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Abstract: EEG (Electroencephalography) signals can express the human awareness 

activities and consequently it can indicate the depth of anesthesia. On the other hand, 

Bispectral-index (BIS) is often used as an indicator to assess the depth of anesthesia. This 

study is aimed at using an advanced signal processing method to analyze EEG signals and 

compare them with existing BIS indexes from a commercial product (i.e., IntelliVue MP60 

BIS module). Multivariate empirical mode decomposition (MEMD) algorithm is utilized to 

filter the EEG signals. A combination of two MEMD components (IMF2 + IMF3) is used to 

express the raw EEG. Then, sample entropy algorithm is used to calculate the complexity 

of the patients’ EEG signal. Furthermore, linear regression and artificial neural network (ANN) 

methods were used to model the sample entropy using BIS index as the gold standard. 
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ANN can produce better target value than linear regression. The correlation coefficient is 

0.790 ± 0.069 and MAE is 8.448 ± 1.887. In conclusion, the area under the receiver operating 

characteristic (ROC) curve (AUC) of sample entropy value using ANN and MEMD is  

0.969 ± 0.028 while the AUC of sample entropy value without filter is 0.733 ± 0.123. It means 

the MEMD method can filter out noise of the brain waves, so that the sample entropy of 

EEG can be closely related to the depth of anesthesia. Therefore, the resulting index can be 

adopted as the reference for the physician, in order to reduce the risk of surgery. 

Keywords: sample entropy; electroencephalography; depth of anesthesia; multivariate 

empirical mode decomposition; artificial neural networks; receiver operating 

characteristic curve 

 

1. Introduction 

Accurate and non-invasive monitoring of depth of anesthesia (DOA) [1] is very desirable during 

surgery. To achieve this purpose, many of the techniques or devices have been examined or used as 

methods to indicate the DOA, such as heart rate, blood pressure, and electroencephalogram (EEG) 

signals [2,3]. Among these methods, the analysis of EEG is very intuitive, because the main action of 

general anesthetic agents takes place in the brain. EEG normally measured non-invasively through 

scalp electrodes, reflects the spontaneous electrical activities of the human brain over a short period of 

time, according to the analysis of which the state of human can be determined. However, it is still very 

difficult to know the patient’s level of consciousness at the current stage. So far, there are 95% spectral 

edge frequency (SEF95), median power frequency (MPF), spectral edge frequency, narcotrend index (NI), 

and bispectral index (BIS) [4–7]. Except for bispectral analysis, these methods use linear 

computational algorithms. However, none of these methods have been proved to completely express 

the EEG message. EEGs exhibit significant complex behavior with strong nonlinear and dynamical 

properties [8]. Linear methods cannot express or ignore the message in some cases. Therefore, 

nonlinear theory may be a better approach than traditional linear methods in characterizing the intrinsic 

nature of the EEG. 

Originally, entropy was viewed as a thermodynamic property that is the measure of a system’s 

thermal energy per unit temperature. While applying the concept, entropy can address the system 

randomness and predictability. About a decade ago, researchers try to explain the depth of anesthesia 

using entropy. If the entropy is small, it indicates that the patient status is in anesthesia. If the entropy is 

large, it expressed that the patient status is awake. Response entropy (RE) and state entropy (SE) [9,10] are 

based on spectral entropy [11]. Spectral entropy uses FFT at first, however FFT is linear method so it 

might miss out some important imformation. ApEn (Approximate entropy) [12,13] for nonlinear 

physiological signals was developed in 1991. The sample entropy (SampEn) [14–17] is an 

improvement of ApEn with respect to computation and accuracy of signal regularity. Therefore, more 

information can be extracted form EEG using SampEn compared to ApEn. 

Sample entropy will report false results when there is noise in the EEG, therefore a filter is needed. 

Multivariate empirical mode decomposition (MEMD) is very powerful filter. It can filter out noise and 
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does not undermine the original signal. Therefore, SampEn can be used in conjunction with MEMD as 

signal processing methods to interpret the EEG signals for monitoring depth of anesthesia to reduce the 

burden on physicians. 

This paper is divided into five parts. First, the concept of depth of anesthesia is introduced. Then the 

SampEn and MEMD methodologies are described in the next section. In the third part, an experiment 

is designed in order to identify the best IMF combinations. Monitoring DOA by sample entropy is 

described in the fourth part. Finally, the results are discussed and the conclusions are drawn. 

2. Materials and Methods 

2.1. Materials 

In this study, the EEG signals are collected from thirty patients, whose ages are ranged from 20 to 80 

and under ear nose and throat (ENT) surgery with general anesthesia at the National Taiwan University 

Hospital (NTUH) of Taiwan. Subjects who had alcohol, smoking, medical illness or medication issues 

were excluded. The equipment in the operation room included a physiological monitor (IntelliVue MP60) 

and a portable computer. This equipment displays the patient’s physiological signals, such as 

electrocardiographic (ECG), EEG, blood pressure (BP) and saturated percentage of oxygen (SpO2) in 

real time. The study is mainly aimed at single channel EEG signal analysis for interpretation of DOA 

using the BIS™ Quatro Sensor. It can only collect single channel EEG signal since only consciousness 

is measured during anesthesia. This study was also approved by Institutional Review Board and 

written informed consent was obtained for the permission of the patients. 

2.2. Sample Entropy 

We can imagine that the entropy is the index of the degree of confusion. When the signal is not 

changing, entropy is lower. When the signal has more confusion and no regularity, entropy is higher. 

Based on this concept, the entropy is very useful in that it can be applied to the analysis of EEGs. 

Sample entropy improves an approximate entropy so that the entropy of the results can be more 

sensitive. At the same time, we can get more information from the EEG. 

First, given N data points from a time series x n x 1 , x 2 , … , x N  to define SampEn, and 

set two parameters which are r and m. The former parameter (r) is a coefficient of tolerance, while the 

latter (m) is the dimension of the template vector (X ), and general formula of the kth X  

is x k , x k 1 , … , x k 1 m . Then, compute the total number of the distances that are less than R 

(R = r × SD (standard deviation of original data)). The distance function is as shown in Equation (1): 

d X i , X j max |x i k x j k | . k 0, m 1 , i j   (1)

Here, B r is used to express the ith total number, then calculate B r  using Equation (2): 

 B r
N m 1

N m
B r

N

 (2)

Finally, we calculate B r  that is similar to the computation of B r  and calculate the 

sample entropy using Equation (3): 
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, ,  (3)

In this study, various theoretical and clinical applications have been shown that 1 or 2, 

and 0.1~0.2SD are more suitable values to use. In this study, we tried parameters like 2 

and 0.1SD. 

2.3. Multivariate Empirical Mode Decomposition 

EEG signals are very weak, so they are easily interfered by other signals, such as from 

electromyography (EMG), electrooculogram (EOG), or electrosurgical units (ESUs) [18]. These 

signals are contaminating noise in the EEG, so they will cause erroneous results. Therefore, a method 

is required that can filter out noise and does not undermine the original signal. Huang et al. proposed 

empirical mode decomposition (EMD) [19,20], that can decompose the original signal into different 

intrinsic mode functions (IMFs), expressed as follows: 

 (4)

where  is the original signal in time domain,  is ith IMF, and  is the residue. Hence, 

we can choose the different suitable IMFs combination and get rid of noise of IMFs to re-construct the 

signal. However, EMD has problems of mode mixing so they proposed the EEMD technique [21] to 

solve this problem. Unfortunately, EEMD is time-consuming and can add noise into the original 

signal. In 2010, Rehman and Mandic [22] propose an improved EMD method called multivariate 

empirical mode decomposition (MEMD). Later, in 2011 they proposed a noise-assisted MEMD method 

(N-A MEMD) [23], which is not only suitable for dealing with multichannel signals, but also solves the 

problem of mode mixing using white Gaussian noise added to different channels. Hence, the N-A 

MEMD method was used in this paper. In computation of N-A MEMD, the mean  is calculated 

by means of the multivariate envelope curves, expressed as follows: 

m
1

 (5)

where   are the multivariate envelope curves of the whole set of direction vectors and  is 

length of the vectors. Then, we compute the remainder r  by r m . If the remainder 

fulfills the stoppage criterion, the remainder is a multivariate IMF. If not, the input  will equal the 

remainder r  and compute the remainder again. We repeat these steps until all of multivariate IMFs are 

found. Regarding the stoppage criterion, it is still the same as the original EMD proposed by Huang et al. [19] 

using decomposing signal until the signal becomes monotonic.  

2.4. Artificial Neural Networks 

The SampEn value range is from 0 to 3, but the surgeon does not know whether the patient is awake 

or unconscious when the SampEn value is 2, so an index is needed to indicate the patient’s state. In 
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order to model this patients’ state, a commercial product (BIS machine) is used as the gold standard. 

Hence, the traditional method of linear regression and nonlinear method of ANN were compared. 

ANN is a parallel computing model which is similar to the human nerve structure, so that it is also 

called the parallel distributed processing model or connectionist model [24]. ANN uses repeated 

constant learning and error correction in order to achieve the best output, so that the whole system is 

like a brain that understands the new problems, analyzes, and finally sums up the best conclusion. In 

ANN there are three learning rules generally: supervised learning, unsupervised learning and reinforced 

learning. In supervised learning, a new weight is generated by the correspondence between the rules in 

the input and output values in the training. In this study, a back-propagation neural network (BPNN) is 

used for leaning to model SampEn and BIS values. 

3. Analysis of Intrinsic Mode Functions 

Ten IMFs obtained by N-A MEMD are shown in Figure 1. However, which IMFs are related to 

brainwaves and which IMFs are related to noise is still difficult to decide. In this study, the experiment 

is designed such that IMFs combinations which are needed for the next analysis are acquired by 

sample entropy and FFT. Based on the concept of entropy, the patient’s brain activity is faster before 

the patient is injected with medicine. Therefore, the sample entropy value should be higher. 

Figure 1. EEG (5 s) and IMFs. 

 

During surgery, the patient’s brain activity is slower due to the drug’s effect. Hence, the sample 

entropy value should be lower. During recovery, the patient’s brain activity gradually returns to normal, 

so the sample entropy value should raise gradually. EEG for thirty patients from NTUH was recorded 

and every patient’s data was divided into three stages. Each stage only takes one minute. The first stage 

is before injecting drugs so the patients have no drug effects and their status should be awake. The 

second stage is during surgery when the EEG is the most gentle and undisturbed. At this time, because 

the role of anesthetic drugs, the state of the patient is now unconscious. The third stage is the recovery 
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stage where one minute before the end of the collection of data is selected. At this time, the patient can 

move his body consciously. 

Table 1 shows the frequencies of each IMF obtained by computing the frequency of each IMF using 

FFT. According to frequency ranges of the EEG signals from state and response entropies, which are from 

0.8 Hz to 47 Hz and 0.8 Hz to 32 Hz respectively, IMF2, IMF3, IMF4, IMF5, and IMF6, were selected so 

there are a total of 31 possible combinations. The entropy of each stage and the combinations were 

calculated as shown in Table 2. If the entropy value of stage 2 is both less than entropy value of stage 1 

and stage 3, the combination may be suitable for use. There are five combinations (i.e., IMF2, IMF2 + IMF3, 

IMF2 + IMF4, IMF2 + IMF3 + IMF4, and IMF2 + IMF3 + IMF6) which are qualified. Statistical 

approach was used to calculate the p value that entropy value of stage 1 and stage 2 and entropy value of 

stage 2 and stage 3. As shown in Table 3, there are three combinations’ (IMF2, IMF2 + IMF3, and 

IMF2 + IMF3 + IMF4) of significant p values of stage 1 and stage 2 and entropy value of stage 2 and 

stage 3 are less 0.05. The selected combination (IMF2+IMF3) that has the least p value of stage 1 and 

stage 2 and entropy value of stage 2 and stage 3 are shown in Figure 2. 

Figure 2. IMF2, IMF2 + IMF3, and IMF2 + IMF3 + IMF4 of sample entropy in each stage. 

 

In addition, it was found that IMF2 frequency is in β wave (12.5~25Hz); IMF3 frequency is in α 

wave (7.5~12.5Hz); IMF4 frequency is in θ wave (3.5~7.5Hz); IMF5~9 frequency is in δ wave 

(1.5~3.5Hz). Therefore, it is similar to previous brain wave studies in that the combination of these 

(IMF2, IMF2 + IMF3 and IMF2 + IMF3 + IMF4) represent the patient awake to conscious state [25]. 

Table 1. IMFs of frequency at each stage. 

 Stage1 Stage2 Stage3 

IMF1 47.254 ± 7.343 50.512 ± 5.345 45.529 ± 7.420 
IMF2 20.583 ± 2.892 18.552 ± 2.311 19.957 ± 3.429 
IMF3 9.650 ± 1.656 10.212 ± 1.373 10.234 ± 1.999 
IMF4 5.088 ± 1.106 5.558 ± 1.167 5.639 ± 1.438 
IMF5 2.707 ± 0.644 2.809 ± 0.638 2.783 ± 0.768 
IMF6 1.456 ± 0.378 1.427 ± 0.347 0.414 ± 0.396 
IMF7 0.779 ± 0.237 0.740 ± 0.214 0.770 ± 0.231 
IMF8 0.401 ± 0.143 0.376 ± 0.144 0.404 ± 0.151 
IMF9 0.157 ± 0.120 0.126 ± 0.113 0.153 ± 0.123 

IMF10 0.027 ± 0.060 0.017 ± 0.046 0.029 ± 0.060 
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Table 2. Sample entropy of the combinations at each stage. 

 Stage1 Stage2 Stage 3 

IMF2 1.576 ± 0.301 1.317 ± 0.198 1.557 ± 0.335 
IMF3 0.753 ± 0.162 0.813 ± 0.097 0.833 ± 0.167 
IMF4 0.557 ± 0.113 0.657 ± 0.039 0.605 ± 0.110 
IMF5 0.473 ± 0.123 0.567 ± 0.050 0.491 ± 0.129 
IMF6 0.386 ± 0.109 0.422 ± 0.076 0.373 ± 0.119 
IMF2 + IMF3 1.702 ± 0.349 1.387 ± 0.180 1.758 ± 0.367 
IMF2 + IMF4 1.571 ± 0.511 1.556 ± 0.237 1.796 ± 0.435 
IMF2 + IMF5 1.452 ± 0.559 1.586 ± 0.290 1.727 ± 0.515 
IMF2 + IMF6 1.426 ± 0.574 1.559 ± 0.326 1.694 ± 0.517 
IMF3 + IMF4 0.777 ± 0.199 0.950 ± 0.097 0.921 ± 0.214 
IMF3 + IMF5 0.797 ± 0.237 1.042 ± 0.112 0.966 ± 0.276 
IMF3 + IMF6 0.803 ± 0.256 1.047 ± 0.134 0.964 ± 0.288 
IMF4 + IMF5 0.526 ± 0.125 0.656 ± 0.046 0.591 ± 0.131 
IMF4 + IMF6 0.552 ± 0.121 0.682 ± 0.052 0.599 ± 0.138 
IMF5 + IMF6 0.409 ± 0.110 0.515 ± 0.055 0.432 ± 0.127 
IMF2 + IMF3 + IMF4 1.484 ± 0.455 1.356 ± 0.165 1.689 ± 0.406 
IMF2 + IMF3 + IMF5 1.428 ± 0.483 1.429 ± 0.162 1.657 ± 0.429 
IMF2 + IMF3 + IMF6 1.428 ± 0.490 1.424 ± 0.170 1.650 ± 0.430 
IMF2 + IMF4 + IMF5 1.302 ± 0.564 1.380 ± 0.269 1.623 ± 0.515 
IMF2 + IMF4 + IMF6 1.346 ± 0.551 1.424 ± 0.268 1.625 ± 0.486 
IMF2 + IMF5 + IMF6 1.218 ± 0.576 1.377 ± 0.325 1.558 ± 0.571 
IMF3 + IMF4 + IMF5 0.715 ± 0.220 0.964 ± 0.107 0.882 ± 0.242 
IMF3 + IMF4 + IMF6 0.751 ± 0.214 0.982 ± 0.108 0.896 ± 0.240 
IMF3 + IMF5 + IMF6 0.695 ± 0.249 1.010 ± 0.143 0.895 ± 0.308 
IMF4 + IMF5 + IMF6 0.475 ± 0.136 0.646 ± 0.049 0.557 ± 0.147 
IMF2 + IMF3 + IMF4 + IMF5 1.276 ± 0.500 1.304 ± 0.170 1.560 ± 0.453 
IMF2 + IMF3 + IMF4 + IMF6 1.316 ± 0.482 1.321 ± 0.165 1.570 ± 0.439 
IMF2 + IMF3 + IMF5 + IMF6 1.238 ± 0.520 1.355 ± 0.187 1.538 ± 0.493 
IMF2 + IMF4 + IMF5 + IMF6 1.144 ± 0.565 1.279 ± 0.273 1.492 ± 0.541 
IMF3 + IMF4 + IMF5 + IMF6 0.652 ± 0.236 0.952 ± 0.124 0.840 ± 0.258 
IMF2 + IMF3 + IMF4 + IMF5 + IMF6 1.143 ± 0.516 1.260 ± 0.177 1.458 ± 0.492 

Table 3. P value of stage1 & stage2, and stage2 & stage3. 

 Stage1 & Stage2 (P value) Stage2 & Stage3 (P value) 

IMF2 1.15×10−38 1.08×10−28 
IMF2 + IMF3 3.54×10−44 6.22×10−53 
IMF2 + IMF4 0.607112601 9.44×10−21 
IMF2 + IMF3 + IMF4 3.88×10−7 3.96×10−41 
IMF2 + IMF3 + IMF6 0.872162002 1.57×10−19 
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4. Application of Sample Entropy to Analysis of EEG for Monitoring DOA 

First, noise channels with white Gaussian noise are added to the input signal. The signals were filtered 

using N-A MEMD and the combination of IMF2 + IMF3 taken. The calculation of the EEG recordings 

is performed in a time window of 24 s including 3,000 points of EEG signals (the sampling frequency of 

the EEG is 125 Hz). In order to be consistent with the BIS recordings, the sliding window moves every 

five seconds once for real time analysis, as indicated in the flowchart shown in Figure 3. 

Figure 3. Flow chart of EEG signal processing. 

 

Due to the sample entropy’s value range from 0 to 3 and BIS’s value range from 0 to 100, linear 

regression was used to map the ranges. Twenty sets of the data were used for the training model, and the 

other ten sets of data were used for testing. The cases were classified into training group or testing group 

randomly. The process was run ten times, and the results showed that the correlation coefficient of the 

training group and the testing group for sample entropy and BIS are 0.770 ± 0.072 and 0.757 ± 0.068 as 

shown in Table 4. Hence, the linear regression results are not accurate. Next, ANN is utilized to do the 

modelling, where 70% of the thirty cases are used for training, 15% are used for validation, and the rest for 

testing. In Figure 4, the red line represents the target while the blue line is the output. For ANN, the 

training and validation data are added together as the model data. The result shows that the correlation 

coefficients of the training group and testing group of the sample entropy and BIS are 0.8184 and 

0.7746. So, simple ANN can get a little improvement compared to the linear regression model for both 

the model and testing groups. 

Table 4. The correlation coefficient model group and testing group. 

Times Model group Testing group 

1 0.777 ± 0.074 0.742 ± 0.061 
2 0.777 ± 0.075 0.743 ± 0.059 
3 0.769 ± 0.062 0.759 ± 0.090 
4 0.770 ± 0.072 0.758 ± 0.073 
5 0.776 ± 0.067 0.746 ± 0.079 
6 0.764 ± 0.070 0.769 ± 0.078 
7 0.747 ± 0.074 0.802 ± 0.051 
8 0.778 ± 0.073 0.740 ± 0.063 
9 0.771 ± 0.071 0.755 ± 0.074 
10 0.771 ± 0.080 0.755 ± 0.053 

mean ± SD 0.770 ± 0.072  0.757 ± 0.068 
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Figure 4. The training, validation, and testing of ANN results (red line is target and blue line 

is output). 

 

To demonstrate the filtering effect of N-A MEMD, a sample example is given to illustrate the 

result. For example, a fifty-five year old aged patient who went to ENT surgery is given. Figure 5 

shows that BIS and sample entropy are very close, except in between 60 to 70 min. During that time, the 

doctor used an electrosurgical unit (ESU). Hence, the BIS module judged that the signal was very 

noisy, so the value was −1. However, the N-A MEMD can filter the noise, and the sample entropy value 

can still express the patient’s status. Therefore, the data is collected each thirty seconds before and after 

BIS lost the signal due to ESU. For this patient, BIS is only miss-classified once where it started at 3,756 s 

(i.e., 62.6 min) and lasted for 185 s as shown in Table 5 for patient 1. This phenomenon can be replaced 

by applying SampEn procedure, which was treated by N-A MEMD. Using this method, the value is still 

close to the 30 s before and after the BIS was equal to −1, and the operation of this patient was lasting for 

102.08 min. Fourteen patients out of 30 patients who have several different times of missing BIS 

values were analysed as shown in Table 6. The most frequent record of BIS loss value is fifteen times, 

which is patient 14, for 750 s of the 229 min of the total operation time. 

Table 5. The comparison of SampEn value and BIS value when BIS value of −1 in patient 1. 

 Time(s) BIS Entropy Total time (min)

Patient 1 1 (185s) 

3726 ~ 3755 36.33 ± 2.34 34.75 ± 0.88 

102.08 3756 ~ 3940 −1 36.75 ± 3.98 

3941 ~ 3970 39.50 ± 1.38 40.00 ± 2.82 
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Figure 5. The comparison of BIS and sample entropy. 

 

Table 6. The total time for BIS value is −1 during ESU disturbance. 

 Event & Time (s) Event no. Total event time (s) Operation time (min) 

Patient 1 1(185s) 1 185 102.08 

Patient 3 1(5s), 2(10s) 2 15 74.42 

Patient 5 1(15s) 1 15 110.75 

Patient 6 1(25s), 2(5s), 3(25s) 3 55 41.50 

Patient 10 1(5s), 2(10s) 2 15 94.58 

Patient 11 1(25s) 1 25 69.92 

Patient 14 

1(10s), 2(25s), 3(40s), 
4(60s), 5(175s), 
6(160s), 7(10s), 8(10s), 
9(5s), 10(5s), 11(30s), 
12(35s), 13(125s), 
14(30s), 15(30s) 

15 750 229.17 

Patient 15 

1(15s), 2(10s), 3(25s), 
4(50s), 5(30s), 6(125s), 
7(5s), 8(20s), 9(15s), 
10(5s), 11(30s), 
12(15s), 13(40s), 
14(30s) 

14 415 347.75 

Patient 16 1(20s) 1 20 69.50 

Patient 17 1(10s), 2(25s) 2 35 53.42 

Patient 18 
1(25s), 2(10s), 3(50s), 
4(10s), 5(20s), 6(10s) 

6 125 225.08 

Patient 23 1(5s) 1 5 69.92 

Patient 25 1(5s), 2(5s) 2 10 160.17 

Patient 28 1(5s) 1 5 99.67 
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5. Receiver Operating Characteristic (ROC) Curve 

Correlation coefficient and MAE can be used to compare different analysis methods, but there is a 

need for a quantitative value to explain the method to a degree of how good or bad it is. Therefore, in 

this study, the Receiver Operating Characteristic Curve [26,27] is used as an assessment method. 

Different cut-off points can be used to get sensitivities and specificities. Usually, a diagonal line is 

drawn on the chart as a benchmark, and the curve of the above on this line is better and below is not 

good. In this study, the area under the ROC curve (AUC) is used to assess these methods. Since the 

range of AUC values is from 0 to 1, the bigger values mean better results. When AUC is less than or 

equal to 0.5, the method has no discrimination. When AUC is greater than or equal to 0.7 and less than 0.8, 

the method has acceptable discrimination. When AUC is greater than or equal to 0.8 and less than 0.9, 

the method has excellent discrimination. When AUC is greater than or equal to 0.9, the method has 

outstanding discrimination. 

In the study, the sample entropy from original EEG signal, after filtering the EEG signal, and via 

MEMD and ANN are compared with BIS as standard. In Table 7, “Original entropy” is the sample 

entropy from original EEG signal. “Entropy via MEMD” is the sample entropy from after filtering 

EEG signal. “ANN” is the sample entropy via MEMD and ANN. From this table, MEMD can improve 

accuracy of distinguishing the state of stupefaction or awake. Table 7 lists all the cases featuring mean 

AUC and SD of the methods of “ANN”, “Entropy via MEMD” and “ Original entropy” as  

0.970 ± 0.028, 0.969 ± 0.028, and 0.733 ± 0.123, respectively. 

Table 7. AUC of all thirty patients. 

 

AUC 

ANN Entropy via MEMD Original entropy 

Patient 1 0.963 0.963 0.742 

Patient 2 0.895 0.895 0.785 

Patient 3 0.987 0.987 0.804 

Patient 4 0.966 0.966 0.690 

Patient 5 0.969 0.969 0.580 

Patient 6 0.965 0.965 0.780 

Patient 7 0.965 0.965 0.845 

Patient 8 0.977 0.977 0.575 

Patient 9 0.986 0.986 0.783 

Patient 10 0.984 0.984 0.558 

Patient 11 0.957 0.957 0.718 

Patient 12 0.996 0.996 0.562 

Patient 13 0.990 0.990 0.928 

Patient 14 0.997 0.997 0.911 

Patient 15 0.997 0.997 0.792 

Patient 16 0.995 0.995 0.877 

Patient 17 0.965 0.964 0.907 

Patient 18 0.992 0.992 0.889 

Patient 19 0.970 0.970 0.620 

Patient 20 0.993 0.993 0.824 
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Table 7. Cont. 

 

AUC 

ANN Entropy via MEMD Original entropy 

Patient 21 0.992 0.992 0.811 

Patient 22 0.907 0.907 0.763 

Patient 23 0.977 0.977 0.588 

Patient 24 0.960 0.960 0.585 

Patient 25 0.995 0.995 0.523 

Patient 26 0.899 0.899 0.861 

Patient 27 0.955 0.955 0.695 

Patient 28 0.975 0.975 0.736 

Patient 29 0.935 0.935 0.605 

Patient 30 0.981 0.981 0.638 

mean ± SD 0.970 ± 0.028 0.969 ± 0.028 0.733 ± 0.123 

6. Discussion and Conclusions 

During surgical operations, inevitable noise such as EOG, EMG or ESU will interfere with EEG 

signals. Therefore, it is necessary to reduce the influence of noise using a filter first. For nonlinear 

signal processing, the N-A MEMD method can get the original signal without disrupting it. In this 

study, the original EEG signal was decomposed using N-A MEMD into many IMFs. Next, the main 

frequency of each IMF is calculated. Results show that frequencies of IMF2 to IMF6 are located in 

brainwave frequency range. Thirty-one IMF combinations were generated using the five significant 

IMFs. The combination (IMF2 + IMF3) is the best expression of the raw EEG. However, it is totally 

agreed that delta waves will occur during deep anesthesia. In this paper different combinations were 

compared as shown in Table 2. From this table, the entropy mean value of stage 2 is greater than the 

entropy mean value of stage 1 when considering IMF5 & IMF6 inside this analysis on the last six rows of 

Table 2. The results are not reasonable, so this combination is eliminated. This might be due to the type 

of the surgery [i.e., ear, nose, and throat (ENT) surgery] which does not require deep anesthesia, so the 

combination of IMF2 + IMF3 is considered to be the best. However, if the surgery lasts for a longer time, 

e.g., liver or heart transplant operations, the combination of IMF2 + IMF3 + IMF5 + IMF6 may be better. 

The entropy value obtained using ANN having good results were achieved. In order to provide 

anesthesiologists valuable reference and evaluation, N-A MEMD methods should be used after further 

validations. Although EMD, EEMD, or CEEMD [28] are used to decompose this single channel 

signal, these three methods have some problems such as mode mixing, being time consuming, or too 

much noise being added to the original signals. Nowadays, there are many types of EMD and each one 

has merits and demerits in processing the signal. For example, eXtended-EMD (X-EMD) [29] can 

produce better results than MEMD and Turning Tangent EMD (2T-EMD) [30] in dealing with 

multivariate signal denoising. However, in 2011 Rehman et al. also proposed N-A EMD. This shows 

that the original MEMD is worse than X-EMD, but N-A MEMD improves the original MEMD and 

also solves the mode mixing problem. Therefore, the N-A EMD method applied in this study has 

proven to be very successful to deal with EEG filtering during surgery. However, in the near future it is 
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hoped that other methods, such as Independent Component Analysis (ICA) [31] and Canonical Correlation 

Analysis (CCA) [32], can be compared to investigate the improvement in interpreting depth of anesthesia. 

In Figure 5, it is different with BIS and entropy during 70 to 100 min. Because the BIS-index is 

poor in distinguishing the awake from unconscious patients [33], there is a need to cooperate with 

doctors in order to verify the method of this study. The collected signals are not only EEG and BIS, but 

also ECG, SPO2, BP, drug dosage, and operation of events and related information. According to the 

data and clinical experience, physicians can determine consciousness degree indexes more accurately 

than BIS. Then, the consciousness degree index can be used as the gold standard. Therefore, the aim of 

this paper is to establish the feasibility of this method at this stage, and the physician’s judgment will 

be merged in near future. 
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