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Abstract: The aim of this short note is to compute the topological entropy for a family
of skew-product maps, whose base is a subshift of finite type, and the fiber maps are
homeomorphisms defined in one dimensional spaces. We show that the skew-product map
does not increase the topological entropy of the subshift.
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1. Introduction

Let Σ = {0, 1, ..., k− 1}, and let ΣZ = {(sn) : sn ∈ Σ}. Consider the shift map, σ : ΣZ → ΣZ, given
by σ(sn) = (sn+1). LetA = (aij) be a k×k matrix, where the a′ijs are 0′s or 1′s for any i, j ∈ {1, ..., k}.
A subshift of finite type (SFT in short) is the restriction of σ to the set, A = {(sn) ∈ ΣZ : asnsn+1 = 1}.
Note that A is compact and metrizable and σ(A) = A, that is, A is invariant by σ.

Let X be a metric space and consider continuous maps, f0, f1, ..., fk−1 : X → X . Let ϕ : A×X →
A×X be the skew-product map given by:

ϕ((sn), x) = (σ(sn), fs0(x)), for all ((sn), x) ∈ A×X (1)

Recently, this class of skew-product maps has been studied by several authors (see [1–5]). The
interest for studying systems that are generated by alternative iterations of a finite number of maps
comes from several fields, like population dynamics (see, e.g., [6,7]) and economic dynamics (see,
e.g., [8,9]), where the systems are generated by SFT with many finite elements. For SFT with infinitely
many elements, the term crazy dynamics was introduced in [1]. Let us also point out that this kind of
skew-product has been useful for analyzing difference inclusions used in discrete control systems (see,
e.g., [10]).
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Recently, in [2], the topological entropy of ϕ was analyzed when k = 2 and A = {0, 1}Z, proving
that when f0 and f1 belong to a family of contractive homeomorphisms on the real line, the topological
entropy of some invariant set agrees with that of the full shift, σ : {0, 1}Z → {0, 1}Z. Additionally,
in [3], they extend their results to homeomorphisms on higher dimension spaces. The aim of this paper
is to analyze the same question under different conditions. Let h(f) and ent(g) denote the topological
entropy and a variant valid for non-compact spaces introduced in Section 2. The main aim of this paper
is to state the following results.

Theorem 1 Let f0, f1 : X → X be homeomorphisms on X = S1, [0, 1] or R. Let ϕ : A×X → A×X ,
A ⊆ {0, 1}Z be the skew-product map defined in Equation (1). Then:

(a) If X = S1 or [0, 1], then h(ϕ) = h(σ).
(b) If X = R, then ent(ϕ) ≤ h(σ). If there exists a compact subset, K ⊂ R, such that ϕ(A ×K) ⊆
A×K, then ent(ϕ) = h(σ).

Note that homeomorphisms on the circle, the compact interval and the real line have zero topological
entropy, and therefore, one might wonder whether the above result remains true for simple maps, that is,
for zero entropy maps. The next result, in the spirit of the dynamic Parrondo paradox (see, e.g., [11–14]),
shows that this is not true in general.

Theorem 2 Let ϕ : A × [0, 1] → A × [0, 1], A ⊆ {0, 1}Z be the skew-product map defined in
Equation (1). Then, there are zero topological entropy continuous maps, f0, f1 : [0, 1] → [0, 1], such
that h(ϕ) > h(σ).

The maps used in the proof of Theorem 2 are constructed by gluing different continuous interval
maps, which usually do not appear in discrete models from natural or social sciences. The next result
shows that a similar result holds for a well-known one-parameter family of interval maps.

Theorem 3 Let ga(x) = ax(1− x), a ∈ [3, 4] and x ∈ [0, 1]. Fix a, b ∈ [3, 4], and let ϕ : A× [0, 1]→
A × [0, 1], A ⊆ {0, 1}Z be the skew-product map defined in Equation (1) with f0 = ga and f1 = gb.
Then, there are parameter values, a0, a1 ∈ [3, 4], such that h(ga) = h(gb) = 0 and h(ϕ) > h(σ) for a
suitable SFT.

Let us remark that there are a wide ranges of parameters, a ∈ [3, 4], satisfying Theorem 3. However,
we can give some positive results if we strengthen our hypothesis. Recall that a continuous interval map
is piecewise monotone if there are 0 = x0 < x1 < ... < xn = 1, such that f |(xi,xi+1) is monotone for
i = 0, ..., n− 1. Recall that two maps, f0 and f1, commute if f0 ◦ f1 = f1 ◦ f0. Then, we can prove the
following result, which gives a partial positive answer to our previous question.

Theorem 4 Let f0, f1 : [0, 1] → [0, 1] be commuting continuous piecewise monotone with zero
topological entropy. Let ϕ : A × [0, 1] → A× [0, 1], A ⊆ {0, 1}Z be the skew-product map defined in
Equation (1). Then, h(ϕ) = h(σ).

Remark 1 Theorem 4 is not true in general if both maps, f0 and f1, are not piecewise monotone.
Namely, in [15], two commuting maps, f0 and f1, with zero topological entropy are constructed, such
that h(f0 ◦ f1) > 0, and so, following the proof of Theorem 3, we can conclude that h(σ) < h(ϕ).
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The paper is organized as follows. The next section is devoted to introduce basic notation and useful
definitions. Then, we give a proof of Theorem 1. The last section is devoted to proving Theorems 2–4.

2. Basic Definitions

Firstly, we will introduce Bowen’s definition of topological entropy (see [16]). Let X be a compact
metric space with metric d, and let f : X → X be a continuous map. Let K be a compact subset of X ,
and fix n ∈ N and ε > 0. A subset, S ⊂ K, is said to be (n, ε,K)-separated if for any x, y ∈ S, x 6= y,
there is k ∈ {0, 1, ..., n− 1}, such that d(fk(x), fk(y)) > ε. Denote by sepn(ε,K) the cardinality of an
(n, ε,K)-separated set with maximal cardinality. The topological entropy is defined as:

h(f) = lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,X)

We say that a continuous map, f , is topologically chaotic if h(f) > 0. In particular, topologically chaotic
maps are chaotic in the sense of Li and Yorke (see [17,18]), which is one of the most accepted notions of
chaos. In addition, the topological entropy of the skew-product map, ϕ, defined in Equation (1), satisfies
the following Bowen’s inequalities:

max

{
h(σ), sup

(sn)∈A
h(ϕ,X, (sn))

}
≤ h(ϕ) ≤ h(σ) + sup

(sn)∈A
h(ϕ,X, (sn)) (2)

where for any (sn) ∈ A:

h(ϕ,X, (sn)) = lim
ε→0

lim sup
n→∞

1

n
log sepn(ε, {(sn)} ×X)

which can be meant as the topological entropy of the non-autonomous discrete system given by the
sequence of maps, (fs0 , fs1 , ...) (see [19] for the definition).

WhenX is not compact, the above definition of topological entropy makes sense when f is uniformly
continuous. Then, we need to add a new limit in the definition as follows:

hd(f) = sup
K

lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,K)

We stress the metric, d, now, because this definition is metric-dependent. However, it is known (see,
e.g., [20]) that, although the dynamics of the map, f(x) = 2x, x ∈ R, is simple, we have that hd(f) =

log 2 for the standard Euclidean metric on R. To solve this problem, in [21], a notion of topological
entropy for non-compact spaces has been introduced, such that it can be computed for any continuous
map and keeps the above property, that positive entropy maps have a complicated dynamic behavior.
Denote by K(X, f) the family of compact subsets, K of X , such that f(K) ⊆ K, and define:

ent(f) = sup
K∈K(X,f)

lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,K)

Note that, clearly, ent(f) ≤ hd(f), and for f(x) = 2x, we easily see that ent(f) = 0, because the only
invariant compact subset is {0}. Additionally, ent(f) = 0 when K(X, f) = ∅.

Now, we concentrate our efforts in proving our main results.
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3. Proof of Theorem 1

Proof of case (a). Let fn : X → X be a sequence of homeomorphisms with X = S1 or [0, 1]. It can
be seen in [19] that if we denote by f1,∞ the sequence of maps, (f1, f2, ....), then h(f1,∞) = 0. To finish
the proof, we apply Bowen’s inequality (2) to conclude that, since:

sup
(sn)∈A

h(ϕ,X, (sn)) = 0

we have that h(ϕ) = h(σ).
When X = R, we cannot apply Bowen’s inequality, and therefore, the proof requires extra work.
Proof of case (b). Note that R = (−∞,+∞). We add two symbols to R and construct the compact

space, [−∞,+∞], which is homeomorphic to a compact interval. Since f0 and f1 are homeomorphisms,
we can extend them continuously and construct maps, f ∗i : [−∞,+∞] → [−∞,+∞], such that
f ∗i (±∞) ∈ {±∞}, i = 0, 1. Note that f ∗0 and f ∗1 are homeomorphisms, as well, and therefore:

h(f ∗s0 , f
∗
s1
, ...) = 0

for all (sn) ∈ A.
On the other hand, we consider the continuous extension of ϕ:

ϕ∗ : A× [−∞,+∞]→ A× [−∞,+∞]

given by:
ϕ∗((sn), x) = (σ(sn), f ∗s0(x)), for all ((sn), x) ∈ A× [−∞,+∞]

Since any compact subset ofA× (−∞,+∞) is a compact subset ofA× [−∞,+∞], we conclude that:

ent(ϕ) ≤ ent(ϕ∗) = h(ϕ∗)

Applying Bowen’s inequality to ϕ∗, we conclude that:

h(ϕ∗) ≤ h(σ) + sup
(sn)∈A

h(ϕ∗, [−∞,+∞], (sn))

and since:
h(ϕ∗, [−∞,+∞], (sn)) = h(f ∗s0 , f

∗
s1
, ...) = 0

we conclude that:
ent(ϕ) ≤ h(ϕ∗) = h(σ)

Now, we assume that there exists a compact set, K ⊂ R, such that ϕ(A × K) ⊆ A × K. Applying
Bowen’s inequality to ϕ|A×K , we conclude that:

h(σ) ≤ h(ϕ|A×K) ≤ ent(ϕ)

which concludes the proof.

Remark 2 The existence of compact subsets, K, holding the conditions of Theorem 1 (b) can be seen
in [2,10]. The following example shows that the equality, h(σ) = ent(ϕ), is not true in general when
such compact subsets do not exist. We just consider the real maps, fi(x) = x + i + 1, i = 0, 1, and
construct the map, ϕ. Clearly K(ΣZ × R, ϕ) = ∅, which implies that ent(ϕ) = 0. If we take as a base
map, σ : A → A, with positive topological entropy, then we find that h(σ) > h(ϕ) = 0.
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4. Proof of Theorems 2–4

Proof of Theorem 2. Let A = {0, 1}Z, and define the maps, f0 and f1, as follows:

f0(x) =

{
(g2 ◦ t2 ◦ g−11 )(x) if x ∈ [0, 1/2]

1/2 if x ∈ [1/2, 1]

and:

f1(x) =

{
1/2 if x ∈ [0, 1/2]

(g1 ◦ φ ◦ t2 ◦ φ ◦ g−12 )(x) if x ∈ [1/2, 1]

where g1(x) = x/2, g2(x) = (x + 1)/2 and φ(x) = 1 − x, x ∈ R, and t is the standard tent map,
t(x) = 1− |2x− 1|, x ∈ [0, 1], which holds that h(t2) = log 4. Figure 1 shows the graph of f0 and f1 on
the interval, [0, 1].

Figure 1. We show the graphic on [0, 1] of maps f0 (left), f1 (center) and f1 ◦ f0 (right),
defined in the proof of Theorem 2.

Note that f 2
i ([0, 1]) = 1/2, i = 1, 2, and thus, h(f0) = h(f1) = 0. Let (0, 1, 0, 1, ...) ∈ A, and note

that, by [19]:

h(ϕ, [0, 1], (0, 1, 0, 1...)) = h(f0, f1, f0, f1, ...) =
1

2
h(f1 ◦ f0)

On the other hand, we have that:

(f1 ◦ f0)(x) =

{
(g1 ◦ φ ◦ t4 ◦ φ ◦ g−11 )(x) if x ∈ [0, 1/2]

1/2 if x ∈ [1/2, 1]

whose graphic can be seen in Figure 1. By [22], h(f1 ◦ f0) = log 16. By Bowen’s inequalities:

h(ϕ) ≥ h(ϕ, [0, 1], (0, 1, 0, 1...)) = log 4 > log 2 = h(σ)

and the proof concludes.
Proof of Theorem 3. Let fa(x) = ax(1 − x), a ∈ [3, 4] and x ∈ [0, 1]. It is well-known that

h(fa) increases when a increases (see, e.g., [23]), and it is positive for a > 3.5699... Figure 2 shows
the computation of h(fa) with accuracy 10−4 by using an algorithm from [24]. However, for fa ◦ fb,
a, b ∈ [3, 4], the computation of topological entropy with prescribed accuracy is more complicated. For
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doing it, we use the recently developed algorithm from [25]. Figure 3 shows the entropy computations
with prescribed accuracy, 10−4. From the shown computations, we may find parameter values, a and b,
a bit smaller than 3.6 with zero topological entropy for maps fa and fb, such that h(fa ◦ fb) is positive
(for instance, a = 3.56 and 3.086 ≤ b ≤ 3.267 gives positive values of h(fa ◦ fb)).

Figure 2. We compute the topological entropy (ent in the figure) for a ∈ [3.5, 4] with
accuracy, 10−4. We note that the first parameter value providing positive topological entropy
is 3.569945 . . .

Figure 3. We compute the topological entropy (ent in the figure) for a ∈ [3.55, 3.57] and
b ∈ [2.8, 3.6] with accuracy, 10−4. The darker region represents those parameter values
providing zero topological entropy.

Now, we consider the matrix:

A =

(
0 1

1 0

)
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and notice that the SFT, σ : A → A, generated byA is composed of two periodic sequences, (0, 1, 0, 1, ..)

and (1, 0, 1, 0, ...), which implies that h(σ) = 0. On the other hand, if f0 = fa and f1 = fb, notice that:

h(ϕ,X, (0, 1, 0, 1, ...)) = h(f0, f1, f0, f1, ...) =
1

2
h(f1 ◦ f0)

h(ϕ,X, (1, 0, 1, 0, ...)) = h(f1, f0, f1, f0, ...) =
1

2
h(f0 ◦ f1)

It is easy to check that:

h(ϕ) =
1

2
h(f0 ◦ f1) =

1

2
h(f1 ◦ f0) > 0 = h(σ)

which concludes the proof.
Proof of Theorem 4. Let c(f) denote the number of monotonicity pieces of a piecewise monotone

map, f . By the Misiurewicz-Szlenk (see [22]) formula:

h(f) = lim
n→∞

1

n
log c(fn)

Fix (sn) ∈ A and note that:

c(fsn−1 ◦ fsn−2 ◦ ... ◦ fs0) = c(fkn
1 ◦ fn−kn

0 ) ≤ c(fkn
1 )c(fn−kn

0 )

where kn = #{i ∈ {0, 1, ..., n− 1} : si = 1}. Since the sequence, (fs0 , fs1 , ...), contains two maps, it is
equicontinuous, and then, the Misiurewicz-Szlenk formula is valid in this setting (see [26]). Thus:

h(fs0 , fs1 , ...) = lim sup
n→∞

1

n
log c(fsn−1 ◦ fsn−2 ◦ ... ◦ fs0)

≤ lim sup
n→∞

kn
n

1

kn
log c(fkn

1 ) + lim sup
n→∞

n− kn
n

1

n− kn
log c(fn−kn

0 )

≤ h(f1) lim sup
n→∞

kn
n

+ h(f0) lim sup
n→∞

n− kn
n

and since h(f0) = h(f1) = 0, we find that for any (sn) ∈ A, we have that h(fs0 , fs1 , ...) = 0. By
Bowen’s inequality:

h(ϕ) ≤ h(σ) + sup
(sn)∈A

h(fs0 , fs1 , ...) = h(σ)

Since the inequality, h(σ) ≤ h(ϕ), also holds, we conclude the proof.

5. Conclusions

We prove that skew-product maps with the form of Equation (1), such that the fiber maps are
homeomorphisms on one dimensional spaces, do not increase the topological entropy of its base map,
and then, the behavior of the space, X , is not dynamically complicated, generalizing a result from [2].
On the other hand, we also prove that a similar situation does not hold when zero topological entropy
continuous interval maps are considered. Still, the question remains open of whether our results can be
extended to homeomorphisms defined on topological spaces with dimensions greater than one.
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