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Abstract: When we try to make the best estimate of some quantity, the problem of
combining results from different experiments is encountered. In multi-sensor data fusion,
the problem is seen as combining observations provided by different sensors. Sensors
provide observations and information on an unknown quantity, which can differ in precision.
We propose a combined estimate that uses prior information. We consider the simpler
aspects of the problem, so that two sensors provide an observation of the same quantity.
The standard error of the observations is supposed to be known. The prior information is
an interval that bounds the parameter of the estimate. We derive the proposed combined
estimate methodology, and we show its efficiency in the minimum mean square sense. The
proposed combined estimate is assessed using synthetic data, and an application is presented.
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1. Introduction

The problem of making a combined estimate as a weighted mean with weights inversely proportional
to the variance was discussed previously in [1]. Research in this area is conducted to derive a combined
estimate when the observations are partially consistent. For example, suppose two or more sensors
perform; these sensors are used to provide observations on a common response variable. The sensors
measure the same parameter, but their measurements differ in precision. The observations are partially
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consistent, because the observations obtained with the same sensor are assumed to be consistent
and the observations provided by different sensors are assumed to be non-consistent. We present in
Figure 1 the case of two sensors. To make inferences about the common parameter, we wish to make use
of the combined sample data. These sensors are assumed to have no systematic biases, but to differ in
precision. This is the case, for example, of the Global Navigation Satellite System (GNSS) application,
where the same position can be observed with signals broadcast on different frequency bands and signals
broadcast by different satellite systems. Heteroscedasticity is the key feature of the combined sample
data. Research in this domain focuses on the joint definition of weights and combined estimators. In [2],
the efficiency of the weighted mean with estimate variances was studied. The variance of the weighted
regression was derived in [3]. A new estimator that is more efficient than the maximum likelihood
estimate was developed in [4]. Further references and proposed estimators can be found in [5,6].

Figure 1. Heteroscedasticity framework in information fusion.

Most of the multi-sensors data fusion systems assume that the variances of processes are known
(or estimated on the processes, but the error of estimation is not taken into account in the definition
of the weights), and the classical Bayesian estimation is used to design fusion operators. When the
measurements are independent, the least square (LS) estimate and the maximum likelihood (ML)
estimate are the same. This classical fusion operator is the weighted mean with weights inversely
proportional to the variance [7]. For dependent or correlated measurements, the weights are defined by
the variances and covariance of the observations. They are a solution of a set of linear equations that link
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the variance of the fusion operator to the variances and covariance of the measures [8]. Unfortunately,
in practice, the covariance is difficult to estimate, and few applications use the optimal fusion operator
in this case [9].

Maximum a posteriori (MAP) estimators use in their implementation prior information to estimate a
quantity. The Bayesian modeling of a problem allows one to integrate prior information on the data to
fuse [10]. The a posteriori distribution that models the problem is defined by the product of a priori law
with the likelihood distribution of the multi-sensor data. The prior information can be a priori law on the
parameter to estimate [11,12] or on the mutual behavior of processes [13,14]. In the sequential Bayesian
inference framework, the prior law models the information brought by the dynamic state equation of the
Bayesian filter [15,16]. In all those cases, the fusion operator that merges the prior information with the
observations is a weighted sum.

Some multi-sensor data fusion systems defined in the sequential Bayesian inference framework have
to combine distributed estimates. Let us consider an estimate of the same state provided by different
filters working in parallel. This is the case of filters having different observations provided by sensors
of different kinds. It is shown in [17] that for two Kalman filters working in parallel, the process noise
brings a correlation between the estimate states. The Track-to-Track fusion filter proposed by [17] uses
a weighted sum to fuse the correlate estimate. The weights are, in this case, the function of the variances
and covariance of the estimate state. In the proposed filter, a recursive expression of the estimate state
covariance is derived in order to compute the weighted sum. Many different implementations of the
Track-to-Track fusion filter can be found in published works [18]. The extension of the fusion technique
to N filters in parallel was proposed by [19], but the filter is difficult to process in practice. Finally, a
sub-optimal version of the filter proposed in [8] allows one to solve the problem of covariance estimation
and to provide an easy solution to implement with good accuracy.

In the present paper, we consider a simple aspect of the problem, two sensors, i ∈ {1, 2}, and
observations, z(i), distributed according to a Gaussian distribution of mean, m, and variance, σ2

i . We
propose a non-linear estimate that uses prior information in order to combine the observations. This
information is an approximate value of m, ma assumed to be distributed according to a Gaussian law of
variance, σ2

3 . Furthermore, m is assumed to be inside the interval, [ma−σ3,ma+σ3]. It is shown in [10]
that the classical (MAP) estimate is a weighted sum of the observations and of the prior information. We
show that the proposed fusion operator outperforms the MAP estimate in the minimum quadratic error
sense. The proposed fusion operator is assessed for a multi-sensor system that estimates the position of
an object. The multi-sensor system is composed of a multi-band GNSS receiver, a yaw rate sensor and a
speed meter sensor. In this case, the data fusion system has to combine the estimated position obtained
for each band of the GNSS receiver. The measurements of direction and velocity provided by the dead
reckoning sensors are the prior information on the parameter to estimate.

The rest of the paper is organized as follows: In Section 2, we state the problem. The fusion operator
is presented in Section 3. Section 4 is dedicated to the experiments. We conclude in Section 5.
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2. Problem Statement

Let us consider Z(1) and Z(2), two random variables, and z(1)k and z(2)k , their realizations at instant, k.
We consider the case of two sensors providing two measures, z(1)k and z(2)k . The random variables, Z(1)

and Z(2), are assumed to be independent with the same mean, m, and distributed according to Gaussian
law, f1(. . . ) and f2(. . . ). The variance of these random variables are, respectively, σ2

1 and σ2
2 . The

maximum-likelihood estimation (MLE) fusion operator is the following weighted sum:

zk,MLE = α1 z
(1)
k + α2 z

(2)
k with α1 + α2 = 1 (1)

The MAP fusion operator is the following weighted sum:

zk,MAP = α1 z
(1)
k + α2 z

(2)
k + α3 ma with α1 + α2 + α3 = 1 (2)

where ma is the imprecise prior information assumed to be distributed according to a Gaussian law,
f3(. . . ), of variance, σ2

3 , and mean, m. The fused measurement at instant k is zk,MAP , the realization of
the random variable ZMAP . The weights are defined as follows:

αi =
1

σ2
i

(∑3
i=1

1
σ2
i

) (3)

We can distinguish two kinds of realizations of the random variable pair,
(
Z(1), Z(2)

)
:

• Realizations
(
Z(n1), Z(n2)

)
situated on both sides of the mean, m, such as {z(1)k < m} and

{z(2)k > m} or {z(1)k > m} and {z(2)k < m}.
• Realizations

(
Z(p1), Z(p2)

)
situated on the same side of the mean, m, such as {z(1)k < m} and

{z(2)k < m} or {z(1)k > m} and {z(2)k > m}.

We show in Appendix 1 that the realizations on the same side of the mean are positively correlated,
while the realizations on both sides of the mean are negatively correlated. In order to improve the MAP
fusion operator (decrease its output variance), we propose to reduce the covariance between the random
variables, Z(1) and Z(2), by decreasing the covariance between Z(p1) and Z(p2). Two problems come up,
the selection of the realizations of Z(p1) and Z(p2) in the realizations of Z(1) and Z(2) and the definition
of a transformation that reduces the covariance of Z(p1) and Z(p2). The proposed fusion operator is
non-linear, because it needs a stage of selection.

3. Non-Linear Fusion Operator

3.1. The Non-Linear Transformation

3.1.1. Definition of the Non-Linear Transformation

Let zk,NLF be the non-linear fusion (NLF) of z(1)k and z(2)k . We propose to define the non-linear MAP
fusion operator, for σ2 > σ1, as follows:

• If z(1)k > Bu and z(2)k > Bu

zk,NLF = α1z
(1)
k + α2

(
z
(2)
k − g(z

(1)
k , z

(2)
k )
)

+ α3 ma (4)
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• If z(1)k < Bd and z(2)k < Bd

zk,NLF = α1z
(1)
k + α2

(
z
(2)
k + g(z

(1)
k , z

(2)
k )
)

+ α3 ma (5)

• otherwise z(1)k < Bd and z(2)k > Bd or z(1)k > Bd and z(2)k < Bd

zk,NLF = α1z
(1)
k + α2z

(2)
k + α3 ma with g(z

(1)
k , z

(2)
k ) = 0 (6)

where Bd = ma−σ3, the lower bound, and Bu = ma+σ3, the upper bound, which are derived from the
prior information and used to select the realizations of Z(p1) and Z(p2). In these expressions, g(z

(1)
k , z

(2)
k )

is a function that reduces the correlation between Z(p1) and Z(p2). The fusion operator can be rewritten
as follows:

zk,NLF = α1z
(1)
k + α2

(
z
(2)
k ± g(z

(1)
k , z

(2)
k )
)

+ α3 ma (7)

where the weights are defined with Equation (3). The non-linear fusion operator is biased. The upper and
lower bound are indeed not necessarily centered on the mean value, m. The mean square error (MSE)
takes into account the variance and bias of an estimator. We derive in the next paragraph a condition on
the proposed non-linear transformation that guarantees a smaller MSE for the proposed operator.

3.1.2. A Condition on the Non-Linear Transformation

Let us define the following notation for the fused measurements:

• If z(1)k > Bu and z
(2)
k > Bu or z(1)k < Bd and z

(2)
k < Bd, we notice MSE(Z

(p)
NLF ),

MSE(Z
(p)
MAP ), the respective MSE of the non-linear fusion operator output and of the linear fusion

operator output.
• otherwise, we notice MSE(Z

(n)
NLF ), MSE(Z

(n)
MAP ), the respective MSE for the non-linear fusion

operator and for the linear fusion operator.

Let us define the following expressions:

MSE(ZMAP ) = P MSE(Z
(p)
MAP ) +N MSE(Z

(n)
MAP ) (8)

MSE(ZNLF ) = P MSE(Z
(p)
NLF ) +N MSE(Z

(n)
NLF ) (9)

where the coefficients of normalization, P and N , are defined as follows:

P =

∫ Bd

−∞

∫ Bd

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2)

+

∫ ∞
Bu

∫ ∞
Bu

f1(z
(1))f2(z

(2))dz(1)dz(2)

N =

∫ ∞
Bu

∫ Bd

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2)

+

∫ Bu

Bd

∫ Bd

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2) +

∫ Bu

Bd

∫ ∞
Bu

f1(z
(1))f2(z

(2))dz(1)dz(2)

+

∫ Bd

−∞

∫ Bu

Bd
f1(z

(1))f2(z
(2))dz(1)dz(2) +

∫ ∞
Bu

∫ Bu

Bd
f1(z

(1))f2(z
(2))dz(1)dz(2)

+

∫ Bu

Bd

∫ Bu

Bd
f1(z

(1))f2(z
(2))dz(1)dz(2) +

∫ Bd

−∞

∫ ∞
Bu

f1(z
(1))f2(z

(2))dz(1)dz(2)



Entropy 2013, 15 2703

We show in Appendix 2 that the quadratic error, MSE(ZNLF ), will be smaller than the quadratic
error, MSE(ZMAP ), if the following inequality holds:

α2
2E[±g(Z(p1), Z(p2))2] + 2α1α2E[Z(p1) ± g(Z(p1), Z(p2))] (10)

+2α2
2E[Z(p2) ± g(Z(p1), Z(p2))]

+(2α2α3ma − 2mα2)E[±g(Z(p1), Z(p2))] ≤ 0

The terms of this equation are defined by:

Term 1: E[±g(Z(p1), Z(p2))2] =
N
E[±g(Z(p1),Z(p2))2]

D

NE[±g(Z(p1),Z(p2))2] =

∫ Bd

−∞

∫ Bd

−∞
g(z(1), z(2))2f1(z

(1))f2(z
(2))dz(1)dz(2)

−
∫ ∞
Bu

∫ ∞
Bu

g(z(1), z(2))2f1(z
(1))f2(z

(2))dz(1)dz(2)

D =

∫ m

−∞

∫ m

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2) +

∫ ∞
m

∫ ∞
m

f1(z
(1))f2(z

(2))dz(1)dz(2)

Term 2: E[Z(p1) ± g(Z(p1), Z(p2))] =
N
E[Z(p1)±g(Z(p1),Z(p2))]

D

NE[Z(p1)±g(Z(p1),Z(p2))] =

∫ Bd

−∞

∫ Bd

−∞
z(1)g(z(1), z(2))f1(z

(1))f2(z
(2))dz(1)dz(2)

−
∫ ∞
Bu

∫ ∞
Bu

z(1)g(z(1), z(2))f1(z
(1))f2(z

(2))dz(1)dz(2)

Term 3: E[Z(p2) ± g(Z(p1), Z(p2))] =
N
E[Z(p2)±g(Z(p1),Z(p2))]

D

NE[Z(p2)±g(Z(p1),Z(p2))] =

∫ Bd

−∞

∫ Bd

−∞
z(2)g(z(1), z(2))f1(z

(1))f2(z
(2))dz(1)dz(2)

−
∫ ∞
Bu

∫ ∞
Bu

z(2)g(z(1), z(2))f1(z
(1))f2(z

(2))dz(1)dz(2)

Term 4: E[±g(Z(p1), Z(p2))] =
N
E[±g(Z(p1),Z(p2))]

D

NE[±g(Z(p1),Z(p2))] =

∫ Bd

−∞

∫ Bd

−∞
g(z(1), z(2))f1(z

(1))f2(z
(2))dz(1)dz(2)

−
∫ ∞
Bu

∫ ∞
Bu

g(z(1), z(2))f1(z
(1))f2(z

(2))dz(1)dz(2)

where in the Terms 1–4, the difference between the integrals are due to the signs of ±g(..), as defined
in Equations (4) and (5).

The condition of Equation (10) depends on the variance of the fused random variables, on the interval
size and on its eccentricity,

∣∣∣Bu+Bd2
−m

∣∣∣. We show in Figure 2 several realizations of Z(1) and Z(2), an
interval and its associated eccentricity. We show in this figure the realizations that will be modified by the
non-linear transformation, the observations that satisfy the conditions: z(1)k , z

(2)
k < Bd or z(1)k , z

(2)
k > Bu.

In the next paragraph, we propose a function, ±g(z
(1)
k , z

(2)
k ), that holds the inequality in Equation (10)

for an interval that contains the parameter for estimating.
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Figure 2. Example of non-linear transformation.

3.2. Transformation Function

3.2.1. Conditions on the Transformation Function

The function, ±g(z
(1)
k , z

(2)
k ), is defined heuristically. In the centered case, B

u+Bd

2
= m, we can define

two conditions to hold the inequality in Equation (10):

• Condition 1:

E[±g(Z(p1), Z(p2))2] = E[±g(Z(p1), Z(p2))] = 0

• Condition 2:

E[Z(p1) ± g(Z(p1), Z(p2))] < 0 and E[Z(p2) ± g(Z(p1), Z(p2))] < 0

These two conditions are verified for a positive function of the difference between two measurements,
g(z

(1)
k − z

(2)
k ) > 0. For z(1)k , z

(2)
k > Bu and z(1)k , z

(2)
k < Bd, the function, g(z

(1)
k − z

(2)
k ), is indeed centered

and symmetric. The Terms 1 and 4 are null in this case. Furthermore, if the function, g(z
(1)
k − z

(2)
k ),

is positive, the Terms 2 and 3 are negative, and the inequality in Equation (10) is negative. In the
next paragraph, we propose a non-linear function that matches these conditions, and we show, in the
experimentation, that the inequality in Equation (10) for this function is always negative, even if the
interval is not centered on the parameter to be estimated.

3.2.2. Definition of the Transformation Function

The principle of the non-linear transformation is to, respectively, add or subtract a positive offset,
d > 0, if z(1)k , z

(2)
k < Bd or z(1)k , z

(2)
k > Bu. Let us consider the following statistic distributions:
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• Let fp(z
(p1)
k − z

(p2)
k ) be the Gaussian distribution of the difference between the random

variables, Z(p1) and Z(p2). This distribution is a zero-mean, and its variance is given by
(σp)

2 = σ2
1 + σ2

2 − 2σp12.
• Let fn(z

(n1)
k − z

(n2)
k ) be the Gaussian distribution of the difference between the random

variables, Z(n1) and Z(n2). This distribution is a zero-mean, and its variance is given by
(σn)2 = σ2

1 + σ2
2 − 2σn12.

where σp12 and σn12 are obtained by numerical integration of the Equations (15) and (16) of Appendix 1.
The value of d is the solution of the following equality for z(1)k , z

(2)
k < Bd or z(1)k , z

(2)
k > Bu:

fn(d) =
fp(z

(p1)
k − z(p2)k )

C
with:

C =
fp(0)

fn(0)
=
σn
σp

Let us define the following relation:

1√
2π

1

σn
exp

− 1
2

(d)2

σ2n =
1

C

1√
2π

1

σp
exp

− 1
2

(z
(p1)
k

−z(p2)
k

)2

σ2p

then, we can derive the following expression for d:

d =
σn

σp

∣∣∣z(1)k − z
(2)
k

∣∣∣ for z(1)k , z
(2)
k < Bd or z(1)k , z

(2)
k > Bu (11)

We explain in Figure 3 the principle of the definition of d. The experimentation presented in the next
paragraph shows that the proposed non-linear function holds the inequality in Equation (10). We assess
in this experimentation the proposed fusion operator on synthetic data.

Figure 3. Principle of the non-linear function.
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4. Experimentation

In this experimentation, we first verify the inequality in Equation (10) for the proposed non-linear
function. The fusion operator is assessed in a second experimentation, and finally, we demonstrate the
feasibility of the proposed operator, in a third experimentation, for the fusion of data provided by a
multi-sensor system.

4.1. Verification of the Inequality

In order to show that the proposed non-linear fusion operator has an output MSE lower than the
classical linear fusion operator, we compute the left term of inequality in Equation(10). This term is
defined as a constraint on the non-linear function and is equal to MSE(ZNLF ) − V ar(ZMAP ). The
evaluation of this constraint is processed by numerical integration of Terms 1–4 defined in paragraph
3.1.2. We show that the proposed non-linear function holds the inequality in Equation (10), because the
constraint is negative or null for all interval sizes and eccentricity.

We show in Figure 4 the constraint as a function of the interval length,Bu−Bd, and of the eccentricity,∣∣∣Bu+Bd2
−m

∣∣∣. The curves of Figure 4 are obtained for σ1 = σ2 and σ2 >> σ1. When σ2 >> σ1, the

fusion is less accurate, because the random variable, Z(2), brings little information on the parameter to
estimate (so α2 ≈ 0). In this case, the constraint is close to zero, so the proposed and the MAP fusion
operator are similar. When σ2 = σ1 = 3, the constraint is negative for all the intervals and values of
eccentricity. We can notice that for small values of the interval size, the constraint is close to zero. In
this case, α3 ≈ 1, because the prior information is very accurate, and the fusions operators do not use
the observations. In conclusion, the greatest is the difference between the variances of Z(1) and Z(2);
less interesting is the fusion. We can notice that this conclusion is also valid for the classical fusion
operator. However, the constraint is always negative, and it shows that the proposed fusion operator is
more accurate than the classical MAP fusion operator.

Figure 4. The constraint as a function of the interval and eccentricity.
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We show in Figure 5 the normalized value of the constraint, MSE(ZNLF )−V ar(ZMAP )
V ar(ZMAP )

, as a function of
the interval size and of the eccentricity. The constraint is processed for two values of σ1 = σ2 and the
normalization allows one to compare these two cases. We can observe in Figure 5 that when the interval
length and the eccentricity increase for σ1 = σ2 = 1, the constraint tends towards zero more quickly
than for σ1 = σ2 = 5. The probability of z(1)k and z(2)k to be in a given interval is indeed higher for
σ1 = σ2 = 5 than for σ1 = σ2 = 1. When this probability decreases, less observations are modified
by the non-linear transformation, and the output variance of the non-linear fusion operator tends to the
output variance of the MAP fusion operator.

We show in this experimentation that from a theoretical point of view, the proposed fusion operator
is more accurate than the classical fusion operator, because the proposed non-linear function holds the
inequality in Equation (10). In the next paragraph, we assess the proposed operator with synthetic data.

Figure 5. The constraint for two values of σ1 = σ2.

4.2. Assessment of the Fusion Operator

In this experimentation, we compare the non-linear fusion operator with the classical ML and MAP
fusion operators. We consider a constant signal of 1, 000 samples. We show in Figure 6a a temporal series
of Z(1). The prior information is an interval represented on this figure by two horizontals dotted lines.

To compare the operators, we estimate the MSE between the fused measurements and the parameters
to be estimated. For the ML fusion operator, the MSE is equal to the variance, because the combined
estimate is unbiased. We report in Table 1 the parameters of the signals and the theoretical output
variance of the classical ML fusion operator.



Entropy 2013, 15 2708

In order to assess the MAP and the non-linear fusion operator, we process 1,000 realizations of the
temporal series, Z(1) and Z(2). For each experiment, we randomly generate the prior information, ma,
according to a Gaussian distribution of mean m and variance σ3. We report in Table 2 and we show in
Figure 6b the MSE of the MAP and nonlinear fusion operator as a function of σ3.

We notice in Figure 6b and in Table 2 that the MSE of the proposed non-linear fusion operator is
always inferior or equal to the MSE of the MAP and LS fusion operators. When σ3 is small, the prior
information is accurate and α3 tends to one. The MSE of the MAP estimate and of the non-linear fusion
operator tends to zero. In this case, the MAP estimate tends to be the same as the non-linear fusion
operator, because α1 and α2 tend to zero. When σ3 is large, the prior information is inaccurate. The
MSE of the MAP estimate and of the non-linear fusion operator tends to the MSE of the LS estimate.
The three fusion operators tend to be identical, because α3 is close to zero, and the interval length Bu-Bd
is large. Then, no transformation is processed by the non-linear fusion operator.

Figure 6. Example of process and mean standard error (MSE) of the proposed operator.

Table 1. Theoretical parameters of the signals.

Mean MSE

First signal z(1) 4 1
Second signal z(2) 4 2

Linear fusion 4 0.666

The only difference between the MAP and the non-linear fusion operators is the observation weighted
by α2. In the non-linear fusion case, this observation is processed with a nonlinear function in order to
decrease the correlation between z(1)k and z(2)k . Therefore, this transformation decreases the MSE of the
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fusion operator compared to the MSE of the MAP estimate. We notice in Figure 6b that for σ3 < 2, the
difference between the MSE increases when α2 increases, so, when σ3 increases (α3 decreases because
the prior information is less accurate). However, for σ3 > 2, the number of transformations processed
by the non-linear transformation decreases, and the difference between the MSE decreases.

Table 2. MSE of the NL (non-linear) and Maximum a posteriori (MAP) fusion operators.

Prior information Mean Square Error
Accuracy σ3 MAP Fusion NL Fusion

0.0 0.0000 0.0000
0.1 0.0030 0.0030
0.3 0.0294 0.0274
0.5 0.0876 0.0779
1.0 0.2884 0.2566
1.4 0.4106 0.3695
2.0 0.5135 0.4711
3.0 0.5902 0.5534
4.0 0.6218 0.5909
5.0 0.6369 0.6114

4.3. Multi-Sensor Estimation

In this experimentation, we want to assess a multi-sensor fusion system that uses the proposed non-
linear transformation. The system, embarked on a vehicle, is composed of a multi-band GNSS receiver,
a speedometer and a magnetometer.

The multi-bands GNSS receiver provides measurements of positions obtained in the GNSS L1 band
and in the GNSS L2C band. The measurement rate is equal to 10 Hz, and we assume a standard
positioning service, non-differential horizontal (latitude & longitude) positioning and SAoff. The
classical receiver at the L1 band, simulated in this experimentation, has a four meter root means square
(RMS) error (the error is the distance between the position and its estimate). For a measurement rate of
10 Hz, the estimate position is the averaging of 100 observations for the L1 band and five observations
for the L2C band. A receiver can indeed compute a position every millisecond at the L1 band and every
20 milliseconds at the L2C band. If the horizontal latitude and longitude errors were not correlated, the
RMS error would be inversely proportional to the square root of the number of measurements. However,
the errors are correlated, and this causes the error from averaging to decrease at a slower rate than if
the errors were not correlated. It is a reasonable assumption to consider a double RMS error for the
L2C band. A speedometer is installed in a vehicle. The uncertainty of the speedometer is equal to 5%
of the vehicle speed. In this context, we assume a bias of 5% and an additive Gaussian noise on the
measurements. The noise variance is equal to 0.1 m/s. Finally, we assume an additive Gaussian noise on
the measurements of direction. The noise variance is equal to two degrees.
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The plots in Figure 7 show the trajectory and the sensors’ measurements. In Figure 7, the left figure
shows the trajectory and the observed positions provided by the GNSS receiver. In Figure 7, the top right
figure presents the measurements of direction provided by the magnetometer and the filtered directions
obtained with a circular filter [20]. The bottom right figure presents the measurements of speed, V x and
V y, along the x- and y-axis. These measurements are the projections of the velocity vectors processed
with the observed noisy direction and speed (vector magnitude).

In our implementation, the upper and lower bound intervals of the proposed non-linear transformation
are defined at time, t + ∆t, with direction and speed. The non-linear transformation is applied to each
component, x, y, of the position. For the x component, the interval center is the estimated x component
at t plus the variation in position during ∆t along the x-axis (V x*∆t). The size of the interval is fixed
to Bu − Bd = 0.9; this value is fixed in practice. The same method is used for the non-linear fusion of
the component, y.

Figure 7. Trajectory and sensors’ measurements.

We report in Table 3 the mean square error of the position for the x and y directions and the position
RMS error. We report this statistical parameter for the proposed non-linear fusion method, the ML and
MAP fusion operators and for the GPS L1 positions.

Table 3. Error of position.

Statistical parameter MSE x MSE y RMS error

GPS L1 2.0549 2.0141 2.0169
ML fusion 1.3565 1.4039 1.6612

MAP fusion 0.2524 0.2556 0.7128
non-linear fusion 0.2350 0.2365 0.6867
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This experimentation shows a possible application of the proposed combined estimate. The previous
estimate with the measurements of displacement (provided by the dead reckoning sensors) are used to
construct the prior information (lower and upper bound of the interval). In this case, the eccentricity is
distributed according to a Gaussian law. As shown in the previous paragraph, the MSE of the proposed
combined estimate is lower than the classical fusion operators. However, the difference between the
MSE of the MAP estimate and of the non-linear fusion operator is not as high as the one obtained in the
assessment of the fusion operators. For this practical case, the true position is some time not contained
in the interval defined by the upper and lower bound, and the non-linear transformation has an additive
bias that increases the MSE. This is the principal limitation of the proposed fusion operator.

The limitation of the non-linear fusion operator is due to the definition of an interval that contains the
parameter to be estimated. If the interval is small, the probability to be outside this interval is high, and
the MSE of the proposed method can be superior to the MSE of the MAP estimate. If the interval is
large, the proposed estimate has little interest, because its MSE is close to the MSE of the LS estimate.
Therefore, there is an ambivalence between these two cases, and the size of the interval must be, in
practice, tuned by the user in order to improve the estimation.

5. Conclusions

In this article, we propose a new combined estimate that uses a prior law. The proposed new method
combines observations provided by two sensors. The prior law is an interval that contains the quantity
to estimate. The proposed fusion operator is more accurate in the minimum mean square sense than the
classical ML and MAP fusion operators.

The proposed combined estimate is based on a non-linear transformation of the signals. The aim
of this transformation is to decrease the covariance between the observations in order to decrease the
output mean square error of the fusion operator. We define a condition for a non-linear transformation to
decrease the covariance. We derive the function and the associated non-linear transformation that holds
this condition.

As expected from the theoretical derivation provided in the article, we show in the experimentation
that the proposed non-linear combined estimate outperforms the classical fusion operator when the
quantity to be estimated is in the interval. We propose an example of a practical implementation of
the proposed combined estimate. We show that the non-linear fusion improves the positioning of a
multi-sensor system composed of a multi-band GNSS receiver and dead reckoning sensors.

The prospect of this work concerns the extension of the proposed method to more than two
observations.
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Appendix 1

In this appendix, we show that the realizations of two random variables on the same side of the mean
are positively correlated. We show that the realizations on both sides are negatively correlated. Let
f(..) be the distribution of the random variables, Z(1) and Z(2). The covariance of Z(1) and Z(2) is
given by:

σ12 = E(Z(1)Z(2))− [E(Z(1))E(Z(2))] (12)

=

∫∫
z(1)z(2)f1(z

(1))f2(z
(2))dz(1)dz(2)

−

[∫
z(1)f1(z

(1))dz(1)
∫
z(2)f2(z

(2))dz(2)

]
(13)

We develop the covariance Equation (13) for the different kind of realizations of Z(1) and Z(2). It follows
that:

σ12 = (PC1 + PC2) + (NC1 +NC2)−m2 (14)

with:
PC1 =

∫ +∞

m

∫ +∞

m

z(1)z(2)f1(z
(1))f2(z

(2))dz(1)dz(2)

PC2 =

∫ m

−∞

∫ m

−∞
z(1)z(2)f1(z

(1))f2(z
(2))dz(1)dz(2)

NC1 =

∫ +∞

m

∫ m

−∞
z(1)z(2)f1(z

(1))f2(z
(2))dz(1)dz(2)

NC2 =

∫ m

−∞

∫ +∞

m

z(1)z(2)f1(z
(1))f2(z

(2))dz(1)dz(2)

(PC1 + PC2) is a term associated with the realizations of Z(p1) and Z(p2), and (NC1 + NC2) is a term
associated with the realizations of Z(n1) and Z(n2). Let σp12 be the covariance of Z(p1), Z(p2) and σn12 be
the covariance of Z(n1), Z(n2). These covariances are given by the following expressions:

σp12 =
PC1 + PC2

DPC
−m2 (15)

σn12 =
NC1 +NC2

DNC
−m2 (16)

with:

DPC =

∫ +∞

m

∫ +∞

m

f1(z
(1))f2(z

(2))dz(1)dz(2)

+

∫ m

−∞

∫ m

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2)

DNC =

∫ +∞

m

∫ m

−∞
f1(z

(1))f2(z
(2))dz(1)dz(2)

+

∫ m

−∞

∫ +∞

m

f1(z
(1))f2(z

(2))dz(1)dz(2)

DPC + DNC = 1



Entropy 2013, 15 2714

It follows:

σ12 = DPC σp12 +DNC σn12 (17)

Furthermore, we state that: ∫ +∞

m

z(1) f1(z
(1))dz(1) =

m+ a

2
(18)

It follows: ∫ m

−∞
z(1) f1(z

(1))dz(1) =
m− a

2
(19)

We can then define:

PC1 =
(m+ a)2

4
(20)

PC2 =
(m− a)2

4
(21)

NC1 = NC2 =
(m2 − a2)

4
(22)

DPC = DNC =
1

2
(23)

Finally, it follows:

σp12 = a2 (24)

σn12 = −a2 (25)

According to the previous equation, the covariance of Z(p1), Z(p2) is positive, and the covariance of Z(n1),
Z(n2) is negative.

Appendix 2

In this appendix, we derive the condition that the mean square error, MSE(ZNLF ), of the proposed
non-linear fusion operator is lower than the mean square error, MSE(ZMAP ), of the linear fusion
operator. This error is lower if we decrease the covariance between the realizations of the processes that
correlated positively, because MSE(Z

(n)
MAP ) = MSE(Z

(n)
NLF ). The mean square errors, MSE(Z

(p)
MAP )

and MSE(Z
(p)
NLF ), of the fusion operators are given by:

MSE(Z
(p)
MAP ) = V ar(Z

(p)
MAP ) + (Biais(Z

(p)
MAP ))

2

and

MSE(Z
(p)
NLF ) = V ar(Z

(p)
NLF ) + (Biais(Z

(p)
NLF )

2

= V ar(Z
(p)
NLF ) + (E[Z

(p)
NLF ]−m)2

= V ar(Z
(p)
MAP + α2(±g(Z(p1), Z(p2))))

+(E[Z
(p)
MAP + α2(±g(Z(p1), Z(p2)))]−m)2

= V ar(Z
(p)
MAP )

+α2
2V ar(±g(Z(p1), Z(p2))) + 2α2cov(Z

(p)
MAP ,±g(Z

(p1), Z(p2)))

+(E[Z
(p)
MAP + α2(±g(Z(p1), Z(p2)))]−m)2

= V ar(Z
(p)
MAP ) + α2

2V ar(±g(Z(p1), Z(p2)))

+2α2cov(Z
(p)
MAP , ± g(Z(p1), Z(p2)))

+(E[Z
(p)
MAP ]−m + E[α2(±g(Z(p1), Z(p2)))])2
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MSE(Z
(p)
NLF ) =

V ar(Z
(p)
MAP ) + α2

2V ar(±g(Z(p1), Z(p2))) + 2α2cov(Z
(p)
MAP ,±g(Z

(p1), Z(p2)))

+(E[Z
(p)
MAP ]−m)2 + α2

2(E[±g(Z(p1), Z(p2))])2

+2α2((E[Z
(p)
MAP ]−m)E[±g(Z(p1), Z(p2))])

MSE(Z
(p)
NLF ) =

V ar(Z
(p)
MAP ) + (E[Z

(p)
MAP ]−m)2 + 2α2(cov(Z

(p)
MAP ,±g(Z

(p1), Z(p2)))

+α2
2

(
V ar(±g(Z(p1), Z(p2))) + (E[±g(Z(p1), Z(p2))])2

)
+2α2

(
E[Z

(p)
MAP ]E[±g(Z(p1), Z(p2))]−m E[±g(Z(p1), Z(p2))]

)

With:

E[Z
(p)
MAP ]−m = 0

V ar(±g(Z(p1), Z(p2))) + (E[±g(Z(p1), Z(p2))])2 = E[±g(Z(p1), Z(p2))2]

MSE(Z
(p)
MAP ) = V ar(Z

(p)
MAP )

It follows:

MSE(Z
(p)
NLF ) = MSE(Z

(p)
MAP ) + α2

2(E[±g(Z(p1), Z(p2))2])

+ 2α2cov(Z
(p)
MAP ,±g(Z

(p1), Z(p2)))

+ 2α2(E[Z
(p)
MAP ]E[±g(Z(p1), Z(p2))]−m E[±g(Z(p1), Z(p2))])

MSE(Z
(p)
NLF ) = MSE(Z

(p)
MAP ) + α2

2(E[±g(Z(p1), Z(p2))2])

+2α2α1E[Z(p1)(±g(Z(p1), Z(p2)))] + 2α2
2E[Z(p2)(±g(Z(p1), Z(p2))))]

+2α2α3E[ma(±g(Z(p1), Z(p2)))]

−2α2(α1E[Z(p1)] + α2E[Z(p2)] + α3E[ma])E[±g(Z(p1), Z(p2))]

+2α2(α1E[Z(p1)] + α2E[Z(p2)] + α3E[ma])E[±g(Z(p1), Z(p2))]

−2mα2E[±g(Z(p1), Z(p2))]

= MSE(Z
(p)
MAP ) + α2

2E[±g(Z(p1), Z(p2))2]

+2α2α1E[Z(p1) ± g(Z(p1), Z(p2))] + 2α2
2E[Z(p2) ± g(Z(p1), Z(p2))]

(2α2α3ma − 2mα2)E[±g(Z(p1), Z(p2))]

Then, MSE(Z
(p)
NLF ) is lower than MSE(Z

(p)
MAP ), if the following condition holds:

α2
2E[±g(Z(p1), Z(p2))2] + 2α2α1E[Z(p1) ± g(Z(p1), Z(p2))]

+2α2
2E[Z(p2) ± g(Z(p1), Z(p2))]

+(2α2α3ma − 2mα2)E[±g(Z(p1), Z(p2))] ≤ 0
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