TSS, which represents each junction, and 

this value was used to estimate the optimal quality monitoring position. 
Whether univariate or multivariate, entropy measures depend on the class interval size Δx. This 

dependence is such that for each selected value of Δx, different marginal, joint and conditional 

entropies are obtained [25,29]. However, the effects of the choice of different Δx values are negligible 

in computations of trans-information. Therefore, the variation of entropy measures with Δx does not 
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significantly affect space/time design which is based on trans-information [3]. Therefore, in this study, 

the class interval size Δx was fixed at 1mg/L and the entropy variates were calculated by applying  

Δx/x which is proportional to the scope of the variables. 

Figure 2. Example sewer network. 

 

Figure 3. Hagye basin sewer network. 
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To evaluate the objective function, the marginal entropy and trans-information among the given 

variates are generally expressed by one information matrix [17,19]. An information matrix of  

size 13 × 13 was constructed for the example network (Table 2). An information matrix summarizes 

the marginal entropy of points and trans-information between two points. The gray area in Table 2 

represents the marginal entropy of the points. The total of each row or column refers to the trans-

information when one position is selected from multiple positions. Therefore, these values refer to the 

amount of information that can be obtained when the position is selected from the positions where 

water quality monitoring facilities can be installed. 

Different methods can be used to select the positions that satisfy the objective function that enables 

the acquisition of maximum quantity of information from multiple positions. Al-Zahrani and Husain [17] 

used the method of successively selecting locations with the largest marginal entropy in the 

information matrix to select the combination with the largest amount of trans-information from the 

selected locations (A-H method). On the other hand, Kwon and Yoo [19] selected the combination 

with the largest amount of trans-information from the selected locations by ordering the selected 

locations with the largest trans-information values from the multiple locations as shown in the bottom 

row of the table of the information matrix (K-Y method). However, neither of these methods 

guarantees the optimum combination for the objective function that maximizes the multi-location 

trans-information. Therefore, the optimization method was applied to identify the combination of 

locations with the maximum multi-location trans-information values. 
To compare these three methods, the proposed model was applied to the example network. Since 

the number of water quality monitoring points also has to be determined, the three above methods were 

tested for cases with a number of monitoring points ranging from 1 to 13 (Table 3). For all three methods, 

the objective function value totalI  gradually increased with increasing number of monitoring positions, 

but then decreased after a certain threshold of between eight and 10 positions, depending on the 

method. This revealed the optimal number of monitoring positions for maximizing totalI  (colored gray 

in Table 3), beyond which any further increase in the number of monitoring positions is ineffective. 

Comparing results for the optimal number of monitoring positions from the three methods tested 

here, totalI  of the optimization method is greater than those of the other methods. This indicates that the 

optimization method is likely to be the best choice. With these preliminary results obtained for the 

example network, the Hagye basin (Table 4) was investigated for which the three methods were again 

compared (Table 5). Again the optimization method was verified to be superior to the A-H and K-Y 

methods, as it maximized the totalI . 

These results verified that the optimization method is the best in obtaining the maximum trans-

information value among the three methods tested in this study. Table 5 shows the best combination of 

monitoring points selected by the optimization method. In practice, however, it is difficult to monitor 

at the all optimal points because of budget limits. Therefore, the optimization algorithm was applied 

again to optimally select water quality monitoring points within the budget limit. For example, Table 6 

shows the optimum combination of monitoring points when the monitoring points were limited to 

seven points. The locations of these seven points are shown in Figure 4. 
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Table 2. Information matrix of the example network. 

 Junction 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Junction 

1 4.243 0.953 1.151 1.195 1.343 1.222 0.517 0.869 0.839 0.902 0.377 0.402 0.246

2 0.953 3.767 0.713 0.738 0.914 1.170 0.463 0.653 0.639 1.006 0.411 0.306 0.221

3 1.151 0.713 4.334 1.355 1.168 0.957 0.405 0.843 0.799 0.657 0.286 0.370 0.191

4 1.195 0.738 1.355 4.310 1.214 0.993 0.429 0.863 0.822 0.696 0.302 0.384 0.203

5 1.343 0.914 1.168 1.214 4.197 1.198 0.546 0.901 0.875 0.903 0.366 0.411 0.249

6 1.222 1.170 0.957 0.993 1.198 3.845 0.559 0.873 0.849 1.018 0.395 0.388 0.251

7 0.517 0.463 0.405 0.429 0.546 0.559 3.448 0.639 0.701 0.666 0.369 0.577 0.509

8 0.869 0.653 0.843 0.863 0.901 0.873 0.639 2.995 1.321 0.702 0.295 0.534 0.263

9 0.839 0.639 0.799 0.822 0.875 0.849 0.701 1.321 2.992 0.730 0.312 0.575 0.290

10 0.902 1.006 0.657 0.696 0.903 1.018 0.666 0.702 0.730 3.593 0.496 0.405 0.311

11 0.377 0.411 0.286 0.302 0.366 0.395 0.369 0.295 0.312 0.496 3.648 0.620 0.752

12 0.402 0.306 0.370 0.384 0.411 0.388 0.577 0.534 0.575 0.405 0.620 2.837 0.842

13 0.246 0.221 0.191 0.203 0.249 0.251 0.509 0.263 0.290 0.311 0.752 0.842 3.476

Marginal entropy 
Value 4.243 3.767 4.334 4.310 4.197 3.845 3.448 2.995 2.992 3.593 3.648 2.837 3.476

Rank 3 6 1 2 4 5 10 11 12 8 7 13 9 

Trans-information 
Value 14.258 11.953 13.228 13.506 14.286 13.720 9.828 11.751 11.744 12.086 8.629 8.651 7.804

Rank 2 7 5 4 1 3 10 8 9 6 12 11 13 

Table 3. Monitoring points selected by three methods for the example network. 

Number of 
monitoring 

positions 

Selected junctions totalI  

A-H  
method 

K-Y  
method 

Optimization  
method 

A-H 
method 

K-Y 
method 

Optimization 
method 

1 3 5 5 13.228 14.286 14.286 

2 3,4 1,5 1,5 24.024 25.858 25.858 

3 1,3,4 1,5,6 1,5,6 33.591 34.737 34.737 
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Table 3. Cont. 

Number of 
monitoring 

positions 

Selected junctions totalI  

A-H  
method 

K-Y  
method 

Optimization  
method 

A-H 
method 

K-Y 
method 

Optimization 
method 

4 1,3,4,5 1,4,5,6 1,4,5,6 40.426 41.630 41.630 

5 1,3,4,5,6 1,3,4,5,6 1,3,5,10,13 45.405 45.405 47.419 

6 1,2,3,4,5,6 1,3,4,5,6,10 1,3,5,6,7,11 48.382 49.137 52.231 

7 1,2,3,4,5,6,11 1,2,3,4,5,6,10 1,2,3,5,9,11,13 52.739 50.103 55.714 

8 1,2,3,4,5,6,10,11 1,2,3,4,5,6,8,10 1,2,3,4,7,9,11,13 53.467 53.467 58.573 

9 1,2,3,4,5,6,10,11,13 1,2,3,4,5,6,8,9, 10 1,2,3,4,7,8,10,11,13 56.422 48.442 59.749 

10 1,2,3,4,5,6,7,10,11,13 1,2,3,4,5,6,7,8,9,10 1,2,3,4,7,8,10,11,12,13 57.323 48.420 59.521 

11 1,2,3,4,5,6,7,8,10,11,13 1,2,3,4,5,6,7,8,9,10,12 1,2,3,4,5,7,8,10,11,12,13 55.272 48.366 57.776 

12 1,2,3,4,5,6,7,8,9,10,11,13 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,7,8,9, 10,11,12,13 50.662 48.536 53.714 

13 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 47.684 47.684 47.684 

Table 4. Information matrix of the Hagye basin. 

Junction 1 2 3 4 … 77 78 79 80 
Marginal 
entropy 

Trans-information of each 
position when a position is 

selected 

1 2.180 1.021 0.882 1.026 … 1.074 0.544 1.040 1.051 2.180 79.324 

2 1.021 2.970 0.937 1.163 … 1.043 0.605 1.159 1.112 2.970 83.475 

3 0.882 0.937 3.332 0.925 … 0.984 0.910 0.957 0.992 3.332 82.041 

4 1.026 1.163 0.925 2.977 … 1.045 0.592 1.159 1.113 2.977 83.258 

… … … … … … … … … … … … 
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Table 4. Cont. 

Junction 1 2 3 4 … 77 78 79 80 
Marginal 
entropy 

Trans-information of each 
position when a position is 

selected 

77 1.074 1.043 0.984 1.045 … 2.942 0.617 1.077 1.137 2.942 86.554 

78 0.544 0.605 0.910 0.592 … 0.617 3.703 0.614 0.629 3.703 87.584 

79 1.040 1.159 0.957 1.159 … 1.077 0.614 3.201 1.133 3.201 85.339 

80 1.051 1.112 0.992 1.113 … 1.137 0.629 1.133 3.137 3.137 87.525 

Table 5. The number of water quality monitoring points and the maximum trans-information. 

 
Selected junctions 

Number of 
selected 

junctions 

Maximum 
trans-

information 

Optimization 
method 

3,6,9,10,11,13,15,16,17,18,19,20,21,23,24,27,28,30,32,33,36,37,38,39,41,43
,44,46,48,52,53,54,55,60,61,69,70,72,73,79,80 

41 1765.465 

A-H method 3,6,7,9,10,11,12,13,14,16,17,18, 
19,20,21,22,23,25,27,30,31,32,33,34,35,37,46,47,48,49,50,51,52,53,54,55,5
6,57,62,64,70,78,79 

43 1750.734 

K-Y method 1,3,10,11,20,21,23,26,28,29,30,31,32,33,34,35,36,39,40,41,42,43,44,45,49,5
2,53,57,58,59,60,61,62,64,65,66,70,73,74,80 

39 1726.845 
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Table 6. The optimal location of seven water quality monitoring points. 

 Selected seven junctions Multi-location 
trans-information 

Optimization method 10,20,21,23,37,53,70 571.302 

A-H method 6,12,14,19,47,54,55 384.807 

K-Y method 10,20,21,23,31,53,70 571.199 

Figure 4. Seven optimal monitoring points. 

 

In sewer networks, the outlet point is selected as basic monitoring point in general. This study 

selected additional monitoring points for the remaining 80 points, with the outlet point fixed as initial 

monitoring point. The point 20 and point 23 collect the water quality characteristics of the main flow 

directions I and II respectively. The point 21 collects the water quality characteristics in a combined 

flow of the main flow directions I, II and III. In addition, the point 37 collects the water quality 

characteristics in a combined flow of the flow direction at the point 21 and the main flow direction IV, 

and finally the outlet (initial monitoring point) collects the water quality characteristics of the overall 

flow. Therefore, the selected monitoring points can evaluate the water quality characteristics before 

and after the combination of major flows. The points 10, 53 and 70 are located at major starting points 

on the network. However, the seven points quantitatively evaluated by entropy show a concentrated 

pattern at the center without being dispersed spatially on the network. Accordingly, the decision maker 

needs to analyze the difference in entropy values by adjusting the number of monitoring points and 

select the spatially dispersed monitoring points within the range of proper entropy values by 

considering the difference of entropy value depending on the number of monitoring points. The 

method proposed by this study will be able to help this procedure of the decision maker. 
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5. Conclusions 

Entropy theory was used to propose quantified standards for selecting water quality monitoring 

points in a sewer system. In addition, the optimization method was introduced to establish the 

combination for which the multi-location, maximum trans-information value can most faithfully reflect 

changes of water quality in the sewer system. The application of this proposed model for the 

exploration of optimum solutions to an urban basin revealed its superior cost-effectiveness in 

comparison with two other methods. As the number of water quality monitoring points usually has to 

be limited because of budget restrictions, the proposed model for selecting water quality monitoring 

points can be used to design the optimal water quality monitoring network that maximizes the 

collection of efficient data from a limited number of points. In conclusion, the findings of this research 

can be applied to the establishment of more efficient systems of continuous sewer management and 

water quality monitoring in urban basins. 

For the sewer networks that had not been dealt with by the previous studies, this study suggested a 

new analysis procedure using entropy and an optimization technique to select optimal monitoring 

points. However, the effects of the choice of different Δx values could not be analyzed in detail by this 

study. It is necessary to study a proper Δx in analyzing the entropy values of various water quality 

items in sewer networks through a future study. In addition, Kwon and Yoo [19] showed a result that 

the results of monitoring point selection by water quality items in a river network didn’t coincide with 

each other. This is because the influence factor and aspect may differ from each other by water quality 

items. Also in this study, because of the relative difference in the result values by water quality items 

calculated by SWMM, the optimal set of monitoring points will vary if other water quality items are 

evaluated instead of TSS. When the entropy values at each point differ by water quality items, to 

consider various water quality items complexly, there may be a method of giving each different weight 

by water quality items and making it a function and a method of using the Distance Measure Method 

(DMM), for which it is necessary to carry out a study later. 
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