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Abstract: Maximum entropy inference can be used to find equations for the critical 

currents (Jc) in a type II superconductor as a function of temperature, applied magnetic 

field, and angle of the applied field, θ or . This approach provides an understanding of 

how the macroscopic critical currents arise from averaging over different sources of vortex 

pinning. The dependence of critical currents on temperature and magnetic field can be 

derived with logarithmic constraints and accord with expressions which have been widely 

used with empirical justification since the first development of technical superconductors. 

In this paper we provide a physical interpretation of the constraints leading to the 

distributions for Jc(T) and Jc(B), and discuss the implications for experimental data 

analysis. We expand the maximum entropy analysis of angular Jc data to encompass 

samples which have correlated defects at arbitrary angles to the crystal axes giving both 

symmetric and asymmetric peaks and samples which show vortex channeling behavior. 

The distributions for angular data are derived using combinations of first, second or fourth 

order constraints on cot θ or cot . We discuss why these distributions apply whether or not 

correlated defects are aligned with the crystal axes and thereby provide a unified 

description of critical currents in superconductors. For J//B we discuss what the maximum 

entropy equations imply about the vortex geometry. 
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1. Introduction 

The most important property of a superconductor from a practical viewpoint is the critical electrical 

current density (Jc, measured in Am−2, or for thin films the sheet current, Ic in A/cm is often recorded) 

under the operating conditions of temperature (T) and applied magnetic field (B). This is the current 

above which power dissipation increases rapidly and the material transitions to a non-superconducting 

state and it determines the useful current-carrying capacity of a superconducting wire or film. A better 

understanding of critical currents is therefore of interest both practically and from a fundamental 

physics viewpoint. Remarkably the phenomenology of critical currents remains poorly understood. 

There are many models of critical currents [1–4] but these often fail to adequately reproduce basic 

features of experiments. In this paper we show how a maximum entropy approach results in a unified 

framework for understanding the phenomenology of critical currents in superconductors and provides 

insight that would be impossible to attain when working from deterministic models. 
In reality superconductors do not transition abruptly from the superconducting to the non-

superconducting state. The electric field–current density (E–J) relationship is usually a power law, 
n

cJJEE )/(/ 0  with n ~ 10–100 for different samples and conditions [5]. The critical current is 

therefore a parameter in a constitutive equation and is defined as the DC current carried when the 

sample satisfies a particular electric field criterion, usually E0 = 10−4 Vm−1, parallel to the transport 

current direction; this is the value most often recorded in experiments. 

From a physics perspective we wish to connect critical currents with magnetic flux vortex behavior [1–4]. 

Flux vortices are the quantized magnetic fluxons which penetrate type II superconductors subjected to 

an applied magnetic field. They are whirlpools of supercurrents surrounding a non-superconducting 

core and can be modeled as elastic strings threading through the superconductor in global alignment 

with the macroscopic field direction. Vortices will preferentially align themselves with pre-existing 

non-superconducting regions of the material (e.g., material defects) so as to lower the total free energy 

of the system. This preferential alignment with a non-superconducting region is termed “pinning”. It 

requires a force of order U/2 to dislodge a vortex from a pinned position, where U is the difference 

in condensation energy between the pinned and free vortex and 2 is the lateral dimension of the 

vortex core. When vortices move, energy is dissipated in the sample, ultimately leading to a loss of 

superconductivity. For high critical currents to be achieved, vortices must remain immobile or 

“pinned” in the material. 
Most models of Jc begin with a definition, first proposed by P. W. Anderson [6], that equates the 

flux pinning force per unit volume (Fp) in the sample with the Lorentz force experienced by the vortex 

lattice under the influence of an electrical current, BJF cp


 . The challenge then is to model pF


in 

terms of the total available pinning in the sample and the interaction between vortices themselves. The 

total available pinning, often referred to as the “pinning landscape”, is usually modeled through an 

enumeration of “defects” or “pinning centers”. The density of defects is labeled np and the flux pinning 

force per unit length of vortex, created by a defect or defects, labeled fp. The defects may be of many 

different scales, shapes, and chemistry. Some are point defects, and some are extended and correlated 

with the crystal axes. Grain boundaries will act as pinning centers, and surfaces, pores and interfaces 

can also provide a pinning force. Some defects are second phase material intentionally introduced and 

some are intrinsic features of a crystal structure. We show a schematic diagram of a vortex in Figure 1 
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which is pinned by both isotropic defects, e.g. non-superconducting nanoparticle inclusions, and 

correlated defects, e.g. stacking faults and twin plane boundaries. 

Models of pF


must then consider vortices interacting with the pinning landscape and each other. 

Without pinning, vortices preferentially arrange themselves into a triangular lattice due to the interactions 

between vortices. The effects of vortex-vortex interactions may be modeled through defining elastic 

constants of the vortex lattice, and such phenomena as shear of the vortex lattice can be considered. Flux 

pinning is also affected by thermal excitations and local variations in electromagnetic fields. 

Unfortunately, no deterministic model of the pinning landscape provides a unified explanation of 

the behavior of Jc with temperature and field, few show any predictive power, and because the Lorentz 

force definition fails when BJ


// , none describe the behavior under all conditions. The outstanding 

issue is the “pinning summation problem”. That is, there is no reliable methodology to sum the effects 

of all the defects distributed throughout a material in order to find pF


. 

We have shown previously [7–10] how by adopting a maximum entropy approach we can model Jc 

while avoiding the need to construct a model of pF


. Although we do not solve the pinning summation 

problem in the sense of making direct predictions of the magnitude of Jc we do gain insight into how 

nature averages over all defects and interactions and what information is available from any 

experiment. In this paper we extend our analysis to include a greater range of critical current data. In 

Section 2 we briefly explain how we apply the maximum entropy formalism. In Section 3 we demonstrate 

how particular simple choices of constraints provide distributions which describe essentially all reported 

results for critical currents as a function of temperature, magnetic field, and field angle. In particular 

we show that previous expressions for Jc() which apply to defects correlated with the crystal axes also 

apply for combinations of defects not aligned to the crystal axes. We also show for the first time that 

angular data related to vortex channeling can be described by including 4th order constraints on cot. In 

Section 4 we offer a physical interpretation of the field and temperature constraints. The geometric 

shape of vortices particularly for J//B implied by the angular constraints is discussed. 

Figure 1. Schematic diagram of a pinned magnetic vortex. Macroscopically the vortex 

follows the applied field direction B; microscopically it is distorted by the particular 

pinning centers with which it interacts and by the effect of the local electromagnetic field. 
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2. Maximum Entropy Method 

Deterministic models of critical currents as described above pose the question, “What force is 

required to move a pinned vortex?” and Jc is defined at the point of force balance between motive 

force and pinning force. In the maximum entropy approach we ask instead, “What is the probability a 

vortex is pinned?” We therefore propose the ansatz Jc() d= J0 p() d where p() is the normalized 

probability a vortex is pinned over the domain of . J0 is a constant which does not depend on  and 

which we determine from experiment. This is not the only possible physical interpretation of p()d. 

We could equally regard it as the probability a quasi-particle in the sample contributes to the current 

transport. This is equivalent to directly considering it as the probability for how an “element” Jc of 

critical current is distributed across the domain. In this paper we choose to relate our equations to flux 

vortex behavior as this is the usual conceptual framework in which to understand critical currents. 

To assign the probabilities p() we apply the Principle of Maximum Entropy [11,12]. We choose 

the distribution which maximizes the Shannon information entropy, SI = −∫p()lnp()d subject to 

constraints of the form < gr() ≥ ∫p()gr()dr = 1, 2, .., m.. The general solution is 
))(...)()(exp()( 22110  mm gggp  , where  are Lagrange multipliers. This ensures 

we obtain the least biased distribution among all possible choices that satisfies the given constraints. If 

we include all the constraints operating in the physical system, then the distribution obtained through 

maximizing the information entropy is overwhelmingly the most likely to be observed experimentally. 

We treat the procedure as one of trial and error in which we assume simple constraints and then 

proceed to fit the derived distribution to experimental data. If this distribution accurately describes the 

data then we have found a valid model. If the distribution does not adequately fit our data then either 

additional constraints exist or we have used the wrong constraints. As a consequence, which has been 

emphasized by Jaynes [13], even a failure of the procedure is valuable – a failure means we should 

reassess our constraints and the discrepancy between data and model can help us to uncover new physics. 

3. Results and Discussion 

The behavior we are interested in modeling is how the critical current density (Jc) changes with 

temperature (T), magnitude of an applied magnetic field (B), and the direction of the applied field 

(). We will look at each of these in turn. 

3.1. Temperature Dependence of Jc 

We first examine the temperature dependence, which is of particular relevance for high temperature 

superconductor (HTS) samples which operate over a wide temperature range. Critical currents only 

exist between T = 0, and T = Tirr, where Tirr is an irreversibility temperature beyond which vortices 

cannot be pinned. We can normalize irrTTt / and our data falls on the domain 10  t . For 

temperature dependent data in HTS the form most often employed in experimental analysis is 
)1(~)( ttJ c   [14,15]. In Figure 2 we show a measurement of Jc(T) which follows this form with  

 = 1. Typically for YBCO films prepared in our laboratory we obtain data with  ~ 1–2 [16]. There 

has been no convincing explanation to date why this functional form is persistently observed for 

samples with such a variety of microstructures. We can recognize this form as a power law which 
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comes from a constraint of the expectation value, )1ln()1ln( gt  [12]. If we maximize the Shannon 

information entropy using this constraint we obtain using our ansatz for Jc: 

1))1/(1ln(/10 )1(
))1/(1ln(

)( 


 g
c t

g

J
tJ  (1)

Some data for high temperature superconductor (HTS) samples follows a mixture form [14,15], 

2211~ JwJwJ c  . From the maximum entropy point of view this is not surprising. It suggests the 

sample has physical populations of defects which are sufficiently different in their overall properties 

that they create distinct constraints which can be resolved in the macroscopic experiment. It is 

therefore a natural extension of the model. For example, at low temperature we may have an effective 

physical population of defects which is statistically distinct from the physical population effective at 

high temperatures. In low temperature superconductors (LTS) the form )1(~ 2tJ c   has sometimes 

been used to fit data [1]. At temperatures close to Tc, and for the limited range of LTS temperature 

data, this form can be difficult to distinguish from Equation (1). We therefore consider we have a well 

validated maximum entropy expression for Jc(T). The physical meaning of the constraint is discussed 

in Section 4. 

Figure 2. Jc(T) for a metal-organic deposited YBCO thin film, 1 m thickness. 

 

3.2. Magnetic Field Dependence of Jc 

There are three possible sources of field in a measurement of Jc: external sources, Bex; transport 

current self-field (the field generated by the transport current itself), Bsf; and equilibrium magnetization 

currents producing fields of the order Bc1. The maximum field for the measurement is the 

irreversibility field, Birr; the field at which it is no longer possible for the sample to sustain a 

measurable critical current, i.e. Jc = 0. External fields are usually significantly larger than Bc1 and Bsf, 

so that experimental data falls in the range Bc1 << Bsf << Bext < Birr. If we ignore the smaller field 

sources for the moment, then extBB   and irrBBb /  and we have )(bJ c  on the domain 10  b . 

Rather than a direct analysis of )(bJ c  it is common to plot the pinning force, BJF cp  , against B or 

b, forming a normalized plot of flux pinning force versus (normalized) field for JB
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known for the past 40 years that such a plot takes the form nm

p bbF )1(~  [1,2,17,18]. This is true of 

both LTS and HTS samples. In the words of Campbell and Evetts ([2] p.159), “A frequent and striking 

feature of these curves is that over a wide range of microstructures, field and temperatures they have 

the same shape”. This was written before it was observed that the high temperature superconductors 

and MgB2 also obey this form [19]. Various explanations have been offered for this, but without 

consensus. The same shape implies that data over multiple conditions can be scaled to a common 

curve, a useful property for constructing empirical models used in engineering of devices [20]. 

We can notice that this form is a beta distribution; the multiplication by b or B, doesn’t alter this 

form. The beta distribution can be derived from maximum entropy using logarithmic constraints, 
 bln and  )1ln( b [12]. For the field dependence we thus have the equation: 

110 )1(
),(

)(   


bb

Beta

J
bJ c  (2)

where )()(ln   b , and )()()1ln(   b where is the digamma function. 

An example of the ability to scale data under different conditions to a common curve is shown in 

Figure 3 for a Bi-2223 tape sample, manufactured by AMSC (Devens, MA, USA). Here we have 

scaled data for different field directions to show the common form. The irreversibility fields used in 

the scaling range from Birr= 1.73 T at 0° (field perpendicular to the plane of the sample) to Birr= 11.1 T 

at 90° (field parallel to the plane of the tape). The Bi-2223 material is highly anisotropic therefore the 

accommodation of vortices to the pinning landscape must be very different at the different angles. The 

scaling to a common curve emphasizes the statistical nature of the macroscopic response. We discuss 

the implications for analyzing the sources of pinning in more detail in Section 4. 
One circumstance which is known to occur [1] in which Equation (2) fails in the form 

nm
p bbF )1(~  , is when the data is better fitted with two or more components, i.e. weighted 

contributions, 2211~ FwFwFp  . Again this is not surprising, suggesting the sample has physical 

populations of defects which are sufficiently different in their overall properties that the outcome is a 

mixture distribution. In [10] we give an example where Jc(B) data with a secondary maximum at 

intermediate fields (a so-called “peak effect”) can be described using this form. 

A more accurate fitting to the model should also take into account the smaller field sources which 

we have ignored, so that irrBBb / is a measure of the field in the sample. For example, we could 

rescale the B axis to account for self-fields. As this mainly affects the low field region it probably has 

little practical effect on the fitting parameters obtained. 

The maximum entropy distribution for field dependence is thus well established in the 

superconductivity literature. We give a physical interpretation of the constraints in Section 4, and we also 

discuss what the maximum entropy viewpoint implies for the interpretation of experimental results. 
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Figure 3. Flux pinning force as a function of applied field for a Bi-2223 wire sample 

measured at 77 K. The data for 4 different field angles,  = 0 (perpendicular field), 30°, 60° 

and 90° (parallel field) are scaled to lie on a common curve. The Beta distribution 

parameters used to fit the common curve are, =1.8,  = 9.6. 

 

3.3. Out-of-Plane Field Angular Dependence of Jc Under Maximum Lorentz Force 

For a planar sample lying in the xy plane, with current direction xJJ 


,  is the angle of the 

magnetic field in the yz plane, (i.e. xB ˆ ,  = 90° for field direction parallel to ŷ ) and  is the angle in 

the xy plane (i.e. zB ˆ , for field direction parallel to x̂  ). We consider first the case where the 

magnetic field is kept perpendicular to the current direction (maximum Lorentz force 

configuration). We maximize 



0

))(ln()( dffS  where )()( 0  fJJ c  , with   1)(  df , subject to 

chosen constraints <g()>. If there are no constraints we obtain a uniform distribution: 

 /)( 0JJ c   (3a)

For fully isotropic superconductors, for example, a round wire of the LTS conductor Nb-Ti, such an 

angular dependence is a trivial result. Of interest is whether this result has wider applicability. In Figure 4 

we show Jc() of a thin film HTS YBCO sample prepared by metal organic deposition [16]. To a good 

approximation we have a uniform distribution of critical current. This is a surprising result because the 

sample has many defects and pinning structures which are aligned with the crystal axes. Particularly the 

sample has stacking faults which are aligned with the film surface (90° direction)—normally these are 

correlated with the observation of strong peaks in Jc() [21]. The sample also has grain boundaries, 

twin planes and twin plane intersections aligned normal to the film surface (0° direction) which are 

often correlated with the observation of Jc() maxima. Even an intrinsically isotropic low temperature 

superconductor film usually has a peak in the direction parallel to the surface due to surface pinning as 

shown in the next section. In anisotropic high temperature superconductors the vortices themselves are 

dimensionally anisotropic due to the electronic mass anisotropy. Hence the local pinning forces are 

often presumed to always be anisotropic with  and in spite of this, here we observe an almost 

isotropic response of the critical current. 
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Figure 4. Isotropic Jc() observed in an anisotropic high temperature superconductor 

YBCO, (a) 77 K, (b) 65 K, data (▼, Δ), fit (▬). 

 

In the experiments of Figure 4 the many factors which result in a vortex being pinned or not have 

averaged, such that there is no dependence on the angle of the applied field. This is a striking example 

of the loss of information on the microscopic state when making a macroscopic measurement. That is 

to say, the configurations of the pinned vortices must be quite different across all angles but this 

information is lost to the experimentalist. No deterministic model of Jc starting from a model of Fp 

which included anisotropic pinning structures would ever be likely to predict an angle independent Jc. 

The common assumption is that anisotropic structures must produce an anisotropic Jc [22], but here 

this is demonstrated to be false. 

A more detailed analysis of when peaks are observed in these samples depending on the relative 

density of correlated defects is given in [16]. The point we are making here is that Equation 3a, is an 

important and valid maximum entropy distribution for describing Jc(). It is also highlights the 

necessity of an epistemic model for critical currents in analyzing data. 
It is more usual when measuring thin film superconductors to observe peaks in Jc() due to vortices’ 

interactions with pinning structures correlated with the crystal axes. For each pinned vortex i the 

vortex must be stationary over total pinned lengths yi and zi. The macroscopic angle at which the 

vortex is pinned satisfies )cot(/ iii yz  . Rather than the summation of pinned vortex segments 

creating a mean angle   which is the relevant information, we consider the possibility it is the mean 
 cot/ yz  which is relevant. Similarly, if a variance is constrained by the pinning landscape it is

 2)/)/(( yzyz . (In our discussions we could equally use  tan/ zy etc, as the constraints 

for our derivation of the distributions. The choice of using z/y as the variable is to maintain consistency 

with the derivation in our earlier papers, particularly [8]. The original choice of z/y was made so that 
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<z/y> = 0 positions the peak of the distribution at  = 90° which is the common occurrence in  

HTS samples.) 

This implies the most uniform distribution to describe correlated pinning is the improper distribution of 

a uniform p(z/y) on the domain  0 . We can imagine this distribution as describing the pinning 

arising from an infinite square lattice of correlated pins in the y-z plane, in which any value of z/y is 

equally likely. 
With constraints on the mean <z/y>, and variance <((z/y) − <z/y>)2>, it is well known that 

maximization of the information entropy gives a Gaussian distribution in z/y. By a simple transformation of 

random variables to the  variable,  ddhhff YZ /)())(()( /  , with coth , we obtain: 












222

0
c

tan2

1
exp

sin2
)(

J
J

 
(3b)

We call this an “angular-Gaussian”, where the scale parameter  is the variance in the Cartesian 

coordinates, and we have chosen <z/y> = 0. This equation has the interesting property of bifurcating at 

2/1 to give three extrema. Some other interesting properties of the equation are given in [9]. 

A further possibility is that the distribution of yz /  is “heavy tailed”. That is, we obtain a Lorentzian 

distribution in z/y. This distribution (in a discrete truncated form) has been considered from an 

information theory point of view by Carraza [23,24] as arising from a constraint on the variance alone. 

Real measurements will always occur at some finite z/y, so to give a convenient closed form we 

transform a continuous Lorentzian distribution to the angular domain giving: 







222
0

c
sincos

1
)(




J
J  (3c)

We call this an “angular-Lorentzian” with scale parameter . Note this equation reduces to Equation 

(3a) in the case  = 1. The distributions given by Equations (3b) and (3c) can reflect a sum of 
underlying distributions through the usual rules of convolution, i.e. ...2

2
2

1
2    or 

...21   [9]. This is one way in which the method of maximum entropy shows how 

contributions from different populations of pinning defects are summed. For example, a Jc peak can be 

broadened by interactions with one population of defects giving a peak with scale factor 1, or by 

interaction with a second population giving scale factor 2, or by both giving 2
2

2
1   . The 

second way the maximum entropy method sums the contribution from different pinning populations is 

through mixture distributions. In our experiments we can observe multiple contributions from 

Equations (3a), (3b) and (3c), which reflect different sets of constraints operating simultaneously 

across the angular domain. 

To illustrate this effect we show in Figure 5 a nanostructured LTS Nb film at two different field 

strengths. Experimental details of this sample are given elsewhere [9]. For both field strengths shown 

we are able to identify three components with parameters as shown in Table 1. The choice of 

components and fitting has been done “by eye” and with the assistance of a least squares fitting 

program. In principle this fitting and model selection should be done using a maximum entropy 

procedure such as outlined in [25] or other Bayesian model selection procedure. 

This data shows two striking effects which can be accounted for by the maximum entropy description 

but are not predicted by any deterministic model. At 0.1 T, the angular dependence is flat around the 
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region  = 0°, despite the sample having correlated pinning structures oriented in this direction. From 

Equation (3c) we know it is possible for correlated pinning to give a flat angular response through the 

value  = 1. At 0.2 T, we see the emergence of “shoulders” at  ~ ±60°. It is difficult to foresee how a 

deterministic model would ever predict a Jc peak which is not aligned with the direction of correlated 

pinning, but this comes quite naturally from Equation (3b). Further examples of the use of these 

equations to explain Jc() from complex pinning structures are given in [7–10,26,27]. 

Figure 5. Jc(θ) at 5 K for a nanostructured Nb thin film incorporating an array of vertical 

columnar pores: experiment (■), full fit (▬), fit components (▬, ▬ - ▬, ▬ ▬ ▬ , ▬). The 

fitting parameters for these data are summarized in Table 1. 

 

Table 1. Parameters of fit components in Figure 5. 

  0.1 T 0.2 T 
Uniform (▬) J0 5.33 ― 

Gaussian* (▬ - ▬) 
J0 ― 1.75 
 ― 1.0 

Gaussian (▬ ▬ ▬) 
J0 0.65 1.93 
 0.23 0.45 

Gaussian (▬) 
J0 0.18 0.225 
 0.045 0.04 

* Equation 3b shifted in phase by  
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3.4. Out-of-Plane Field Angular Dependence of Jc with Defects Oblique to the Crystal Axes 

In some samples there exist extended defects at well-defined oblique angles to the crystal axes. 

These produce asymmetric Jc(θ) data. It is not obvious that these should continue to be described using 

constraints on cot. In Figure 6 we show results for a commercial sample of YBCO wire produced by 

SuperPower Inc. (Schenectady, NY, USA). These samples are known to have pinning structures at 

oblique angles. We find that this data can still be fitted by combinations of Equations (3a) and (3b) 

with allowance for shifting the center of the peaks. We discuss why the cot constraints may remain 

valid in Section 4. 

Figure 6. Jc(θ) at 77 K, 1 T for a commercial YBCO wire from SuperPower Inc.; 

experiment (●), full fit (▬), fit components (▬, ▬, ▬ - -, ▬ ▬ ▬, ▬ - ▬). The fitting 

parameters for these data are summarized in Table 2. The center angle of each peak is also 
tabulated (NB. to fit Eqn. 3b substitute 02/   ). 

 

Table 2. Parameters of fit components in Figure 6. 

  1 T 
Uniform (▬) J0 55.3 

Gaussian (▬) 
J0 1.26 
 0.059 
 86.4° 

Gaussian (▬ - -) 
J0 2.98 
 0.156 
 83.8° 

Gaussian (▬ ▬ ▬) 
J0 5.01 
 0.44 
 78.4° 

Gaussian (▬ - ▬) 
J0 1.35 
 0.29 
 8.4° 

* 0 is the center position of the peak. 
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One way to controllably add extended defects at oblique angles is to use ion irradiation to create 

damage tracks through the films [28,29]. In Figure 7 we show the outcome of irradiating a YBCO thin 

film with ions at two different angles. The experimental details are published elsewhere [29]. In both 

cases there is a peak in Jc(θ) at  = 90° due to the ab-plane stacking faults in the sample. The 

irradiation produces an additional peak approximately in the direction of the irradiation. This data can 

be fitted using a combination of Equations (3a) and (3c) with allowance for shifting the center of the peaks. 

The conclusion from our analysis of data with oblique defects is that the maximum entropy 

distributions Equations (3a), (3b) and (3c) remain valid. 

Figure 7. Jc(θ) at 77 K, 1 T for a YBCO thin film irradiated at (a)  = 0°, (b)  = 30° with 

Ag ions with areal density 1011 cm−2; experiment (○,□), full fit (▬), fit components  

(▬, ▬, ▬ ▬ ▬). The fitting parameters for these data are summarized in Table 3. The 

center angle of each peak is also tabulated. 

 

Table 3. Parameters of fit components in Figure 7. 

Irradiation angle  0° 30° 
Uniform (▬) J0 146 129 

Lorentzian (▬) 
J0 17.2 17.68 
 0.12 0.12 
 90° 83.6° 

Lorentzian (▬ ▬ ▬) 
J0 37.2 59.3 
 0.38 0.37 
 0° 19.0° 

3.5. In-Plane Field Angular Dependence of Jc under Variable Lorentz Force 

When the field direction is varied in a plane which includes the current direction then the Lorentz 
force experienced by the vortices varies as sinBJc . If we start from a force-based model it is therefore 

0 30 60 90 120 150 180 210 240

0

20

40

60

80

100 30? irradiation(b)

 

0

20

40

60

80

100

 (degrees)

I c 
(A

/c
m

)

0? irradiation(a)



Entropy 2013, 15 2597 

 

natural to attempt to include this variation in the model. As we consider the phenomenon from the point of 

view of maximum entropy, however, we are concerned with constraints, and it is not clear that the 

simple constraints we have proposed will alter just because the Lorentz force is varying. This in fact 

turns out to be the case. We have previously shown that combinations of Equations (3a), (3b) and (3c) 

can fit data for Jc() [10]. In Figure 8 we show data for a YBCO sample measured at 85 K, 1 T [30]. 

The data is fitted with a combination of Equations (3a) and (3c); the peak has the angular-Lorentzian 

shape. The ability to describe Jc data for all arbitrary angles within the same theoretical framework is a 

particular strength of the maximum entropy approach. We discuss what this fitting implies for the 

vortex configurations for in-plane fields in Section 4. 

Figure 8. Jc() at 85 K, 1 T for a YBCO thin film of thickness 500 nm. Data from [30]; 

experiment (■), full fit (▬), fit components (▬,▬). The fitting parameters for these data 

are summarized in Table 4. 

 

Table 4. Parameters of fit components in Figure 8. 

 1 T 
Uniform (▬) J0 1.25 

Lorentzian (▬) 
J0 3.16 
 0.45 

3.6. Higher Order Constraints in Jc() 

The Equations (3a), (3b) and (3c), with suitable modifications, account for almost all Jc() and Jc() 

data in the literature. One exception is for samples which exhibit a phenomenon known as channeling. 

In this case there exists a preferred direction in which the vortices will move as there is only weak 

pinning available in this direction. An excellent model system for this effect are HTS films grown on 

vicinal-cut crystal substrates in which a force component on the vortices is directed along the  

ab-planes of the crystal [31,32]. The flux pinning is only weak in this direction as any effect of the 

intrinsic pinning or the pinning due to stacking faults within the layered structure is avoided. 
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Following the results of Carazza [23,24] we can consider the case where a fourth moment in z/y is 

defined. Carazza gives the solution )/(1)( 42 xxxf   if only second and fourth moments in x are 

defined. Substituting z/y and transforming to the angular domain with the correct normalization gives: 
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We call this an “angular quartic” distribution. In Figure 9 we have fitted data for a YBCO film on a 

vicinal substrate with a reported 4° miscut angle. The data can be fitted with two components, an 

angular Lorentzian with a peak centered at 0 = 5.3° and an angular quartic function centered at 0 = 0°. We 

are thus claiming that there exist two sets of constraints which affect the experiment. The effect of the 

channeling phenomenon is only present in one of these sets. 

The physics of channeling is thus analogous to a random walk in a quartic potential in z/y. That is, 

the magnitude of the critical current at z/y is analogous to the probability of the position of a particle 

undergoing a random walk with position w = z/y. This is true to the extent that at high temperatures the 

quartic term effectively disappears and there is no channeling minimum in Jc [31,32]. 

Figure 9. Jc(θ) at 20 K, 1 T for a YBCO thin film grown on a vicinal substrate with a 4° 

miscut angle. Data from [31] experiment (■), full fit (▬), fit components (▬, ▬ ▬ ▬). 

The fitting parameters for these data are summarized in Table 5. 

 

Table 5. Parameters of fit components in Figure 9. 

  1 T 

Lorentzian (▬) 
J0 1.76 
 0.85 
 5.3 

Quartic (▬ ▬ ▬) 

J0 0.215 
 0.20 
 0.016 
 0 
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4. Relating the Constraints to the Physics of Superconductors 

In this section we discuss the connection between the chosen constraints and the physics of 

superconductors and hence the information available to the experimenter from the given experiments. 

We discuss what this tells us about the physics of pinning and how we should analyse experimental 

data of this type. 

4.1. Temperature Constraints 

Imagine an experiment measuring the critical current at temperature T. If, at an arbitrary time, we 

select a vortex at random, then this vortex will be either in state  vortex)stationary(S , or state
 vortex)(moving M . For a vortex chosen at random we have the binomial probabilities, pSp )( , and

pMp  1)( , for finding the vortex in either state. If we change to a new temperature T’ then the 

probabilities will change ')( pSp   and '1)( pMp  . In this interpretation Jc(t) is proportional to a 

distribution of binomial probabilities, and the critical current is proportional to the fraction of pinned 

vortices. If the distributed quantity is a proportion or fraction then the only well-defined means are 

geometric means [33]. Thus  tln or  )1ln( t  are possible simple constraints. Physically, T is an 

energy scale, and the energy scale relevant to pinning is the difference from the irreversibility 

temperature, TTirr  . At Tirr the vortex lattice melts and forms a liquid state with no pinning of 

vortices. Hence,  )ln( TTirr , or using the reduced temperature,  )1ln( t  is the relevant 

constraint. Physically this constraint refers to a geometric mean in pinning energy. This energy is 
)))1ln(exp(1(  tkTE irr . We interpret it as the geometric mean energy required to pin a vortex as 

this is the process we recognize as causing the distribution of Jc over temperature. 

The energy scale associated with the line energy of a vortex is )1()(0 tt  [3]. Hence  

if )1()( ttjc  it is tempting to assert that only this energy scale is relevant to the temperature  

dependence [15]. This conclusion is not supported by a maximum entropy analysis. In our experiments 

such as shown in Figure 2, changes in the electronic doping state of YBCO which affect the superfluid 

density, or changes in microstructure which affect the density and type of pinning structures, cause a 

variation in the power law exponent. There is no reason to believe that at some unique value of 

electronic doping and for some particular microstructure only )(0 t is determining the properties, and 

for other settings of these variables other factors suddenly come into play. 

A maximum entropy analysis of Jc(T) data involves fitting a mixture of power laws to the data. For 

each power law we have only an amplitude and exponent. A larger exponent implies the distribution of 

Jc(T) is weighted more heavily to low temperatures. These fitting parameters are the outcome of 

averaging over all physical factors which are determining Jc(T). If we alter some physical aspect of the 

sample such as increasing the density of one type of pinning structure and a fitting parameter changes 

then the correct conclusion is that the change is due to the altered pinning and how this affects vortex 

interactions with all the unaltered aspects of the sample. This may seem a pedantic point to the reader 

but it is not one which is generally considered by experimenters when analyzing Jc data. We have 

shown in our experiments with angular dependencies [9,16] that the same microstructure alterations 

can have radically different effects depending on pre-existing microstructures. 
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The information content of a single Jc(T) dataset is generally low. One way to acquire more 

information about the pinning in a sample would be to measure Jc(T) in a range of higher external 

fields. This may provide greater discrimination between the behavior of pinning populations with 

lower and higher densities. 

4.2. Magnetic Field Constraints 

The critical current at a particular field value is related to the proportion of pinned vortices,  

i.e., BBnBJ Sc /)()(  . As with temperature we have a distributed quantity which is a proportion. 

Thus  bln  , and  )1ln( b  are possible well defined simple constraints. The magnetic field fixes 

the total number of vortices in the sample via, 0nB  , where n is the areal density of vortices and 

eh 2/0  is the magnetic flux quantum. Therefore, for a constraint to reflect a geometric mean in the 

total number of pinned vortices we should equalize the proportionality constant across all fields  

by multiplying by B. Thus we should form the beta distribution for flux pinning force, 
11 )1(~)(    bbbFp and we have )()(ln   b , where is the digamma function. The 

geometric mean number of stationary flux vortices is )lnexp()/( 0  bBn irrS  . 

The interpretation of  )1ln( b  is not obvious. The quantity BBirr   is the difference between 

the field and the maximum possible field or the maximum possible density of the vortex lattice for the 

superconductor under the experimental conditions. Hence, it can be thought of as a density of “vortex 

lattice vacancies” with respect to this maximum possible density. We therefore have a complementary 

constraint in the system in terms of a geometric mean,  )1ln( b , of vortex lattice vacancies. These 

“vacancies” we are defining are not the same as the local vacancies, i.e. one missing vortex from a 

local triangular array, more commonly discussed in the superconductor literature [2]. At low fields we 

are essentially saying the whole sample consists of “vortex vacancies”. Whether there is additional 

insight to be gained from this point of view needs further consideration. 

In Figure 3 we have shown that Fp(B) data for different angles can be scaled to a common curve. 

This procedure is also known to apply to LTS data as a function of temperature and strain [20]. At 

different angles the accommodation of the vortices to the pinning landscape in a Bi-2223 wire must be 

very different as it is a highly anisotropic material and the wire is well textured. It is quite remarkable 

that once we normalize the field domain [0, Birr], the overall shape, defined by the exponents and, 

remains unchanged. This suggests that there are no absolute length scales which are important in 

determining this behavior as these would tend to favor particular values of vortex density, determined 

by B, or particular vortex cross sectional areas, determined by the orientation of the field, . The 

relative density of vortex “pancakes” and “strings”, which describe vortices in highly anisotropic 

superconductors such as Bi-2223, is also shown to be irrelevant. The retention of the same , with 

temperature scaling, if it applies, shows that temperature is not altering any important relative length 

scales, or pinning potentials that determine the shape of F(b). In contrast it is known that changes in 

microstructure will alter the fitting parameters , for some superconductors [1,20] and between 

different superconductors there are considerable variations. 

The maximum entropy viewpoint informs us that and are connected to geometric means 

associated with pinning across the whole domain of 0 < b < 1. The persistence of particular values of 

, shows these geometric means are relatively constant under many conditions. If the values of 
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anddo change with for example, microstructure variations, then as for the interpretation of Jc(T), 

the changes are due to how these variations have affected the whole pinning landscape, that is, the 

original structure in which they occur affects the outcome. Any interpretation of oras associated 

with one particular type of pinning defect or vortex lattice property is not credible in any real sample. 

Finally, we note as an aside that the beta distribution is the conjugate prior for the binomial 

distribution in Bayesian statistical analysis. That is, a beta distribution is not altered in form when 

using Bayes theorem applied to data in the form of binomial outcomes. Hence, if we describe the state 

of our knowledge about our ensemble using a beta distribution, f(b), and then accumulate more 

information in the form of knowing whether a particular vortex is moving or stationary then the 

revised distribution, f’(b) remains a beta distribution. This is reassuring, even if we knew the state of 

every vortex in our sample, Bayes theorem tells us f(b) remains a beta distribution. An exception is if 

our system has multiple sets of constraints giving a mixture of beta distributions, in which case our 

choice of a single beta distribution as the prior is proved to be mistaken. 

4.3. Field Angle Constraints 

As stated earlier each pinned vortex i must have total pinned lengths (considering here for 

discussion purposes the  variable) yi and zi. We can reason that if we know the ratio ii yz / for all 

pinned vortices then we know f() and the problem we set ourselves is solved. What maximum entropy 

has shown us is that we don’t need to know all ii yz / , merely the moments of yz / , in order to predict 

the forms of the distributions. From this viewpoint we have a classic example of the application of 

maximum entropy. 

In earlier publications we derived Equations (3) by directly modeling the shape of the vortex path as 

a directed random walk [7,8]. That is for a peak centered in the y-direction, we modeled an arbitrarily 

chosen vortex as a finite set of m steps in the y-direction, giving say, my  , where  is the average 

step size in the y-direction. And then we let the alternating steps in the z-direction be chosen from a 

distribution, );( zN ,or );( zL  , which can be Gaussian or Lorentzian. This also leads to Equations (3) 

(with suitable adjustment of the scale parameters). This direct model of the vortex shape has the 

advantage that one can better interpret the physical meaning of the constraints. A distribution of 

correlated pinning defects of a single length scale is more likely to broaden a peak in a way which 

leads to an angular Gaussian distribution. That is, we can argue that the Gaussian distribution of the 

total pinned length in the z-direction is a result of the application of the central limit theorem as the 

total length is the result of summing lengths derived from distributions with finite variances. If we 

have many types of pinning defects with different length scales in the z-direction, then the vortex 

lengths in the z-direction are modeled by repeated sampling from );( zL  and this does not give a 

convergence to a mean for yz / . That is, if we sample the values of ii yz / from the ensemble of pinned 

vortices N times, then in the Gaussian case 0/  yz as N and the constraint 
0cot/  yz  applies. If this sampling does not give a converging  yz / , no constraint on the 

mean exists, and we get a broadening of a peak to an angular Lorentzian, or at least a peak shape 

derived from an approximation to a Lorentzian distribution in yz /  ; in reality it will be truncated at 

some value. 
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The magnitude of the scale constants for the angular distributions gives us a measure of the relative 

strength of the pinning populations in broadening a peak. That is, continuing with the y,z geometry as 

discussed with a peak in the y-direction, a large scale factor means pinning structures exist which 

relative to the y-direction pinning, can support a large pinned length in the z-direction. What is of  

some use to the experimenter is that these scale factors can be tracked as the field magnitude  

and temperature are changed. This gives some insight into the density and nature of the defects doing  

the pinning [9,16]. 
The weakness of a direct statistical model of the vortex such as described in [7,8] is it is difficult to 

understand how or if the model should be altered to take into account oblique defects or other 

additional forms of disorder. The maximum entropy approach relieves us of this burden as we can 

properly argue that if our distributions, derived from moments of zy / , accurately describe the data 

then adding further information to the model is unnecessary. Some insight into why the distributions 

remain unchanged for oblique defects can be gained by considering the infinite square lattice as a 

model leading to the prior uniform distribution for correlated pinning. If we rotate say the y-axis by the 

angle  so that  cos/yy then we still have a uniform distribution as previously with only a 

rescaled y variable. Likewise, such a rescaling may change the values of the constraints on the 

moments but not the form of the constraints. 

The physical description of vortices when J//B and therefore 0 BJF cp


has long been of 

interest and remains an area of active research as the mechanism which limits the critical current in this 

configuration is not easily understood [2]. For example, a “force free torque” model has recently been 

proposed to explain the observed electric fields [34]. The fitting of Jc() in Figure 8 into two 

components is therefore of particular interest. One of these components is an angular-Lorentzian. 

Applying our direct model of the vortex shape suggests that for this component the vortices have the 

structure of a directed random walk with steps aligned in the x-direction and alternating steps in the y-

direction chosen from a Lorentz distribution. Our model doesn’t say anything about the structure in the 

z-direction. This model is therefore consistent with the idea that the vortex has a helical structure 

aligned macroscopically with the field, without being able to confirm this. The other component in 

Jc() is uniform – that is the magnitude is not changed by the variable Lorentz force. This gives us no 

information about the vortex geometry. 

4.4. Are Some Parameters in the Angular Fitting Redundant? 

In Figures 5–8 we notice that the extrema of different components sometimes coincide or nearly 

coincide in magnitude. For example, in Figure 9 the minima of the angular Lorenztian and the 

magnitude of the uniform component are close to equal. This effect was also noted in [9] as being quite 

a common occurrence when analyzing Jc() data. A possible explanation is that there is a physical 

correlation between the pinning defects which are responsible for both components. If this coincidence 

is a real effect then it is possible to reduce the number of free parameters in the fitting. What these 

physical correlations may be is unclear in most cases. A coincidence of equal magnitude at some 

conditions for two or more fitting components implies that a pinned vortex has equal probability of 

being constrained by either set of the relevant constraints. This suggests that some application of the 

principle of maximum entropy may apply across the components of the mixture distributions. 
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5. Conclusions 

Using maximum entropy inference is a novel approach to understanding critical currents in type II 

superconductors. The traditional approach to the phenomenon has been to construct deterministic 

models based on microscopic forces. The disorder which is inherent in real superconductors has either 

been ignored or incorporated through ad-hoc inclusions of statistical distributions describing the 

spatial arrangement of pinning defects. The deterministic models have been successful in elucidating 

much of the basic phenomenology however they have foundered when approaching problems such as 

pinning summation where we need to account for the multiplicity of ways a flux vortex may be pinned 

in a complex environment. 

The maximum entropy approach gives a unified framework in which the dependence of critical currents 

on magnetic field, temperature and arbitrary field angle can be derived. The equations it yields have 

been shown to fit a large number of datasets in the literature. The approach has given maximum entropy 

expressions for angular data which have not been previously derived. These are able to explain non-intuitive 

experimental outcomes such as peaks in the critical current at angles which are intermediate between the 

known correlated defect directions. The constraints used in deriving the maximum entropy expressions 

can all be given physical interpretations which are consistent with the known microscopic physics. 

Our analysis has revealed that the information available from a single dataset such as Jc() or Jc() 

is limited. This is compensated by the knowledge that tracking this information across a large range of 

conditions is a sound method for untangling the very complex behavior of the critical currents of 

superconductors. 
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