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Abstract: Co-compact entropy is introduced as an invariant of topological conjugation for
perfect mappings defined on any Hausdorff space (compactness and metrizability are not
necessarily required). This is achieved through the consideration of co-compact covers of
the space. The advantages of co-compact entropy include: (1) it does not require the space
to be compact and, thus, generalizes Adler, Konheim and McAndrew’s topological entropy of
continuous mappings on compact dynamical systems; and (2) it is an invariant of topological
conjugation, compared to Bowen’s entropy, which is metric-dependent. Other properties of
co-compact entropy are investigated, e.g., the co-compact entropy of a subsystem does not
exceed that of the whole system. For the linear system, (R, f), defined by f(x) = 2x, the
co-compact entropy is zero, while Bowen’s entropy for this system is at least log 2. More
generally, it is found that co-compact entropy is a lower bound of Bowen’s entropies, and
the proof of this result also generates the Lebesgue Covering Theorem to co-compact open
covers of non-compact metric spaces.
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1. Introduction

1.1. Measure-Theoretic Entropy

The concept of entropy per unit time was introduced by Shannon [1], by analogy with the
standard Boltzmann entropy measuring a spatial disorder in a thermodynamic system. In the 1950s,
Kolmogorov [2] and Sinai established a rigorous definition of K-S entropy per unit time for dynamical
systems and other random processes [3]. Kolmogorov imported Shannon’s probabilistic notion of
entropy into the theory of dynamical systems, and the idea was vindicated later by Ornstein, who
showed that metric entropy suffices to completely classify two-sided Bernoulli processes [4], a basic
problem, which for many decades, appeared completely intractable. Kolmogorov’s metric entropy is an
invariant of measure theoretical dynamical systems and is closely related to Shannon’s source entropy.
The K-S entropy is a powerful concept, because it controls the top of the hierarchy of ergodic properties:
K-S property⇒ multiple mixing⇒ mixing⇒ weak mixing⇒ ergodicity [3]. The K-S property holds
if there exists a subalgebra of measurable sets in phase space, which generates the whole algebra by
application of the flow [3]. The dynamical randomness of a deterministic system finds its origin in
the dynamical instability and the sensitivity to initial conditions. In fact, the K-S entropy is related
to the Lyapunov exponents, according to a generalization of Pesin’s theorem [5,6]. A deterministic
system with a finite number of degrees of freedom is chaotic if its K-S entropy per unit time is positive.
More properties about K-S entropy can be found in papers [3,5,7]. The concept of space-time entropy
or entropy per unit time and unit volume was later introduced by Sinai and Chernov [8]. A spatially
extended system with a probability measure being invariant under space and time translations can be
said to be chaotic if its space-time entropy is positive.

1.2. Topological Entropy and Its Relation to Measure-Theoretic Entropy

In 1965, Adler, Konheim and McAndrew introduced the concept of topological entropy for continuous
mappings defined on compact spaces [9], which is an analogous invariant under conjugacy of topological
dynamical systems and can be obtained by maximizing the metric entropy over a suitable class of
measures defined on a dynamical system, implying that topological entropy and measure-theoretic
entropy are closely related. Goodwyn in 1969 and 1971, motivated by a conjecture of Adler, Konheim
and McAndrew [9], compared topological entropy and measure-theoretic entropy and concluded that
topological entropy bounds measure-theoretic entropy [10,11]. In 1971, Bowen generalized the
concept of topological entropy to continuous mappings defined on metric spaces and proved that the
new definition coincides with that of Adler, Konheim and McAndrew’s within the class of compact
spaces [12]. However, the entropy according to Bowen’s definition is metric-dependent [13] and can be
positive even for a linear function (Example 5.1 or Walters’ book, pp.176). In 1973, along with a study
of measure-theoretic entropy, Bowen [12] gave another definition of topological entropy resembling
Hausdorff dimension, which also equals to the topological entropy defined by Adler, Konheim and
McAndrew when the space is compact. Recently, Cánovas and Rodrı́guez, and Malziri and Molaci
proposed other definitions of topological entropy for continuous mappings defined on non-compact
metric spaces [14,15].
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1.3. The Importance of Entropy

The concepts of entropy are useful for studying topological and measure-theoretic structures of
dynamical systems. For instance, two conjugated systems have the same entropy, and thus, entropy
is a numerical invariant of the class of conjugated dynamical systems. Upper bounds on the topological
entropy of expansive dynamical systems are given in terms of the ε−entropy, which was introduced
by Kolmogorov-Tikhomirov [2]. The theory of expansive dynamical systems has been closely related
to the theory of topological entropy [16–18]. Entropy and chaos are closely related, e.g., a continuous
mapping, f : I → I , is chaotic if and only if it has a positive topological entropy [19]. But this result may
fail when the entropy is zero, because of the existence of minimum chaotic (transitive) systems [20,21].
A remarkable result is that a deterministic system together with an invariant probability measure defines a
random process. As a consequence, a deterministic system can generate dynamical randomness, which is
characterized by an entropy per unit time that measures the disorder of the trajectories along the time axis.
Entropy has many applications, e.g., transport properties in escape-rate theory [22–26], where an escape
of trajectories is introduced by absorbing conditions at the boundaries of a system. These absorbing
boundary conditions select a set of phase-space trajectories, forming a chaotic and fractal repeller, which
is related to an equation for K-S entropy. The escape-rate formalism has applications in diffusion [27],
reaction-diffusion [28] and, recently, viscosity [29]. Another application is the classification of quantum
dynamical systems, which is given by Ohya [30]. Symbolic dynamical systems (

∑
(p), σ) have various

representative and complicated dynamical properties and characteristics, with an entropy log p. When
determining whether or not a given topological dynamical system has certain dynamical complexity,
it is often compared with a symbolic dynamical system [21,31]. For the topological conjugation with
symbolic dynamical systems, we refer to Ornstein [4], Sinai [32], Akashi [33] and Wang and Wei [34,35].

1.4. The Purpose, the Approach and the Outlines

The main purpose of this article is to introduce a topological entropy for perfect mappings defined on
arbitrary Hausdorff spaces (compactness and metrizability are not necessarily required) and investigate
fundamental properties of such an entropy.

Instead of using all open covers of the space to define entropy, we consider the open covers consisting
of the co-compact open sets (open sets whose complements are compact).

Various definitions of entropy and historical notes are mentioned previously in this section. Section 2
investigates the topological properties of co-compact open covers of a space. Section 3 introduces the
new topological entropy defined through co-compact covers of the space, which is called co-compact
entropy in the paper, and further explores the properties of the co-compact entropy and compares it with
Adler, Konheim and McAndrew’s topological entropy for compact spaces. Sections 4 investigates the
relation between the co-compact entropy and Bowen’s entropy. More precisely, Section 4 compares the
co-compact entropy with that given by Bowen for systems defined on metric spaces. Because the spaces
under consideration include non-compact metric spaces, the traditional Lebesgue Covering Theorem
does not apply. Thus, we generalize this theorem to co-compact open covers of non-compact metric
spaces. Based on the generalized Lebesgue Covering Theorem, we show that the co-compact entropy
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is a lower bound for Bowen’s entropies. In Section 4.2, a linear dynamical system is studied. For this
simple system, its co-compact entropy is zero, which is appropriate, but Bowen’s entropy is positive.

2. Basic Concepts and Definitions

Let (X, f) be a topological dynamical system, whereX is a Hausdorff and f : X → X is a continuous
mapping. We introduce the concept of co-compact open covers as follows.

Definition 2.1 Let X be a Hausdorff space. For an open subset, U of X , if X\U is a compact subset of
X , then U is called a co-compact open subset. If every element of an open cover U of X is co-compact,
then U is called a co-compact open cover of X .

Theorem 2.1 The intersection of finitely many co-compact open subsets is co-compact, and the union
of any collection of co-compact open subsets is co-compact open.

Proof. Suppose that U1, U2, ..., Un are co-compact open. Let U =
n⋂
i=1

Ui. As X \ Ui, i = 1, 2, ...n are

compact, X \ U =
n⋃
i=1

(X \ Ui) is compact, and hence, U is co-compact open.

Suppose that {Uλ}λ∈Λ is a family of co-compact sets. Let U =
⋃
λ∈Λ

Uλ. As any λ ∈ Λ X\Uλ is

compact, X\U =
⋂
λ∈Λ

(X\Uλ) is compact. Hence, U is co-compact open. �

Theorem 2.2 Let X be Hausdorff. Then, any co-compact open cover has a finite subcover.

Proof. Let U be a co-compact open cover. For any U ∈ U , X\U is compact. Noting that U is
also an open cover of X \ U , there exists a finite subcover, V , of X \ U . Now, V ∪ {U} is a finite
subcover of U . �

Definition 2.2 Let X and Y be Hausdorff spaces and let f : X → Y be a continuous mapping. If f is a
closed mapping and all fibers, f−1(x), x ∈ Y , are compact, then f is called a perfect mapping.

In particular, if X is compact Hausdorff and Y is Hausdorff, every continuous mapping from X into
Y is perfect. If f : X → Y is perfect, then f−1(F ) is compact for each compact subset, F ⊆ Y [36].

Theorem 2.3 Let X and Y be two Hausdorff spaces and let f : X → Y be a perfect mapping. If U
is co-compact open in Y , then f−1(U) is co-compact open in X . Moreover, if U is a co-compact open
cover of Y , then f−1(U) is a co-compact Open Cover of X .

Proof. It suffices to show that the pre-image of any co-compact set is co-compact. Let U be co-compact
open in Y . Then, F = Y \ U is compact in Y . As f is perfect, f−1(F ) is compact in X . Hence,
f−1(U) = X \ f−1(F ) is co-compact open in X . �
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3. The Entropy of Co-Compact Open Covers

For compact topological systems, Adler, Konheim and McAndrew introduced the concept of
topological entropy and studied its properties [9]. Their definition is as follows: Let X be a compact
topological space and f : X → X a continuous mapping. For any open cover, U ofX , letNX(U) denote
the smallest cardinality of all subcovers of U , i.e.,

NX(U) = min{card(V) : V is a subcover of U}

It is obvious that NX(U) is a positive integer. Let HX(U) = logNX(U). Then, ent(f,U , X) =

lim
n→∞

1
n
HX(

n−1∨
i=0

f−i(U)) is called the topological entropy of f relative to U , and ent(f,X) =

sup
U
{ent(f,U , X)} is called the topological entropy of f .

Now, we will generalize Adler, Konheim and McAndrew’s entropy to any Hausdorff space for perfect
mappings. Therefore, in the remainder of the paper, a space is assumed to be Hausdorff and a mapping
is assumed to be perfect.

Let X be Hausdorff. By Theorem 2.2, when U is a co-compact open cover of X , U has a finite
subcover. Hence, NX(U), abbreviated as N(U), is a positive integer. Let HX(U) = log N(U),
abbreviated as H(U).

Let U and V be two open covers of X . Define

U
∨
V = {U ∩ V : U ∈ U and V ∈ V}

If for any U ∈ U , there exists V ∈ V , such that U ⊆ V , then U is said to be a refinement of V and is
denoted by V ≺ U .

The following are some obvious facts:

Fact 1: For any open covers, U and V , of X , U ≺ U
∨
V .

Fact 2: For any open covers, U and V , of X , if V is a subcover of U , then U ≺ V .
Fact 3: For any co-compact open cover, U , of X , H(U) = 0⇐⇒ N(U) = 1⇐⇒ X ∈ U .
Fact 4: For any co-compact open covers, U and V , of X , V ≺ U ⇒ H(V) ≤ H(U).
Fact 5: For any co-compact open covers, U and V , H(U

∨
V) ≤ H(U) +H(V).

To prove Fact 5, let U0 be a finite subcover of U , with the cardinality,N(U). Let V0 be a finite subcover
of V with the cardinality, H(V). Then, U0

∨
V0 is a subcover of U

∨
V , and the cardinality of U0

∨
V0 is

at mostN(U)×N(V). Hence, N(U
∨
V) ≤ N(U)×N(V), and therefore, H(U

∨
V) ≤ H(U)+H(V).

Fact 6: For any co-compact open cover, U , of X , H(f−1(U)) ≤ H(U), and if f(X) = X , the
equality holds.

To prove Fact 6, let U0 be a finite subcover of U , with the cardinality, N(U). f−1(U0) is a subcover of
f−1(U). Hence, we have H(f−1(U)) ≤ H(U).

Now, assume f(X) = X . Let {f−1(U1), f−1(U2), ..., f−1(Un)}, Ui ∈ U be a finite subcover of

f−1(U), with the cardinality,N(f−1(U)). AsX ⊆
n⋃
i=1

f−1(Ui), we haveX = f(X) ⊆
n⋃
i=1

f(f−1(Ui)) =

n⋃
i=1

Ui. Hence, U1, U2, ..., Un is a finite subcover of U . This shows H(U) ≤ H(f−1(U)). This inequality

and the previous inequality together imply the required equality.
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Lemma 3.1 Let {an}∞n=1 be a sequence of non-negative real numbers satisfying an+p ≤ an + ap, n ≥
1, p ≥ 1. Then, lim

n→∞
an
n

exists and is equal to inf an
n

(see [13]). �

Let U be a co-compact open cover of X . By Theorem 2.3, for any positive integer, n, and perfect
mapping, f : X → X , f−n(U) is a co-compact open cover of X . On the other hand, by Theorem 2.1,
n−1∨
i=0

f−i(U) is a co-compact open cover of X . These two facts together lead to the following result:

Theorem 3.1 Suppose that X is Hausdorff. Let U be a co-compact open cover of X , and f : X → X ,

a perfect mapping. Then, lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) exists.

Proof. Let an = H(
n−1∨
i=0

f−i(U)). By Lemma 3.1, it suffices to show an+k ≤ an + ak. Now, Fact

6 gives H(f−1(U)) ≤ H(U), and more generally, H(f−j(U)) ≤ H(U), j = 0, 1, 2, .... Hence,

by applying Fact 5, we have an+k = H(
n+k−1∨
i=0

f−i(U)) = H((
n−1∨
i=0

f−i(U))
∨

(
n+k−1∨
j=n

f−j(U))) =

H(
n−1∨
i=0

f−i(U)
∨

(
k−1∨
j=0

f−n(f−j(U)))) ≤ H(
n−1∨
i=0

f−i(U)) +H(
k−1∨
j=0

f−j(U)) = an + ak. �

Next, we introduce the concept of entropy for co-compact open covers.

Definition 3.1 Let X be a Hausdorff space, f : X → X be a perfect mapping, and U be a co-compact

open cover of X . The non-negative number, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)), is said to be the

co-compact entropy of f relative to U , and the non-negative number, hc(f) = sup
U
{hc(f,U)}, is said

to be the co-compact entropy of f .

In particular, when X is compact Hausdorff, any open set of X is co-compact, and any continuous
mapping f : X → X is perfect. Hence, Adler, Konheim and McAndrew’s topological entropy is a
special case of our co-compact entropy. It should be made aware that the new entropy is well defined for
perfect mappings on non-compact spaces, e.g., on Rn, but Adler, Konheim and McAndrew’s topological
entropy requires that the space be compact.

Co-compact entropy generalizes Adler, Konheim and McAndrew’s topological entropy, and yet, it
holds various similar properties, as well, as demonstrated by the fact that co-compact entropy is an
invariant of topological conjugation (next theorem) and more explored in the next section.

Recall that ent denotes Adler, Konheim and McAndrew’s topological entropy, and hc denotes the
co-compact entropy.

Theorem 3.2 Let (X, f) and (Y, g) be two topological dynamical systems, where X and Y are
Hausdorff, f : X → X and g : Y → Y are perfect mappings. If there exists a semi-topological
conjugation, h : X → Y , where h is also perfect, then hc(f) ≥ hc(g). Consequently, when h is a
topological conjugation, we have hc(f) = hc(g).

Proof. Let U be any co-compact open cover of Y . As h is perfect and U is a co-compact open cover of
Y , h−1(U) is co-compact open cover of X by applying Theorem 2.3. Hence, we have:
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hc(g,U) = lim
n→∞

1

n
H(

n−1∨
i=0

g−i(U)) = lim
n→∞

1

n
H(h−1(

n−1∨
i=0

g−i(U)))

= lim
n→∞

1

n
H(

n−1∨
i=0

h−1(g−i(U))) = lim
n→∞

1

n
H(

n−1∨
i=0

f−i(h−1(U)))

= hc(f, h
−1(U)) ≤ hc(f,U)

Therefore, hc(f) ≥ hc(g).
When h is a topological conjugation, it is, of course, perfect, too. Hence, we have both hc(f) ≥ hc(g)

and hc(g) ≥ hc(f) from the above proof, implying hc(f) = hc(g). �
Remark: The condition that the conjugation map is perfect is crucial in this result. In the general case,

the inequality given by conjugacy need not hold. Cánovas and Rodrı́guez [14] defined an entropy for
non-compact spaces that has this property (Theorem 2.1 (a)), which can be applied for non-perfect maps.
Notice that Cánovas and Rodrı́guez’s definition does not depend on the metric that generates the given
topology of X . This is due to the fact that for compact metric spaces, the definition of Bowen’s entropy
does not depend on the metric. Since Cánovas and Rodrı́guez’s definition is based on invariant compact
sets, and they are the same for equivalent metrics, that is, metrics that generate the same topology of X ,
Cánovas and Rodrı́guez’s definition does not depend on the metric when topology is fixed [37].

We sum up some properties of the new definition of topological entropy in the following results.
A minor adaptation of the proof of standard techniques on topological entropy (e.g., [13]) gives the
proof of these results. These properties are comparable to that of Adler, Konheim and McAndrew’s
topological entropy.

Theorem 3.3 Let X be Hausdorff and id : X → X be the identity mapping. Then hc(id) = 0.

When X is Hausdorff and f : X → X is perfect, fm : X → X is also a perfect mapping [36].

Theorem 3.4 . Let X be Hausdorff and f : X → X be perfect. Then, hc(fm) = m · hc(f).

Theorem 3.5 Let X be Hausdorff and f : X → X be perfect. If Λ is a closed subset of X and invariant
under f , i.e., f(Λ) ⊆ Λ, then hc(f |Λ) ≤ hc(f).

4. Relations between Co-Compact Entropy and Bowen’s Entropy

4.1. Co-Compact Entropy Less Than or Equal to Bowen’s Entropy, hc(f) ≤ hd(f)

First let us recall the definition of Bowen’s entropy [13,38]. Let (X, d) be a metric space
and f : X → X a continuous mapping. A compact subset, E of X , is called a (n, ε)-separated set
with respect to f if for any different x, y ∈ E, there exists an integer, j, with 0 ≤ j < n, such that
d(f j(x), f j(y)) > ε. A subset, F , of X is called a (n, ε)-spanning set of a compact set, K, relative to f
if for any x ∈ K, there exists y ∈ F , such that for all j satisfying 0 ≤ j < n, d(f j(x), f j(y)) ≤ ε.

Let K be a compact subset of X . Put

rn(ε,K, f) = min{card(F ) : F is a (n, ε)−spanning set for K with respect to f}
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sn(ε,K, f) = max{card(F ) : F ⊆ K and F is a (n, ε)−separated set with respect to f}

r(ε,K, f) = lim
n→∞

1

n
log rn(ε,K, f), s(ε,K, f) = lim

n→∞

1

n
log sn(ε,K, f)

r(K, f) = lim
ε→0

r(ε,K, f), s(K, f) = lim
ε→0

s(ε,K, f)

Then, sup
K
r(K, f) = sup

K
s(K, f), and this non-negative number, denoted by hd(f), is the Bowen entropy

of f .
It should be pointed out that Bowen’s entropy, hd(f), is metric-dependent, see e.g., [13,39]. For the

topology of the metrizable space, X , the selection of different metrics may result in different entropies.
Next, recall the Lebesgue Covering Theorem and Lebesgue Number [36]. Let (X, d) be a metric

space and U an open cover of X . diam(U) = sup{d(A) | A ∈ U} is called the diameter of U , where
d(A) = sup{d(x, y) | x, y ∈ A}. A real number, δ, is said to be a Lebesgue number of U if every open
subset, U , of X , satisfying diam(U) < δ, is completely contained in an element of the cover, U .

The Lebesgue Covering Theorem (see [36]): Every open cover of a compact metric space has a
Lebesgue number. �

Our next theorem generalizes the Lebesgue Covering Theorem to all co-compact open covers of
non-compact metric spaces.

Theorem 4.1 Let (X, d) be a metric space, regardless of compactness. Then, every co-compact open
cover of X has a Lebesgue number.

Proof. Let U be any co-compact open cover of X . By Theorem 2.2, U has a finite subcover
V = {V1, V2, ..., Vm}. Put Y = (X \ V1) ∪ (X \ V2) ∪ ... ∪ (X \ Vm). Then, Y is compact as Vi’s
are co-compact.

We will prove that V has a Lebesgue number, so does U . As it is obvious that the theorem holds when
Y = ∅, thus in the following proof, we assume Y 6= ∅.

Assume that V does not have a Lebesgue number. Then, for any positive integer, n, 1
n

is not a
Lebesgue number of V . Consequently, for each positive integer, n, there exists an open subset, On, ofX ,
satisfying diam(On) < 1

n
, but On is not completely contained in any element of V , i.e., On∩ (X \Vj) 6=

∅, j = 1, 2, ...,m. Hence, On ∩ Y 6= ∅. Take an xn ∈ On ∩ Y . By the compactness of Y , the sequence
xn has a subsequence, xni

, that is convergent to some point, y ∈ Y , i.e., lim
i→∞

xni
= y ∈ Y ⊆ X .

On the other hand, V is an open cover of X , thus there exists some V ∈ V , such that y ∈ V . As V is
open, there exists an open neighborhood, S(y, ε), of y, such that y ∈ S(y, ε) ⊆ V . Since xni

converges
to y, there exists a positive integer, M , such that xni

∈ S(y, ε
2
) for i > M . Let k be any integer larger

than M + 2
ε
. Then, for any z ∈ Onk

, we have d(z, y) ≤ d(z, xnk
) + d(xnk

, y) < ε
2

+ ε
2

= ε, thus
Onk
⊆ S(y, ε) ⊆ V ∈ V , which contradicts the selection of open sets, On’s.

Therefore, V has a Lebesgue number. �

Theorem 4.2 Let (X, d) be a metric space, U be any co-compact open cover of X , and f : X → X

be a perfect mapping. Then, there exists δ > 0 and a compact subset K of X , such that for all positive
integers, n,

N(
n−1∨
i=0

f−i(U)) ≤ n · rn(
δ

3
, K, f) + 1
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Proof. Let U be any co-compact open cover of X . By Theorem 2.2, U has a finite subcover,
V = {V1, V2, ..., Vm}. By Theorem 4.1, U has a Lebesgue number, δ. Put K = (X \ V1) ∪ (X \
V2) ∪ ... ∪ (X \ Vm). If K = ∅, then X = Vj for all j = 1, 2, ...,m, and in this case, the theorem clearly
holds. Hence, we assume K 6= ∅; thus, the compact set, K, has a (n, δ

3
)-spanning set, F , relative to f

and satisfying card(F ) = rn( δ
3
, K, f).

(a) For any x ∈ K, there exists, y ∈ F , such that d(f i(x), f i(y)) ≤ δ
3
, i = 0, 1, ..., n−1; equivalently,

x ∈ f−i(S(f i(y), δ
3
)), i = 0, 1, ..., n − 1. Hence, K ⊆

⋃
y∈F

n−1⋂
i=0

f−i(S(f i(y), δ
3
)). By the definition of

the Lebesgue number, every S(f i(y), δ
3
) is a subset of an element of V . Hence,

n−1⋂
i=0

f−i(S(f i(y), δ
3
))

is a subset of an element of
n−1∨
i=0

f−i(V). Consequently, K can be covered by rn( δ
3
, K, f) elements of

n−1∨
i=0

f−i(V).

(b) For any x,∈ X \ K, i.e., x ∈ V1 ∩ V2 ∩ ... ∩ Vm. In the following, we will consider points of
X \K, according to two further types of points.

First, consider those x for which there exists l with 1 ≤ l ≤ n − 1, such that f l(x) ∈ K and
x, f(x), f 2(x), ..., f l−1(x) ∈ X\K (l depends on x, but for convenience, we use l instead of lx). Namely,
we consider the set, {x ∈ X \K : x ∈ X \K, x, f(x), f 2(x), ..., f l−1(x) ∈ X \K, f l(x) ∈ K}. For
every such x, there exists y ∈ F , such that d(f l+i(x), f i(y)) ≤ δ

3
, i = 0, 1, ..., n− l−1; equivalently, x ∈

f−(l+i)(S(f i(y), δ
3
)), i = 0, 1, ..., n− l− 1. By the definition of the Lebesgue number, every S(f i(y), δ

3
)

is a subset of an element of V . Hence, V1∩ f−1(V1)∩ ...∩ f−(l−1)(V1)∩ (
n−l−1⋂
i=0

f−(l+i)(S(f i(y), δ
3
))) is a

subset of an element of
n−1∨
i=0

f−i(V) and x ∈ V1∩f−1(V1)∩...∩f−(l−1)(V1)∩(
n−l−1⋂
i=0

f−(l+i)(S(f i(y), δ
3
))).

There are rn( δ
3
, K, f) such open sets, implying that

n−1∨
i=0

f−i(V) has rn( δ
3
, K, f) elements that cover this

type of point, x. As 1 ≤ l ≤ n− 1,
n−1∨
i=0

f−i(V) has (n− 1) · rn( δ
3
, K, f) elements that actually cover this

type of points, x.
Next, consider those x for which f i(x) ∈ X \K for every i = 0, 1, ..., n − 1. One (any) element of

n−1∨
i=0

f−i(V) covers all such points, x. Hence,X\K can be covered by no more than (n−1)·rn( δ
3
, K, f)+1

elements of
n−1∨
i=0

f−i(V).

By (a) and (b), for any n > 0, it holds N(
n−1∨
i=0

f−i(V)) ≤ n · rn( δ
3
, K, f) + 1. Now, it follows from

U ≺ V and Fact 4, N(
n−1∨
i=0

f−i(U)) ≤ N(
n−1∨
i=0

f−i(V)) ≤ n · rn( δ
3
, K, f) + 1. �

Theorem 4.3 Let (X, d) be a metric space and f : X → X be a perfect mapping. Then hc(f) ≤ hd(f).

Proof. For any co-compact open cover, U of X , if X ∈ U , then hc(f,U) = 0. Hence, we can assume
X 6∈ U . By Theorem 4.2, there exists δ > 0 and a non-empty compact subset, K, of X , such that for

any n > 0, it holds N(
n−1∨
i=0

f−i(U)) ≤ n · rn( δ
3
, K, f) + 1. Hence, hc(f,U) = lim

n→∞
1
n
H(

n−1∨
i=0

f−i(U))
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≤ lim
n→∞

1
n

log(n · rn( δ
3
, K, f) + 1) = r( δ

3
, K, f). Let δ → 0. It follows from the definition of Bowen’s

entropy (Walters’ book [13], P.168, Definition 7.8 and Remark (2)) that r( δ
3
, K, f) is decreasing on δ and

r(K, f) = lim
δ→0

r( δ
3
, K, f). Therefore, hc(f,U) ≤ r( δ

3
, K, f) ≤ r(K, f). Moreover, r(K, f) ≤ hd(f).

Finally, because U is arbitrarily selected, hc(f) ≤ hd(f). �

Bowen’s entropy, hd(f), is metric-dependent. Theorem 4.3 indicates that the co-compact entropy,
which is metric-independent, is always bounded by Bowen’s entropy, i.e., hc(f) ≤ hd(f), regardless
of the choice of a metric for the calculation of Bowen’s entropy. In the next section, we will give an
example where co-compact entropy is strictly less than Bowen’s entropy.

4.2. An Example

In this section, R denotes the one-dimensional Euclidean space equipped with the usual metric
d(x, y) = |x − y|, x, y ∈ R. The mapping, f : R → R, is defined by f(x) = 2x, x ∈ R. f is
clearly a perfect mapping. It is known that hd(f) ≥ log 2 [13]. We will show hc(f) = 0.

Let V be any co-compact open cover of R. By Theorem 2.2, V has a finite co-compact subcover,
U . Let m = card(U). As compact subsets of R are closed and bounded sets, there exist Ur, Ul ∈ U ,
such that for any U ∈ U , sup {R \ U} ≤ sup {R \ Ur} and inf {R \ U} ≥ inf {R \ Ul}. Let ar =

sup {R \ Ur} and bl = inf {R \ Ul}. Observe that for any n > 0, x ∈
n−1∨
i=0

f−i(Ui) ⇐⇒ x ∈ U0, f(x) ∈

U1, ..., f
n−1(x) ∈ Un−1, where Ui ∈ U , i = 0, 1, ..., n− 1.

Case 1: 0 < bl < ar. For any n > 0 and x ∈ (ar,+∞), x ∈ Ur, f(x) ∈ Ur, ..., fn−1(x) ∈ Ur. So

(ar,+∞) ⊆
n−1⋂
i=0

f−i(Ur). For any x ∈ (−∞, 0], x ∈ Ul, f(x) ∈ Ul, ..., fn−1(x) ∈ Ul, thus (−∞, 0] ⊆
n−1⋂
i=0

f−i(Ul).

As f is a monotone increasing mapping, there exists k > 0, such that fk(bl) > ar. We can assume
n > k > 0. Consider the following two possibilities (1.1 and 1.2).

(1.1) x ∈ [bl, ar].
This requires at most k iterations, so that fk(x) ∈ Ur. Hence, x ∈ Uj0 , f(x) ∈ Uj1 , ..., f

k−1(x) ∈
Ujk−1

, fk(x) ∈ Ur, ..., fn−1(x) ∈ Ur, where Uj0 , Uj1 , ., Ujk−1
∈ U . Since card(U) = m, [bl, ar] can be

covered by mk elements of
n−1∨
i=0

f−i(U).

(1.2) x ∈ (0, bl).
This is divided into three further possibilities as follows.

(1.2.1) fn−1(x) > ar.
Choose j with 0 < j < n, such that f j−1(x) < bl, but f j(x) ≥ bl. Then, x ∈ Ul, f(x) ∈

Ul, ..., f
j−1(x) ∈ Ul, f

j(x) ∈ Uj0 , ..., f
j+k−1(x) ∈ Ujk−1

, f j+k(k) ∈ Ur, ..., f
n−1(x) ∈ Ur, where

Uj0 , Uj1 , ..., Ujk−1
∈ U . Since card(U) = m,

n−1∨
i=0

f−i(U) hasmk elements that cover this kind of point, x.
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(1.2.2) bl ≤ fn−1(x) ≤ ar.
If fn−2(x) < bl, i.e., for the last jump getting into [bl, ar], it holds x ∈ Ul, ..., fn−2(x) ∈ Ul, fn−1(x) ∈

Uj0 , where Uj0 ∈ U , while card(U) = m; there are m elements of
n−1∨
i=0

f−i(U) that cover these kind of

points, x.
If fn−3(x) < bl and fn−2(x) ≥ bl, i.e., for the second jump to the last before getting into [bl, ar], it

holds x ∈ Ul, ..., fn−3(x) ∈ Ul, fn−2(x) ∈ Uj2 , fn−1(x) ∈ Uj1 , where Uj2 , Uj1 ∈ U , while card(U) =

m,
n−1∨
i=0

f−i(U) has m2 elements that cover this kind of point, x.

Continue in this fashion: if fn−k(x) < bl and fn−(k−1)(x) ≥ bl, i.e., for the (k − 1)th jump from the
last before getting into [bl, ar], it holds x ∈ Ul, ..., fn−k(x) ∈ Ul, fn−(k−1)(x) ∈ Ujk−1

, ., fn−1(x) ∈ Uj1 ,

where Uj1 , ..., Ujk−1
∈ U , while card(U) = m,

n−1∨
i=0

f−i(U) has mk−1 elements that cover this kind of

point, x.
If fn−(k+1)(x) < bl and fn−k(x) ≥ bl, i.e., jump into [bl, ar] on the kth, fn−1(x) > ar, and this is

Case (1.2.1).

(1.2.3) fn−1(x) < bl.

Clearly, x ∈
n−1⋂
i=0

f−i(Ul) ∈
n−1∨
i=0

f−i(U).

Hence, in Case 1, where 0 < bl < ar, for any n > k > 0, it holds N(
n−1∨
i=0

f−i(U)) ≤ 2 +mk +mk +

m+m2 + ...+mk−1, and by the definition of co-compact entropy, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤

lim
n→∞

1
n

log(2 +mk +mk +m+m2 + ...+mk−1) = 0.

Case 2: bl < ar < 0. This is similar to Case 1 above.

Case 3: bl < 0 < ar. For any n > 0 and x ∈ (ar,+∞), x ∈ Ur, f(x) ∈ Ur, ..., fn−1(x) ∈ Ur, thus

(ar,+∞) ⊆
n−1⋂
i=0

f−i(Ur).

Similarly, for x ∈ (−∞, bl), x ∈ Ul, f(x) ∈ Ul, ..., fn−1(x) ∈ Ul, thus (−∞, bl) ⊆
n−1⋂
i=0

f−i(Ul). As

U is an open cover of R, there exists U0 ∈ U , such that 0 ∈ U0, f(0) = 0 ∈ U0, ..., f
n−1(0) = 0 ∈ U0,

and hence, 0 ∈
n−1⋂
i=0

f−i(U0).

For x ∈ [bl, ar], U0, as an open set of R, can be decomposed into a union of many countably open
intervals. Noting that 0 ∈ U0, there are two further possibilities, as given in (3.1) and (3.2) below.

(3.1) The stated decomposition of U0 has an interval, (b0, a0), that contains zero, i.e., 0 ∈ (b0, a0).
Since f is a monotone increasing mapping, there exists k > 0, such that fk(b0) < bl and fk(a0) > ar.

Here, we can assume n > k > 0. Similar to Case 1, [bl, b0] can be covered bymk elements of
n−1∨
i=0

f−i(U),

(b0, 0) can be covered by mk + m + m2 + ... + mk−1 elements of
n−1∨
i=0

f−i(U), (0, a0) can be covered

by mk + m + m2 + ... + mk−1 elements of
n−1∨
i=0

f−i(U) and [a0, ar] can be covered by mk elements of

n−1∨
i=0

f−i(U). Hence, for any n > k > 0, N(
n−1∨
i=0

f−i(U)) ≤ 3 +mk +m+m2 + ...+mk−1 +mk +m+
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m2+...+mk−1. Therefore, by the definition of co-compact entropy, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤

lim
n→∞

1
n

log(3 +mk +m+m2 + ...+mk−1 +mk +m+m2 + ...+mk−1) = 0.

(3.2) The only intervals covering zero are of the forms (−∞, a0) or (b0,+∞).
Consider the case, 0 ∈ (−∞, a0). As f is a monotone increasing mapping, there exists k > 0,

such that fk(a0) > ar. We can assume n > k > 0. Similar to Case 1, (0, a0) can be covered by

mk + m + m2 + ... + mk−1 elements of
n−1∨
i=0

f−i(U) and [a0, ar] can be covered by mk elements of

n−1∨
i=0

f−i(U), and it also holds [bl, 0) ⊆
n−1⋂
i=0

f−i(U0). Hence, for any n > k > 0, N(
n−1∨
i=0

f−i(U)) ≤

3+mk+m+m2+...+mk. By the definition of co-compact entropy, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤

lim
n→∞

1
n

log(3 +mk +m+m2 + ...+mk) = 0. Therefore, when bl < 0 < ar, it holds hc(f,U) = 0.

The case, 0 ∈ (b0,+∞), is similar.

Now, by Cases 1, 2 and 3, it holds that hc(f,U) = 0. Noting that V ≺ U , it holds that hc(f,V) ≤
hc(f,U) = 0. Since V is arbitrary, hc(f) = 0.

5. Concluding Remarks

The investigation of dynamical systems could be tracked back to Isaac Newton’s era, when calculus
and his laws of motion and universal gravitation were invented or discovered. Then, differential
equations with time as a parameter played a dominant role. However, it was not realized until the end
of the 19th century that the hope of solving all kinds of problems in celestial mechanics by following
Newton’s frame and methodology, e.g., the two body problem, becomes unrealistic when Jules Henri
Poincaré’s New Methods of Celestial Mechanics was publicized (shortly after this, in the early 20th
century, fundamental changes in electrodynamics occurred when Albert Einstein’s historical papers
appeared: reconciling Newtonian mechanics with Maxwell’s electrodynamics, separating Newtonian
mechanics from quantum mechanics and extending the principle of relativity to non-uniform motion), in
which the space of all potential values of the parameters of the system is included in the analysis, and the
attention to the system was changed from individual solutions to dynamical properties of all solutions,
as well as the relation among all solutions. Although this approach may not provide much information
on individual solutions, it can obtain important information on most of the solutions. For example, by
taking an approach similar to that in ergodic theory, Poincaré concluded that for all Hamiltonian systems,
most solutions are stable [40].

The study of dynamical systems has become a central part of mathematics and its applications since
the middle of the 20th century, when scientists from all related disciplines realized the power and
beauty of the geometric and qualitative techniques developed during this period for nonlinear systems
(see e.g., Robinson [31]).

Chaotic and random behavior of solutions of deterministic systems is now understood to be an
inherent feature of many nonlinear systems (Devaney [41], 1989). Chaos and related concepts
as main concerns in mathematics and physics were investigated through differentiable dynamical
systems, differential equations, geometric structures, differential topology and ergodic theory, etc., by
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S. Smale, J. Moser, M. Peixoto, V.I. Arnol’d, Ya. Sinai, J.E. Littlewood, M.L. Cartwright, A.N.
Kolmogorov and G.D. Birkhoff, among others, and even as early as H. Poincaré (global properties,
nonperiodicity; 1900s) and J. Hadamard (stability of trajectories; 1890s).

Kolmogorov’s metric entropy as an invariant of measure theoretical dynamical systems is a powerful
concept, because it controls the top of the hierarchy of ergodic properties and plays a remarkable role
in investigating the complexity and other properties of the systems. As an analogous invariant under
conjugation of topological dynamical systems, topological entropy plays a prominent role for the study
of dynamical systems and is often used as a measure in determining dynamical behavior (e.g., chaos)
and the complexity of systems. In particular, topological entropy bounds measure-theoretic entropy
(Goodwyn [10,11]). Other relations between various entropy characterizations were extensively studied,
e.g., Dinaburg [42]. It is a common understanding that topological entropy, as a non-negative number
and invariant of conjugation in describing dynamical systems, serves a unique and unsubstitutable
role in dynamics. Consequently, an appropriate definition of topological entropy becomes important
and difficult.

In the theory and applications of dynamical systems, locally compact systems appear commonly, e.g.,
Rn or other manifolds. The introduced concept of co-compact open covers is fundamental for describing
the dynamical behaviors of systems as, for example, for locally compact systems, co-compact open sets
are the neighborhoods of the infinity point in the Alexandroff compactification and, hence, admit the
investigation of the dynamical properties near infinity.

The co-compact entropy introduced in this paper is defined based on the co-compact open covers. In
the special case of compact systems, this new entropy coincides with the topological entropy introduced
by Adler, Konheim and McAndrew (Sections 3 and 4). For non-compact systems, this new entropy
retains various fundamental properties of Adler, Konheim and McAndrew’s entropy (e.g., invariant under
conjugation, entropy of a subsystem does not exceed that of the whole system).

Another noticeable property of the co-compact entropy is that it is metric-independent for dynamical
systems defined on metric spaces, thus different from the entropy defined by Bowen. In particular, for
the linear mapping given in Section 4.2 (locally compact system), its co-compact entropy is zero, which
would be at least log 2 according to Bowen’s definition; as a positive entropy usually reflects certain
dynamical complexity of a system, this new entropy is more appropriate.

For a dynamical system defined on a metric space, Bowen’s definition may result in different entropies
when different metrics are employed. As proven in Section 4, the co-compact entropy is a lower
bound for Bowen’s entropies, where the traditional Lebesgue Covering Theorem for open covers of
compact metric spaces is generalized for co-compact open covers of non-compact metric spaces. As
studied by Goodwyn in [10,11] and Goodman [43], when the space is compact, topological entropy
bounds measure-theoretic entropy. The relation between co-compact entropy and measure-theoretic
entropy (K-S entropy) remains an open question. Of course, when the space is compact, this relation
degenerates to the variational principle [43]. Recently, M. Patrao (2010) [44] explored entropy and
its variational principle for dynamical systems on locally compact metric spaces by utilizing one point
compactification.
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