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Abstract: We consider a random generalization of the classical Fibonacci substitution. The
substitution we consider is defined as the rule mapping, a 7→ baa and b 7→ ab, with
probability p, and b 7→ ba, with probability 1 − p for 0 < p < 1, and where the random
rule is applied each time it acts on a b. We show that the topological entropy of this object
is given by the growth rate of the set of inflated random Fibonacci words, and we exactly
calculate its value.
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1. Introduction

In [1], Godrèche and Luck define the random Fibonacci chain by the generalized substitution:

θ :


a 7→ b

b 7→

ab with probability p

ba with probability 1− p

for 0 < p < 1 and where the random rule is applied each time θ acts on a b. They introduce the
random Fibonacci chain when studying quasi-crystalline structures and tilings in the plane. In their
paper, it is claimed (without proof) that the topological entropy of the random Fibonacci chain is given
by the growth rate of the set of inflated random Fibonacci words. This was later, with a combinatorial
argument, proven in a more general context in [2].

The renewed interest in this system, and in possible generalizations, stems from the observation that
the natural geometric generalization of the symbolic sequences by tilings of the line had to be Meyer sets
with entropy and interesting spectra [3]. There is now a fair understanding of systems that emerge from
the local mixture of inflation rules that each define the same hull. However, little is known so far about
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more general mixtures. Here, we place our attention to one such generalization. It is still derived from
the Fibonacci rule, but mixes inflations that define distinct hulls.

In this paper, we consider the randomized substitution, φ, defined by:

φ =


a 7→ baa

b 7→

ab with probability p

ba with probability 1− p

for 0 < p < 1 and where the random rule is applied each time φ acts on a b. The substitution, φ, is a
mixture of two substitutions, whose hulls are different. This is true, since the hull of the substitution,
(a, b) 7→ (baa, ab), contains words with the sub-words, aaa and bb, but neither of these sub-words are
to be found in any word of the hull of (a, b) 7→ (baa, ba). For a more detailed survey of the differences
and similarities of the generated hulls of these two substitutions, see [4].

Before we can state our main theorem in detail, we need to introduce some notation. A word, w,
over an alphabet, Σ, is a finite sequence, w1w2 . . . wn, of symbols from Σ. We let, here, Σ = {a, b}.
We denote a sub-word of w by w[a, b] = wawa+1wa+2 . . . wb−1wb, and similarly, we let W [a, b] =

{w[a, b] : w ∈ W}. By | · |, we mean the length of a word and the cardinality of a set. Note that
|w[a, b]| = b−a+ 1. When indexing the brackets with a letter, α, from the alphabet, | · |α, we shall mean
the numbers of occurrences of α in the enclosed word.

For two words, u = u1u2u3 . . . un and v = v1v2v3 . . . vm, we denote by uv the concatenation of the
two words, that is, uv = u1u2u3 . . . unv1v2 . . . vm. Similarly, we let, for two sets of words, U and V ,
their product be the set, UV = {uv : u ∈ U, v ∈ V }, containing all possible concatenations.

Letting φ act on the word, a, repeatedly yields an infinite sequence of words, rn = φn−1(a). We know
that r1 = a and r2 = baa. However, r3 is one of the words, abbaabaa or babaabaa, with probability p
or 1− p. The sequence, {rn}∞n=1, converges in distribution to an infinite random word, r. We say that rn
is an inflated word (under φ) in generation n, and we introduce, here, sets that correspond to all inflated
words in generation n;

Definition 1. Let A1 = {a}, B1 = {b}, and for n ≥ 2, we define recursively:

An = Bn−1An−1An−1

Bn = An−1Bn−1 ∪Bn−1An−1

and we let A := limn→∞An and B := limn→∞Bn.

The sets, A and B, are indeed well defined. This is a direct consequence of Corollary 6. It is clear
from the definition of An and Bn that all their elements have the same length, that is, for all x, y ∈ An
(or x, y ∈ Bn), we have |x| = |y|. By induction, it easily follows that for a ∈ An, we have |a| = f2n and
for b ∈ Bn, we have |b| = f2n−1, where fm is the mth Fibonacci number, defined by fn+1 = fn + fn−1

with f0 = 0 and f1 = 1.
For a word, w, we say that x is a sub-word of w if there are two words, u, v, such that w = uxv. The

sub-word set, F (S, n), is the set of all sub-words of length n of words in S. The combinatorial entropy of
the random Fibonacci chain is defined as the limit, limn→∞

1
n

log |F (A, n)|. The combinatorial entropy
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is known to equal the topological entropy for our type of systems; see [5]. The existence of this limit
is direct by Fekete’s lemma [6], since we have sub-additivity, log |F (S, n + m)| ≤ log |F (S, n)| +

log |F (S,m)|. We can now state the main result in this paper.

Theorem 2. The logarithm of the growth rate of the size of the set of inflated random Fibonacci words
equals the topological entropy of the random Fibonacci chain, that is:

lim
n→∞

log |An|
f2n

= lim
n→∞

log |Bn|
f2n−1

= lim
n→∞

log |F (C, n)|
n

=
1

τ 3
log 2 (1)

where τ is the golden mean, τ = 1+
√
5

2
and C ∈ {A,B}.

The outline of the paper is that we start by studying the sets, An andBn. Next, we give a finite method
for finding the sub-word set, F (A, n), (which, we will see, is the same as F (B, n)). Thereafter, we derive
some Diophantine properties of the Fibonacci number that will play a central part when we look at the
distribution of the letters in words from F (A, n). Finally, we present an estimate of |F (A, n)|, leading
up to the proof of Theorem 2.

2. Inflated Words

In this section, we present the sets of inflated words and give an insight to their structure. The results
presented here will also play an important role for the results in the coming sections.

Proposition 3. Let u, v ∈ An (or both in Bn). Then, u 6= v, if and only if {φ(u)} ∩ {φ(v)} = ∅, where,
here, {φ(z)} denotes the set of all possible words that can be obtained by applying φ on z.

Proof. Let u 6= v, and assume that w ∈ {φ(u)} ∩ {φ(v)}. Denote by φu and φv the special choices of
φ, such that w = φu(u) = φv(v). Let k be the first position, such that uk 6= vk, where u = u1u2 . . . um

and v = v1v2 . . . vm. Then, we may assume uk = a and vk = b; otherwise, just swap the names of
u and v. Since we have φ(a) = baa, we see that we must have φv(vk) = φv(b) = ba. However,
then, also, φv(vkvk+1) = φv(bb) = baab. This then implies uk+1 = b, since, if we have uk+1 = a,
then there must be two consecutive as in w, and we could not find a continuation in v. Hence, we have
φu(ukuk+1) = φu(ab) = baaba. As previously, v must continue with a b. We now see that we are in
a cycle, where |φu(ukuk+1 . . . uk+s)| = 3 + 2s and |φv(vkvk+1 . . . vk+s)| = 2(s + 1). Since there is no
s ∈ N, such that 3 + 2s = 2(s+ 1), we conclude that there can be no such w.

We can now turn to the question of counting the elements in the sets, An and Bn.

Proposition 4. For n ≥ 2, we have:

|An| = 2f2n−3−1 and |Bn| = 2f2n−4+1

Proof. Let us start with the proof of the the size of An. From the Definition 1 of An and Bn, it follows
by induction that |x|b = f2n−2 for x ∈ An. Combining this with Proposition 3, we find the recursion:

|An| = |An−1| · 2|x|b = |An−1| · 2f2n−4 (2)
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The size ofAn now follows from Equation (2) by induction. For the size ofBn, we have, by the definition
of Bn and that we already know the size of An,

|Bn| =
|An+1|
|An||An|

=
2f2n−1−1

2f2n−3−1 · 2f2n−3−1
= 2f2n−4+1

which completes the proof.

From Proposition 4, the statements of the logarithmic limits of the sets, An and Bn, in Theorem 2
follows directly. Our next step is to give some result on sets of prefixes of An and Bn. These results will
play a central role when we later look at sets of sub-words.

Proposition 5. For n ≥ 2, we have:

An[1, f2n − 1] ⊂ An+1[1, f2n − 1] (3)

An[1, f2n − 1] ⊂
(
BnAn

)
[1, f2n − 1] (4)

Proof. Let us first consider (3). We give a proof by induction on n. For the basis case, n = 2, we have:

A2[1, f2·2 − 1] = A2[1, 2] = {ab} ⊂ {ab, ba} = A3[1, f4 − 1]

Now, assume for induction that Equation (3) holds for 2 ≤ n ≤ p. Then, for n = p + 1, we have by the
induction assumption:

Ap+1[1, f2(p+1) − 1] =
(
BpApAp

)
[1, f2(p+1) − 1]

⊆
(
(ApBp ∪BpAp)Ap

)
[1, f2(p+1) − 1]

=
(
Bp+1Ap

)
[1, f2(p+1) − 1]

= Bp+1

(
Ap[1, f2p − 1]

)
⊂ Bp+1

(
Ap+1[1, f2p − 1]

)
=
(
Bp+1Ap+1

)
[1, f2(p+1) − 1]

=
(
Bp+1Ap+1Ap+1

)
[1, f2(p+1) − 1]

= Ap+2[1, f2(p+1) − 1]

which completes the induction and the proof of Equation (3). Let us turn to the proof of Equation (4).
By the help of Equation (3), we have:

An[1, f2n − 1] =
(
Bn−1An−1An−1

)
[1, f2n − 1]

= Bn−1An−1
(
An−1[1, f2(n−1) − 1]

)
⊂ Bn−1An−1

(
An[1, f2(n−1) − 1]

)
=
(
Bn−1An−1An

)
[1, f2n − 1]

⊆
(
BnAn

)
[1, f2n − 1]

which concludes the proof.

From Proposition 5, it is straight forward, by recalling the recursive definition of An and Bn, to derive
the following equalities on prefix-sets.
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Corollary 6. For n ≥ 3, we have:

An[1, f2(n−1) − 1] = An+1[1, f2(n−1) − 1]

Bn[1, f2(n−1) − 1] = An[1, f2(n−1) − 1]

Bn = Bn+1[1, f2n−1]

We end the section by proving a result on suffixes of the sets, An and Bn, that we shall make use of
in the next sections.

Proposition 7. For n ≥ 2, we have:

An[f2n−2 + 2, f2n] ⊆ Bn[2, f2n−1] (5)

Bn[2, f2n−1] = Bn+1[f2n + 2, f2n+1] (6)

Proof. We give a proof by induction on n. For the basis case, n = 2, we have:

A2[f2 + 2, f4] = A2[2, 3] = {a} ⊆ {a, b} = B2[2, 2]

Now, assume for induction that Equation (5) holds for 2 ≤ n ≤ p. Then, for the induction step, n = p+1,
we have by the induction assumption:

Ap+1[f2(p+1)−2 + 2, f2(p+1)] =
(
BpApAp

)
[f2(p+1)−2 + 2, f2(p+1)]

=
(
ApAp

)
[f2p−2 + 2, 2f2p]

=
(
Ap[f2p−2 + 2, f2p]

)
Ap

⊆
(
Bp[2, f2p−1]

)
Ap

=
(
BpAp[2, f2p+1]

)
⊆ Bp+1[2, f2(p+1)−1]

which completes the induction and the proof of Equation (5). For the proof of Equation (6), we have:

Bn[2, f2n−1] =
(
AnBn

)
[f2n + 2, f2n + f2n−1] ⊆ Bn+1[f2n + 2, f2n + f2n−1]

and for the converse inclusion, we have by Equation (5):

Bn+1[f2n + 2, f2n + f2n−1] =
(
AnBn ∪BnAn

)
[f2n2, f2n + f2n−1]

=
(
Bn[2, f2n−1]

)
∪
(
An[f2n−2 + 2, f2n]

)
⊆ Bn[2, f2n−1]

which proves the equality (6).
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3. Sets of Sub-Words

Here, we investigate properties of the sets of sub-words, F (A,m) and F (B,m). We will prove that
they coincide, and moreover, we show how to find them by considering finite sets, which will be central
when estimating their size, depending on m.

First, we turn our attention to proving that it is indifferent if we consider sub-words of An or of Bn.

Proposition 8. For n ≥ 1, we have:

F (An+1, f2n − 1) = F (Bn+1, f2n − 1)

Proof. Let us first turn to the proof of the inclusion:

F (An+1, f2n − 1) ⊆ F (Bn+1, f2n − 1) (7)

Let x(k) ∈ An+1[k, k − 1 + f2n − 1] for 1 ≤ k ≤ f2n+1 + 2. It is clear that x(k) ∈ F (An+1, f2n − 1) for
any k. We have to prove that also x(k) ∈ F (Bn+1, f2n − 1).

For 1 ≤ k ≤ f2n−1 + 2, we have:

x(k) ∈ F (BnAn, f2n − 1) ⊆ F (Bn+1, f2n − 1)

For f2n−1 + 3 ≤ k ≤ f2n + 1, we have by Corollary 6, which x(k) must be a sub-word of:(
AnAn

)
[3, f2n + f2n−2 − 1] =

(
AnBn

)
[3, f2n + f2n−2 − 1]

= Bk+1[3, f2n + f2n−2 − 1]

For f2n + 2 ≤ k ≤ f2n+1 + 2, we have by Proposition 7:(
BnAnAn

)
[f2n + 2, f2n+2] =

(
An[f2n−2 + 2, f2n]

)
An

⊆
(
Bn[2, f2n−1]

)
An

⊆ Bn+1[2, f2n+1]

which concludes the proof of the inclusion (7). For the converse inclusion, it is enough to consider
sub-words of AnBn, since any sub-word of BnAn clearly is a sub-word of An+1. Therefore, let y(k) ∈
(AnBn)[k, k − 1 + f2n − 1] for 1 ≤ k ≤ f2n−1 + 1. We now proceed as in the case above.

For 1 ≤ k ≤ f2n−2 + 1, we have:

(AnBn)[1, f2n + f2n−2 − 1] = An
(
Bn[1, f2n−2 − 1]

)
= An

(
An[1, f2n−2 − 1]

)
= An+1[f2n+1 + 1, f2n+1 + f2n−2 − 1]

For f2n−2 + 2 ≤ k ≤ f2n−1 + 2, we have:

(AnBn)[f2n−2 + 2, f2n−1 + 2] =
(
An[f2n−2 + 2, f2n]

)
An

=
(
Bn[2, f2n−1]

)
An

= An+1[2, f2n+1]

which completes the proof.
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The above result shows that the set of sub-words from An and Bn coincide if the sub-words are not
chosen too long. If we consider the limit sets, A and B, their sets of sub-words turn out to be the same.
We have the following:

Proposition 9. For m ≥ 1, we have F (A,m) = F (B,m).

Proof. Let x ∈ F (A,m). Then, there is an n, such that:

x ∈ F (An,m) ⊆ F (AnBn ∪BnAn,m) = F (Bn+1,m) ⊆ F (B,m)

Similarly, if x ∈ F (B,m). Then, there is an n, such that:

x ∈ F (Bn,m) ⊆ F (BnAnAn,m) = F (An+1,m) ⊆ F (A,m)

which completes the proof.

The direct consequence of Proposition 9 is that we find the topological entropy in Equation (1)
independent if we look at sub-words from A or B.

Now, let us turn to the question of finding F (A,m) from a finite set, An, and not having to consider
the infinite set, A.

Proposition 10. For n ≥ 2, we have:

F (An+1, f2n − f2n−3) = F (An+2, f2n − f2n−3)

Proof. It is clear that F (An+1, f2n− f2n−3) ⊆ F (An+2, f2n− f2n−3) holds for all n ≥ 2. For the reverse
inclusion, assume that x ∈ F (An+2, f2n − f2n−3). Note that we can write An+1 and An+2 on the form:

An+1 = BnAnAn,

An+2 = BnAnBnAnAnBnAnAn ∪ AnBnBnAnAnBnAnAn (8)

From Equation (8), we see that any x is a sub-word of any element in some of the seven sets:

AnAn, BnAn, AnBn, AnBnAn,

BnBn, AnBnBn, BnBnAn
(9)

in such a way that the first letter in x is in the first factor (that is,An orBn) of the sets. If x is a sub-word of
AnAn orBnAn or completely contained inAn, it is clear that we have x ∈ F (An+1, f2n−f2n−3). For the
case when x is a sub-word ofAnBn, it follows from Proposition 8 that we have x ∈ F (An+1, f2n−f2n−3).

If x is a sub-word of a word in AnBnAn, such that x begins in the first An factor and ends in the
second, then we have that x is a sub-word of a word in the set:(

An[f2n−3 + f2n−1 + 2, f2n]
)
Bn−1An−1

(
An[1, f2n−4 − 1]

)
=
(
An[f2n−3 + f2n−1 + 2, f2n]

)
Bn−1An−1

(
An−1[1, f2n−4 − 1]

)
=
(
An[f2n−3 + f2n−1 + 2, f2n]

)(
An[1, f2n−1 + f2n−4 − 1]

)
=
(
AnAn)[f2n−3 + f2n−1 + 2, f2n + f2n−1 + f2n−4 − 1]
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and we see that we have x ∈ F (An+1, f2n − f2n−3).
If x is a sub-word of a word in BnBn, let us first consider the case when it is a sub-word of

BnBn−1An−1. Then, it follows that:

BnBn−1An−1 ⊆ Bn

(
An[1, f2n−1]

)
=
(
BnAn

)
[1, 2f2n−1]

so x is a sub-word of a word in An+1. For the the second case, BnAn−1Bn−1, we have:

BnAn−1Bn−1 = An−1
(
Bn−1An−1

)
Bn−1 ∪

(
Bn−1An−1An−1

)
Bn−1

⊆
(
AnBnAn

)
[f2n−1 + 1, 3f2n−1] ∪

(
AnBn)[1, 2f2n−1]

and again, x is a sub-word of a word in An+1, by what we just proved above.
If x is a sub-word of a word in AnBnBn, we have by Corollary 6:(

AnBnBn

)
[f2n−1 + f2n−3 + 1, 2f2n − f2n−3 − 1]

=
(
An[f2n−1 + f2n−3 + 1, f2n]

)
Bn

(
Bn[1, f2n−4 − 1]

)
=
(
An[f2n−1 + f2n−3 + 1, f2n]

)
Bn

(
An[1, f2n−4 − 1]

)
which shows that x is a sub-word of a word in An+1 by what we previously have shown.

Finally, if x is a sub-word of a word in BnBnAn, we first consider the case when x is a sub-word of a
word in BnBn−1An−1An. By Corollary 6, we have:(

BnBnAn
)
[2f2n−3 + 1, f2n+1 − f2n−3 − 1]

=
(
Bn[2f2n−3 + 1, f2n−1]

)
Bn−1An−1

(
An[1, f2n−4 − 1]

)
=
(
Bn[2f2n−3 + 1, f2n−1]

)
Bn−1An−1

(
An−1[1, f2n−4 − 1]

)
=
(
Bn[2f2n−3 + 1, f2n−1]

)(
An[1, f2n−1 + f2n−4 − 1]

)
which, by the help of the previous case, shows that x is a sub-word of a word in An+1. For the last case,
BnAn−1Bn−1An, we have by Corollary 6 and Proposition 7:(

BnBnAn
)
[2f2n−3 + 1, f2n+1 − f2n−3 − 1]

=
(
Bn[2f2n−3 + 1, f2n−1]

)
An−1Bn−1

(
An[1, f2n−4 − 1]

)
=
(
Bn−1[2f2n−3 − f2n−2 + 1, f2n−3]

)
An−1Bn−1

(
An−1[1, f2n−4 − 1]

)
=
(
Bn[2f2n−3 − f2n−2 + 1, f2n−1]

)(
An[1, f2n−2 − 1]

)
and again, we see that x is a sub-word of a word in An+1 by what we have proven above.

The result of Proposition 10 can be extended to hold for sub-words from elements An and An+k,
where k ≥ 1. A straight forward argument via induction gives:

F (An+1, f2n − f2n−3) = F (An+k, f2n − f2n−3) (10)

for k ≥ 1. By combining Proposition 10 and Equation (10), we can now prove that to find the factors
set, it is sufficient to only consider a finite set.
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Proposition 11. For n ≥ 2, we have:

F (An+1, f2n − f2n−3) = F (A, f2n − f2n−3) (11)

Proof. It is clear that we have F (An+1, f2n − f2n−3) ⊆ F (A, f2n − f2n−3). For the reversed inclusion,
let x ∈ F (A, f2n − f2n−3). Then, there is a smallest m ≥ n+ 1, such that x is a sub-word of an element
of Am. Then, Equation (10) gives:

x ∈ F (Am, f2n − f2n−3) = F (An+1, f2n − f2n−3)

which shows the desired inclusion.

4. Fibonacci Numbers Revisited

In this section, we shall restate, and adopt for our purposes, some of the Diophantine properties of
the Fibonacci numbers and use them to derive results on the distribution of the letters in the words in the
sets, An and Bn. Let us introduce the notation:

τ =
1 +
√

5

2
and τ̂ =

1−
√

5

2

for the roots of x2 − x − 1 = 0. It is well known that τ and τ̂ appear in Binet’s formula, the Fibonacci
numbers; see [7]:

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

=
1√
5

(τn − τ̂ n) (12)

From Equation (12), it is with induction straight forward to derive:

fn = τfn−1 + τ̂ n−1 = τ 2fn−2 + τ̂ n−2 (13)

Definition 12. Let ‖ · ‖ denote the smallest distance to an integer.

By using the special property, τ 2 = τ + 1, we have for an integer, k, the following line of equalities:∥∥∥∥ 1

τ 2
k

∥∥∥∥ =

∥∥∥∥τ − 1

τ
k

∥∥∥∥ =

∥∥∥∥k − 1

τ
k

∥∥∥∥ =

∥∥∥∥1

τ
k

∥∥∥∥ =
∥∥(τ − 1)k

∥∥ =
∥∥τk∥∥

From Equation (13), it follows that:

‖τfn‖ =
∥∥fn+1 − τ̂ n

∥∥ =
1

τn

since τ̂ = − 1
τ
. For an integer, k, which is not a Fibonacci number, we have the following estimate of

how far away from an integer τk is.

Proposition 13. For a positive integer, k, such that fn−1 < k < fn, we have:

‖τk‖ > 1

τn−2
(14)
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Proof. We give a proof by induction on n. For the basis case, n = 5, the statement of the proposition
follows by an easy calculation. Now, assume for induction that Equation (14) holds for 5 ≤ n ≤ p. For
the induction step, n = p+ 1, let fp < k < fp+1. Then, if k − fp−1 is not a Fibonacci number, we have:

‖τk‖ =
∥∥τ(k − fp) + τfp

∥∥ ≥ ∥∥τ (k − fp)︸ ︷︷ ︸
<fp−1

∥∥− ∥∥τfp∥∥ > 1

τ p−3
− 1

τ p
>

1

τ p−2

If k − fp−1 = fm for some m < p− 1, then:

‖τk‖ ≥ ‖τfm‖ − ‖τfp‖ =
1

τm
− 1

τ p
≥ 1

τ p−2
− 1

τ p
=

1

τ p−1

Proposition 14. Let x ∈ An[1, k] for 1 ≤ k ≤ f2n (or x ∈ Bn[1, k] for 1 ≤ k ≤ f2n−1) and n ≥ 2.
Then:

|x|b ∈
{⌊

1
τ2
k
⌋
,
⌈

1
τ2
k
⌉}

(15)

Proof. We give a proof by induction on n. The basis case, n = 2, follows by considering each of the
words contained inA2 andB2. To be able to use Proposition 13 in the induction step, we have to consider
the basis step, n = 3, as well, but only for the set, B3 (since the words in A2 are of length ≥ 3). This is,
however, seen to hold by a straight forward enumeration of the elements of B3.

Now, assume for induction that Equation (15) holds for 2 ≤ n ≤ p, for words both from An and Bn.
For the induction step, n = p + 1, let us first derive an identity of which we shall later make use. Let q
and m be positive integers, such that fm−1 < q < fm. Then, by the help of Proposition 13, we have:⌊

1

τ 2
(q − fm−1)

⌋
=

⌊
1

τ 2
q − fm−3 − τ̂ m−1

⌋
=

⌊
1

τ 2
q +

(−1)m

τm−1

⌋
− fm−3

=

⌊
1

τ 2
q

⌋
− fm−3 (16)

With the same argumentation, we can derive a similar result for d·e. For the induction step, we consider
first the number of bs in prefixes of words in Ap+1 = BpApAp. It is clear from the induction assumption
that Equation (15) holds for 1 ≤ k ≤ f2p−1. For f2p−1 < k < f2p or f2p < k < f2p+1, let x = uv ∈
Ap+1[1, k], where u ∈ Bp. By the induction assumption, we may assume that |v|b is given by rounding
downwards, (the result is obtained in a similar way for the case with d·e). By Equation (16), it now
follows that:

|uv|b = |u|b + |v|b = f2p−3 +

⌊
1

τ 2
(k − f2p−1)

⌋
=

⌊
1

τ 2
k

⌋
For k = f2p, we have:

|uv|b = f2p−3 +

⌊
1

τ 2
(f2p − f2p−1)

⌋
=

⌊
1

τ 2
f2p +

1

τ 2p−1

⌋
=

⌈
1

τ 2
f2p

⌉
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For f2p+1 < k < f2p+2, let x = uvw ∈ Ap+1[1, k], where u ∈ Bp and v ∈ Ap. Then, the induction
assumption and Equation (16) gives:

|uvw|b = |u|b + |v|b + |w|b

= f2p−3 + f2p−2 +

⌊
1

τ 2
(k − f2p−1 − f2p)

⌋
= f2p−1 +

⌊
1

τ 2
(k − f2p+1)

⌋
=

⌊
1

τ 2
k

⌋
For the last case, k = f2p+2, we have:

|x|b =

⌊
1

τ 2
(f2p+2)

⌋
=

⌊
f2p +

1

τ 2p

⌋
= f2p

The case when we consider words from Bp+1 is treated in the same way, but where we do not need to do
the induction step for the case n = 3. This completes the induction and the proof.

Proposition 15. Let x ∈ F (An+2, f2n) for n ≥ 2. Then:

f2n−2 − 1 ≤ |x|b ≤ f2n−2 + 1 (17)

Proof. Let us first turn our attention to the upper bound in Equation (17). In the same way as in the proof
of Proposition 10, we consider sub-words of the seven sets, given in Equation (9).

If x is a sub-word, beginning at position 2 < k ≤ f2n, in an element in AnAn or AnBn, then:

|x|b ≤ f2n−2 +

⌈
1

τ 2
(
(k − f2n) + f2n

)⌉
−
⌊

1

τ 2
k

⌋
≤ f2n−2 + 1

since the number of bs in a word in An is f2n−2, and a word in An is of length f2n. The proof of the
upper bound in Equation (17) and for the other sets in Equation (9) is obtained in the same way.

For the lower bound, we have:

|x|b ≥
⌊

1

τ 2
(k + f2n)

⌋
−
⌈

1

τ 2
k

⌉
= f2n−2 +

⌊
1

τ 2
k +

1

τ 2n−2

⌋
−
⌈

1

τ 2
k

⌉
≥ f2n−2 − 1

for any x ∈ F (An+2, f2n).

5. Estimating the Size of the Sub-Word Set

We shall in this section give an estimate of the sub-word set, F (A, f2n), and give the final part of the
proof of Theorem 2. Let us introduce the set:

Cn = φ
(
F (A, f2n−2 + 1)

)
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By Proposition 15, we can estimate the number of bs in words in F (A, f2n−2 + 1). This estimate then
gives that we have bounds on the length of words in Cn. That is, for x ∈ Cn, we have:

|x| = |x|a + |x|b ≥ 3(f2n−3 − 1) + 2(f2n−4 + 2) = f2n + 1 (18)

and:
|x| = |x|a + |x|b ≤ 3(f2n−3 + 2) + 2(f2n−4 − 1) = f2n + 4 (19)

Proposition 16. For n ≥ 2, we have:

F (A, f2n) = F
(
Cn, f2n

)
Proof. The set, F

(
Cn, f2n

)
, is created by inflating words from F (A, f2n−2 + 1), which are then cut into

suitable lengths. This implies that F (A, f2n) ⊇ F
(
Cn, f2n

)
.

For the converse inclusion, let x ∈ F (A, f2n). Then, there is a word, w ∈ An+1, and words, u, v, such
that uxv ∈ An+2 and uxv ∈ φ(w). For any word, z ∈ F

(
{w}, f2n−2 + 1

)
, we have from Equation (18)

that any s ∈ φ(z) fulfills f2n + 1 ≤ |s|. This gives that there is a word, zx ∈ F
(
{w}, f2n−2 + 1

)
, such

that x is a sub-word of a word in φ(zx), which implies x ∈ F
(
Cn, f2n

)
.

Proposition 17. For n ≥ 2, we have:

|F (A, f2n)| ≤ 2f2n−3+2n · 5n−1 (20)

Proof. We give a proof by induction on n. For the basis case, n = 2, we have:

|F (A, f4)| = 7 ≤ 160 = 2f1+4 · 5

Assume for induction that Equation (20) holds for 2 ≤ n ≤ p. For the induction step, n = p + 1, note
that from Equations (18) and (19), it follows that |F ({x}, f2p+2)| ≤ 5 for x ∈ Cp+1. By Proposition 15,
we have that the number of bs in u ∈ F (A, f2p + 1) is at most f2p−2 + 2. This gives, then, with the help
of the induction assumption: ∣∣F(A, f2p+2

)∣∣ ≤ |Cp+1| · 5
≤
∣∣F(A, f2p)∣∣ · 2f2p−2+2 · 5

≤ 2f2p−3+2p · 5p−1 · 2f2p−2+2 · 5
= 2f2(p+1)−3+2(p+1) · 5p

which completes the proof.

We can now turn to proving the last equality in Equation (1) and, thereby, completing the proof of
Theorem 2. By Proposition 17, we have:

lim
n→∞

log |F (A, f2n)|
f2n

≤ lim
n→∞

log
(
2f2n−3+2n · 5n−1

)
f2n

= lim
n→∞

f2n−3 + 2n

f2n
log 2 +

n− 1

f2n
log 5

=
1

τ 3
log 2
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which implies the equality in Equation (1).
A further generalization of the random Fibonacci substitutions would be to study the structure

occurring when mixing two substitutions with different inflation multipliers. This, however, seems to
be a far more complex question.
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