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Abstract: This paper investigates the filtering problem for multivariate continuous nonlinear 

non-Gaussian systems based on an improved minimum error entropy (MEE) criterion. The 

system is described by a set of nonlinear continuous equations with non-Gaussian system 

noises and measurement noises. The recently developed generalized density evolution equation 

is utilized to formulate the joint probability density function (PDF) of the estimation errors. 

Combining the entropy of the estimation error with the mean squared error, a novel performance 

index is constructed to ensure the estimation error not only has small uncertainty but also 

approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix 

is then obtained by minimizing the improved minimum error entropy criterion. In addition, the 

condition is proposed to guarantee that the estimation error dynamics is exponentially bounded 

in the mean square sense. Finally, the comparative simulation results are presented to show that 

the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF). 

Keywords: non-Gaussian systems; stochastic filtering; generalized density evolution equation; 

exponentially mean-square boundedness 
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1. Introduction 

State estimation theory has been regarded as an important research area in modern control systems. 

In particularly, the appearance of the Kalman filtering theory in the last century had a profound 

influence on modern optimal control [1–3]. Kalman filter algorithm is based on the minimum variance 

estimation for the linear Gaussian systems. However, the noises in real systems may be non-Gaussian; 

and even for a nonlinear system with Gaussian noises, the system output could be a non-Gaussian 

variable. In these cases, Kalman filter may lead to poor estimation. 

Some attempts have been made at studying filtering algorithms for nonlinear systems with non-

Gaussian noises. The existed methodologies to design filters for nonlinear non-Gaussian systems can be 

classified into three kinds: analytical approach, simulation-based approach and adaptive approach.  

Analytical approaches to filtering for nonlinear non-Gaussian systems were investigated in [4–7].  

In [4,5], nonlinear non-Gaussian systems were described by combining an improved square-root B-spline 

model with a further nonlinear dynamic model. Once B-spline expansions have been made for 

probability density functions (PDFs), further modeling was still needed to reveal the relationship 

between the input and the weights related to the PDFs, a nonlinear filter was then constructed by 

minimizing the error between the measured output PDF and estimated output PDF. Although the 

proposed filter is suitable to nonlinear non-Gaussian systems, the output PDF should be measureable. 

Moreover, it is not easy to build the state space expression of the weights related to the PDFs in 

practical systems. The filter for a class of multivariate dynamic stochastic systems with non-Gaussian 

stochastic input and nonlinear output was investigated in [6] and [7] respectively. In [6], a new 

formulation of the residual PDF was made to link the residual PDF to the gain matrix of the filter, and 

the optimal filtering gain matrix was then solved by minimizing the entropy of the residual. The 

minimum entropy filter in [6] presented a good performance in reducing the randomness of the filter 

residual, and was more general and suited for non-Gaussian systems. However, minimum entropy 

criterion may not guarantee that the estimation errors approach to zero. In [7], following the minimum 

information divergence criterion, a hybrid characteristic function of the conditional estimation error 

was introduced to construct the performance index of the tracking filter. An analytical solution of the 

filter gain matrix was then obtained so that the PDFs of the filtering error can follow a target 

distribution shape. Nevertheless, it is a little complicated to calculate the analytical solution. 

There are two types of simulation-based approaches to filtering for nonlinear non-Gaussian 

systems: numerical integration and sequential Monte Carlo. Although the filtering problem can be 

tackled using numerical integration [8,9], it is difficult to implement when the dimension of the state 

vector is higher. Sequential Monte Carlo simulation [10–15], which is also named particle filtering 

strategy, has shown its great advantages to deal with filtering problems for nonlinear non-Gaussian 

systems. Nevertheless, there are still many issues to be solved, for example, (1) random sampling may 

bring the accumulation of Monte Carlo error and even lead to filter divergence; (2) a large number of 

particles are needed to avoid degradation and to improve the estimation accuracy, which makes the 

calculation a sharp increase.  

Adaptive approaches have been also investigated for solving filtering problem in nonlinear  

non-Gaussian systems in last decades. Since minimum error entropy criterion ensures that the 

estimation error has small uncertainty, it was used for supervised training of nonlinear stochastic 
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system in [16,17]. However, entropy does not change with the mean of the distribution, the algorithm 

may not yield zero-mean error. Therefore, the result may be corrected by properly modifying the bias 

of the output processing element of the neural networks. Maximum mutual information criterion was 

proposed for adaptive filtering in [18], this criterion is robust to measure distortions. Nevertheless, the 

maximum mutual information criterion leads to non-unique optimum solution. It is necessary to use a 

priori information about the unknown system in order to obtain unique solution. 

In general, the filtering problem for nonlinear non-Gaussian systems calls for further investigation. 

The filtering problem addressed here is solved by combining the improved performance index with 

optimal design method. 

Entropy is a natural extension beyond mean square error because it is a function of PDF. One of the 

most important problems for minimum entropy filtering is the formulation of the PDF of estimation 

error. For continuous nonlinear systems, the classical Liouville equation and its Dostupov-Pugachev 

extension have been used to obtain the PDF of the concerned stochastic variable. However, it is very 

difficult to have their analytical/numerical solutions due to high-dimensional partial differential 

equations. From the viewpoint of the random event description of the principle of preservation of 

probability, the generalized density evolution equation was developed in [19]. Different from the 

traditional density evolution equations, the dimensions of the generalized density evolution equation 

just depend on the necessary physical quantities' dimensions not the whole original systems itself, 

which makes the dimensions of the partial differential equations much lower. Some application results 

(see e.g., [20,21]) illustrated the efficiency and conveniences of the formulated density evolution equation. 

The contribution of this paper is to develop a new filtering strategy for multivariable nonlinear 

systems with non-Gaussian disturbances by utilizing a novel performance index which contains the 

entropy of estimation error, square error and constraints on gain matrix of the filter. A novel approach, 

which uses the principle of preservation of probability, is presented here to formulate the joint PDF 

evolution equation of the estimation errors. The PDF evolution equation explicitly reveals the 

relationship among the estimation errors of the filter, filter gain and random inputs. In addition, the 

entropy of estimation errors in the performance index is replaced by its information potential presented 

in [16,17] so as to simplify the calculation of the entropy. The filter gain matrix for nonlinear  

non-Gaussian systems is then designed by minimizing the proposed performance index. This filtering 

algorithm yields to the estimation errors which not only have small uncertainty but also approach to 

zero. Finally, the exponentially boundedness in the mean square sense is analyzed for the estimation 

error dynamics. 

This paper is organized as follows: in section 2, the state-space model of a nonlinear non-Gaussian 

system and the structure of filter are built to formulate the filtering problem. The joint PDF evolution 

of estimation errors is formulated in Section 3 so as to calculate the entropy of estimation errors. The 

filtering algorithm is proposed in Section 4 by minimizing the improved entropy criterion and the 

exponentially mean-square boundedness condition for error systems is provided. Comparative 

simulation results are given to illustrate the efficiency and validity of the proposed method in Section 5. 

Conclusions are drawn in Section 6. Notation. n and n m  denote the n-dimensional Euclidean space 

and the set of all n m  real matrices respectively. The superscript “T ” denotes the transpose. If A  is a 
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matrix,  max   and  min   represent the largest and smallest eigenvalue of A  respectively.  Ε

stands for the mathematical expectation of random variables. 

2. Problem Formulation 

2.1. System Model  

Consider a nonlinear stochastic continuous system described by: 

( ) ( ) ( ) ( ) ( )

( ) ( ( ), ( ))

x t A t x t D t t

y t F x t t




 
 

 (1)

where nx  is the state vector, my  is the measured output vector. p  and q   are 

system noises and measurement noises respectively. ( )A t  and ( )D t  are two known time-varying 

system matrices. The following assumptions are made for simplicity, which can be satisfied by many 

practical systems. 

Assumption 1: ( )F   is a known Borel measurable and smooth vector-value nonlinear function of  

its arguments. 

Assumption 2:   and   are bounded, mutually independent random vectors with known joint PDFs 

  and  . 

2.2. Filter Dynamics 

For the nonlinear stochastic system (1), the filter dynamics can be formulated as follows: 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ),0)

x t A t x t L y t y t

y t F x t

   



 (2)

The resulting estimation error ˆe x x   satisfies: 

 (3)

where n mL   is the gain matrix to be determined and can be denoted as 1

TT T
nL L L    , iL  is 

the ith  row vector of L . Let  1

T

nl L L   and thus 1mnl   is a stretched column vector. 

The purpose of filtering algorithm for nonlinear non-Gaussian systems is to ensure that the 

estimation errors achieve small dispersion and approach to zero. Entropy provides a measure of the 

average information contained in a given PDF. When entropy of estimation errors is minimized, all 

moments of the error PDF are constrained. Hence, the following quadratic Renyi’s entropy of estimation 

error is still contained in the performance index to measure the dispersion of the estimation error: 

 (4)

where ( )ep z  is the joint PDF of estimation error and ( )V e  the information potential [14]. It can be 

seen that it is necessary to provide the joint PDF of errors firstly. In the next section, we will deduce 
the expression of ( )ep z  according to the generalized density evolution equation. 

                  ˆ ˆ, ,0e t x t x t A t L F x De tx tFt        

2
2 ( ) log ( ) log ( )

e
eH e p z dz V e
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3. Formulation for the Joint PDF of Error 

In most cases, Equation (3) is a well-posed equation, and the error vector ( )e t  can be determined 

uniquely. It may be assumed to be: 

 (5)

At the present stage, the explicit expression of ( )H   is not requisite, and the sufficient condition 

just needs to know its existence and uniqueness. The derivative of ( )e t  can be assumed to take the 

form: 

 (6)

It is observed that all the randomness involved in this error dynamics comes from noises   and  , 
thus, the augmented system ( ( ), , )e t    is probability preserved. In other words, from the random 

event description of the principle of preservation of probability, it leads to: 

 (7)

where e ,   and  are the distribution domains of e ,   and  , respectively; , , ( , , , )ep e t     is the 

joint PDF of ( ( ), , )e t   . It follows from Equation (7) that: 

( , , , )
e e

e e
e

p pD
p e t ded d h ded d

Dt t e   

 
      

     

         (8)

Combining Equation (7) with Equation (8) and considering the arbitrariness of e     , it yields: 

 (9)

where Equation (6) and Equation (9) are the generalized density evolution equation (GDEE) for 
( ( ), , )e t   . The corresponding instantaneous PDF of ( )e t  can be obtained by solving a family of 

partial differential equations with the following given initial condition: 

 (10)

where ( )   is the Dirac-Delta function; and 0 0 0ˆe x x   is deterministic initial value of ( )e t . Then,  

we have: 

 (11)

where the joint PDF ( , , , )ep e t    is the solution of (8), which can be obtained according to the 

method presented in [22]. 

4. Improved MEE Filtering 

4.1. Performance Index  

The following performance index for a minimum entropy filter was presented in [6]: 

( ) ( , , , )e t H L t 

( ) ( , , , )e t h L t 

( , , , ) 0
e

e

D
p e t ded d

Dt  
    

  


( , , , ) ( , , , )
( , , ) 0e ep e t p e t

e t
t e

      
 

 


00
( , , , ) ( ) ( ) ( )e t

p e t e e p p      

 

( , ) ( , , , )e ep e t p e t d d 
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 (12)

where 1R  and 2R  are weighing matrices. The first term is the entropy of the estimation errors and the 

second term is used to penalize the elements of the gain. Although the MEE criteria can minimize both 

the probabilistic uncertainty and dispersion of the estimation error, it cannot guarantee the minimum 

error. In this work , an improved performance index J  is considered: 

 (13)

where 2 ( ( ))H e t  is the quadratic Renyi’s entropy given in Equation (4). 3 0R  is the weight 

corresponding to the mean squared error. The third term on the right side of the equation is utilized to 

make the estimation errors approach to zero. Since Renyi’s entropy is a monotonic increasing function 

of the negative information potential, minimization of Renyi’s entropy is equivalent to minimizing the 

inverse of the quadratic information potential 
1

( )V e
, so the performance index can be rewritten as follows: 

 (14)

Remark 1: The entropy of estimation error is replaced by quadratic information potential of error in 

order to simplify the calculation. Nonparametric estimation of the PDF of estimation errors is another 

alternative way to estimate the PDF except the method introduced in [22]. Nonparametric entropy  

(or information potential) estimation of random error can be found in [16,17].  

4.2. Optimal Filter Gain Matrix  

After constructing the performance index J , the optimal filter gain can be carried out by 

minimizing the performance index Equation (14), which can be regarded as an unconstrained nonlinear 

programming problem. The classical conjugate gradient approach is employed here to obtain an 

iterative solution, which could avoid the difficulty of solving the extremum condition ( 0
J

l





). The 

elements of optimal filter gain can be solved and summarized in Theorem 1. 

Theorem 1: For a given accuracy 0  , the gain matrix of the suboptimal improved MEE filter is 

given by: 

 (15)

where 
( )

( )

T
k k

k T
k k k

J l P

P H l P
 

 ,
1 1

( ), 0

( ) , 0
k

k
k k k

J l k
P

J l P k  

 
   

 and the Hessian matrix ( )kH l  is: 

1 1 2

1
( , ) log ( , )

2e

TJ R p e t p e t de l R l


  

1 2 2 3

1
( ( )) ( ) ( ) ( ( ) ( ))

2
T TJ R H e t l t R l t R E e t e t  

1
2 3

1
2 32

1
( ) ( ) ( ( ) ( ))

( ( )) 2

1
( ) ( ) ( ) ( ) ( , , ))

2( , , ) e

e

T T

T T
e

e

R
J R l t l t R E e t e t

V e t

R
R l t l t R e t e t p l t d

p l t d
 

  


  

   

1k k k kl l P  
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 (16)

Proof: Choose an initial value 0l , and denote : 0k  . Search the next value 1kl   from the given point kl  

along the conjugate gradient direction kP . Repeat the above procedure until reach the given accuracy  . 

Consequently, we can obtain the optimal filtering algorithm shown in Equation (15). 

Based on the conjugate gradient method, the steps to solve the optimal filter gain are summarized  

as follows: 
Step (1) Give an accuracy 0   and initialize 0l , denote k = 0 

Step (2) Set 0 0( )P J l  . 

Step (3) Obtain
( )

( )

T
k k

k T
k k k

P J l

P H l P
  

  by solving min ( )k kJ l P


 , and update the gain 1k k k kl l P   . 

Step (4) If 1( )kJ l   , stop, and 1kl   is the optimal solution; Otherwise, if 1k mn   , turn to step (5), 

and if 1k mn  , reset 0 mnl l , and turn to step (2). 

Step (5) Choose 1 1( )k k k kP J l P    , set : 1k k  , and turn to step 3), where 

1 1( ) ( )

( ) ( )

T
k k

k T
k k

f X f X

f X f X
   


 

. 

Remark 2: The conjugate gradient method here could overcome the slow convergence of the steepest 

descent approach. It is one of the most effective algorithms to deal with large-scale nonlinear 

optimization problems. 

4.3. Exponentially Bounded in the Mean Square  

In this section, the Lyapunov method is utilized to give the condition under which the filter error 

dynamics is exponentially ultimately bounded in the mean square. Firstly, in order to simplify the 

problem, we give the following assumption: 

Assumption 3: The nonlinear vector function ( , )F   is assumed to satisfy (0, 0) 0F   [23]and: 

 (17)

where m nC  , m qB   are known constant matrices, n  , q   are vectors, a  is known 

positive constant. 

For estimation error dynamics (3), the exponentially mean-square boundedness is defined as follows: 

Definition 1 [24]: For all initial conditions 0
ne  , the dynamics of the estimation error (i.e., the 

solution of the system (3)) is exponentially ultimately bounded in the mean square if there exist 

constants 0  , 0   and 0   such that: 

2 2

2
1 12

2 2

2
1

( ) ( )

( )
( )

( ) ( )

k k

mn

k
k

i j mn mn
k k

mn mn

J l J l

l l l
J l

H l
l l

J l J l

l l l



  
         

        
    



  



           , ,F x t t F x t t C B a
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(18)

Moreover, filter (2) is said to be exponential if, for every 0
ne  , system (3) is exponentially 

ultimately bounded in the mean square. 

Theorem 2: Let the filter parameter L  be given. If there exist positive scalars 1 , 2  and 3  such that 

the following matrix inequality: 

 (19)

has a positive definite solution 0P  , then system (3) is exponentially ultimately bounded in the  

mean square. 

Proof: Fix 0
ne   arbitrarily and denote    0, , oe t t e e t . The Lyapunov function candidate can be 

chosen as: 

 (20)

where 0P   is the solution to the matrix inequality Equation (19).  

For notational convenience, we give the following definitions: 

 (21)

and then it follows from Equation (3) that: 

 (22)

Hence, the derivative of V  along a given trajectory Equation (22) is obtained as: 

 (23)

Let 1 , 2  and 3  be positive scalars. Then the following matrix inequalities hold: 

 (24)

 
(25)

 (26)

Noticing Assumptions 3 and Equation (17), we have: 

 (27)

Substituting Equations (24)–(27) into Equation (23) results in: 

 (28)

 
0

2 2

0 0 0, , e supt

t
E e t t e E e       

      1 2
1 2 3 1 0

T T T T TA LC P P A LC P LL LBB L DD P a I           

      TV e t e t Pe t

         ˆ, ,0t F x F x Ce t B t     

           e t A LC e t L t LB t D t      

              

           
       

TT T

T T T T T T

T T T

V e t e t A LC P P A LC e t e t PL t

t L Pe t e t PLB t t B L Pe t

e t PD t t D Pe t



  

 

      
  

 



                1
1 1

T T T T T Te t PL t t L Pe t e t PLL P e t t t        

                1
2 2

T T T T T T T Te t PLB t t B L Pe t e t PLBB L P e t t t        

                1
3 3

T T T T T Te t PD t t D Pe t e t PDD P e t t t       

           2 2T T Tt t a e t e t a t t    

                1 2 1 1
1 2 3

T T TV e t e t e t a t t t t            
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where:  

 (29)

and it is known from Equation (19) that 0  . 

Based on Equation (28), it can be found that: 

 (30)

Let 
 
 

min

max

0
P







  . Integrating both sides from 0  to 0T   and taking the expectation lead to: 

(31)

where   2

1t   
 

Ε ,   2

2t   
 

Ε  (according to Assumption 2,  t  and  t  are bounded 

random vectors) ,  1 2 1 1
1 2 1 3 2a           and: 

 (32)

Notice that  e 1 e 1T T    and let    1
min max: P P   ,  1 1

min: P    . Since 0T   is 

arbitrary, the definition of exponential ultimate boundedness in (18) is then satisfied, and this 

completes the proof of Theorem 2.  

5. Simulation Results 

In order to show the applicability of the proposed filtering algorithm, we consider the following 

nonlinear system represented as : 

 (33)

where 1( ) 0.3 0.03sin(1 )a t t     and 1/2( ) 0.2(( 1) 1)b t t    . The random disturbances   and   

obey non-Gaussian, and their distributions are shown in Figure 1. The weights in Equation (14) are 

      1 2
1 2 3 1:

T T T T TA LC P P A LC P LL LBB L DD P a I            
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selected as 1 10R  , 2 2R   and 3 10R  , respectively. The simulation results based on the MEE filter are 

shown in Figures 2–6, 7a and 8a). And the comparative results between MEE filter and UKF are 

shown in Figures 7 and 8. 

Figure 2 demonstrates that the performance index decreases monotonically with time. In Figures 3 and 4, 

both the range and PDFs of errors are given, it can be seen that the shapes of PDFs of the tracking 

errors become narrower and sharper along with the increasing time, which illustrates the dispersions of 

estimation errors can be reduced. In order to clarify the improvements, the initial and final PDFs are 

shown in Figures 5 and 6. It can be shown from Figures 3–6 that the proposed improved MEE filter 

can decrease the uncertainties of the estimation errors and drive the estimation errors approaching to 

zero. Figure 7 shows that both the MEE filter and UKF make the estimation errors approach to zero. But 

the estimation errors in Figure7a are more closer to zero with smaller randomness. The variances of the 

filter gains in two cases are presented in Figure 8. It can be seen that the gains of UKF are not convergent.  

From the above analyses, it is obvious that the proposed strategy has better performance than UKF. 

Therefore, the proposed MEE filter is more suitable for nonlinear stochastic systems with  

non-Gaussian noises. 

Figure 1. Distribution of random noises   and    

 

Figure 2. Performance index. 
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Figure 3. PDF of estimation error 1e   

 

Figure 4. PDF of estimation error 2e . 

 

Figure 5. Initial and final PDFs of 1e   
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Figure 6. Initial and final PDFs of 2e  

 

Figure 7. Estimation errors under the filter: (a) MEE filter (b) UKF. 
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Figure 8. Filter gain: (a) MEE filter (b) UKF. 
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6. Conclusions  

In this paper, based on the improved MEE criterion, optimal filter design problem is studied for 

multivariate nonlinear continuous stochastic systems with non-Gaussian noises. A novel performance 

index, including Renyi’s entropy of the estimation error, mean value of the squared error and 

constrains on filter gain, is formulated. By using the generalized density evolution equation, the 

relationship among the PDFs of estimation error, random disturbances and filter gain matrix is 

obtained. A recursive optimal filtering algorithm is obtained by minimizing the improved MEE 

criterion. The exponentially mean-square boundedness condition of the estimation error systems is 

established. In this work, the proposed MEE filter and UKF are both applied to a continuous nonlinear 

and non-Gaussian stochastic system. Comparative simulation results demonstrate the superiority of the 

presented control algorithm. 
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