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Abstract: We applied information theory to quantify parameter uncertainty in a groundwater 

flow model. A number of parameters in groundwater modeling are often used with lack of 

knowledge of site conditions due to heterogeneity of hydrogeologic properties and limited 

access to complex geologic structures. The present Information Theory-based (ITb) approach 

is to adopt entropy as a measure of uncertainty at the most probable state of hydrogeologic 

conditions. The most probable conditions are those at which the groundwater model is 

optimized with respect to the uncertain parameters. An analytical solution to estimate 

parameter uncertainty is derived by maximizing the entropy subject to constraints imposed 

by observation data. MODFLOW-2000 is implemented to simulate the groundwater system 

and to optimize the unknown parameters. The ITb approach is demonstrated with a  

three-dimensional synthetic model application and a case study of the Kansas City Plant. 

Hydraulic heads are the observations and hydraulic conductivities are assumed to be the 

unknown parameters. The applications show that ITb is capable of identifying which inputs 

of a groundwater model are the most uncertain and what statistical information can be used 

for site exploration. 
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1. Introduction 

Uncertainty of groundwater modeling has been one of the biggest challenges in hydrogeology for 

the last three decades. Many scientific efforts have been made to develop more comprehensive and 

computationally efficient models involving complex hydrogeologic processes. In spite of vigorous 

efforts of groundwater modeling, there are still limitations in the prediction of groundwater flow and 

hydrogeologic conditions with certainty. Groundwater modeling generally requires a large number of 

input parameters consisting of hydrogeologic parameters and numerical parameters. Hydrogeologic 

parameters such as hydraulic conductivity, storativity, and recharge rate are determined by various 

field tests and laboratory experiments. The inevitable limitations in determining such hydrogeologic 

parameters are: (1) the hydrogeologic structure is often too heterogeneous to be converted into simple 

discrete parameters in a model, (2) only a limited amount of data that is sparsely distributed over the 

site is available, and (3) measurement errors from poor equipment operation or human errors generate 

erroneous parameter values. Numerical parameters determine computational configurations such as 

grid size, boundary conditions, and time step. These parameters are generally determined by the user’s 

subjective information and decision, which often produce non-uniqueness in obtaining solutions. 

Inverse modeling, which is also called parameter optimization, is capable of managing the limitations 

mentioned above. It estimates unknown or uncertain parameters by minimizing errors between model 

outputs and observations. The model is said to be accurate if the difference between the model outputs 

and observations lies within acceptable limits (a predefined limit). One of the major concerns of inverse 

modeling is the non-uniqueness of the optimized parameters [1]. This non-uniqueness of inverse modeling 

makes it important to define the magnitude of the prediction uncertainty for the optimized parameters. 

Papers [2] and [3] reviewed various optimization techniques and statistical methods for 

groundwater modeling. Among many uncertainty analysis techniques the first-order approximation 

method and the Monte Carlo simulation have been widely studied in groundwater modeling. The first-order 

approximation method is to approximate a non-linear groundwater model into a linear model using 

Taylor series expansion and calculate uncertainties of input parameters or output predictions [4,5]. The 

advantage of the first-order approximation method is fast computing time for high dimension and 

multivariate models. The linearity is, however, a major drawback especially when the model is highly 

non-linear. The Monte Carlo simulation is a stochastic method involving probabilistic distributions of 

inputs and outputs. The major advantage of the Monte Carlo method is that it estimates uncertainties of 

non-linear models based on the probabilistic information of inputs and/or outputs. The disadvantage is its 

expensive computing time especially for multidimensional non-linear models, but the fast performance of 

modern computers alleviates this concern and makes it more widely used in recent years [6,7]. 

The use of information theory in groundwater modeling has been very limited so far. The beginning 

of the information theory application was when Shannon’s information theory [8] was incorporated 

into the principle of maximum entropy by Jaynes [9] for statistical mechanics. The basic concept of 

Jaynes’ maximum entropy approach is that when making inferences based on incomplete information 

for given expectations (prior information) of a univariate or multivariate random function, the probability 

distribution must have the maximum entropy permitted by the available information expressed in the 

form of constraints [10]. The maximum entropy approach was applied to various geophysical problems 

such as seismic spectral analysis [11], seismic deconvolution [12], and earthquakes [13]. Singh [10] 
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reviewed the maximum entropy applications in the studies of hydrology and water resources. The use 

of maximum entropy in hydrology is somewhat limited to evaluate the efficiency of monitoring 

networks [14] such as a water quality network [15]. Woodbury and Ulrych [16] developed a different 

approach of entropy estimation called minimum relative entropy for groundwater models. In the 

minimum relative entropy, knowledge of moments is used as “data” rather than sample values. This 

method presumes knowledge of a prior probability distribution and produces the posterior probability 

distribution based on the information provided by new moments. Details of the minimum relative 

entropy are found in [16]. 

The goal of the present paper is to address applicability of information theory for the quantification 

of parameter uncertainty at the most probable state of hydrogeologic conditions in groundwater modeling. 

The groundwater flow modeling error from the parameter optimization is employed in a form of 

probability function to calculate the parameter uncertainty. The strength of the present Information 

Theory-based (ITb) approach is that it is applicable to any model and any inversion process as it was 

applied to a biocell model [17] and a basin model [18]. 

2. Methodology: Information Theory-Based Approach 

The overall framework of ITb approach is shown in Figure 1. We adopted MODFLOW-2000 [19] 

as a groundwater model simulator. There are two types of parameters to be determined for the 

groundwater flow model. “Input parameters” are hydrogeologic parameters such as aquifer thickness, 

porosity, initial hydraulic heads, and pumping rates that are usually measured in the field. “Model 

parameters” are numerical parameters such as cell size, model dimension, number of layers, number of 

zones, convergence criteria, and number of time steps and stress periods. These model parameters are 

usually determined during the model conceptualization. When the groundwater model is fully conceptualized 

and set up in a numerical form, MODFLOW-2000 optimizes the uncertain input parameters and calibrates 

the model. When the model is fully optimized, a finite-difference approximation method [20] is conducted 

to calculate a Hessian matrix of ITb. The information theory formulation calculates statistics of 

uncertain input parameters such as standard deviation, covariance matrix, and correlation coefficient 

that can be used for statistical analysis to direct additional site exploration. 

3. Information Theory Formulation 

The information theory formulation is based on the entropy equation developed by [8]. Assume that 

the system involves a series of possible states of  and  is the probability when the state is . 

Each state of  is obtained considering a different set of parameters in a model, ={x1, x2, …, xn} 

where xi is an individual parameter of the model and n is the total number of parameters. The quantity 

 quantifies how surprised one would be if the state is . For example, if  is small when 

the state is , one would be surprised. Likewise, one would be less surprised if is large. In 

groundwater modeling, a state variable  is assumed to be continuous so that the probability  is a 

continuous function ranging from zero for an impossible state to one for a certain state. The expected 

surprise or entropy  is then given by: 

 (1)

x (x) x
x x

 log(x) x (x)
x (x)

x (x)

S
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Since shows how surprised one would be by knowing the state of , is a measure of the 

uncertainty associated with . If is known,  is one and  becomes zero. If occurrence of  

is equally likely, then  is maximum. Therefore, is the probability that maximizes  

constrained by the available data. 

Figure 1. Flowchart of ITb approach using MODFLOW-2000. 

 

Two constraints are introduced to obtain unbiased probability . The first constraint is the 

normalization constraint: 

 (2)

This is the basic constraint stating that the sum of the probabilities of all possible states in a system 

should be equal to one. The second constraint is the error constraint associated with the error from 

available data. For example, if hydraulic heads constrain a ground flow model, the error function  

becomes zero as the difference between observed heads and simulated heads goes to zero. Associating 

 with , the expected error  is given by: 

 (3)

In groundwater modeling,  can be the observation errors such as spurious fluctuations of head or 

conceptual model errors. To construct ,  is constrained by Equations (2) and (3) using 

Lagrange’s method [21]. The detailed mathematical calculation is described in the Appendix. The 

probability  for the most probable state of is: 
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where  is the number of model parameters,  is the Hessian matrix for , is the 

eigenvalue of ,  is the global minimum of ,  is the perturbation vector on , 

and  is the transpose of . 

Implementation of Equation (4) starts with parameter optimization. After the parameters of interest 

are optimized at , the Hessian matrix  and its eigenvalues are calculated around the 

optimized parameter  using a finite-difference approximation method [20]. For multivariate cases, the 

covariance of parameters can be obtained from the Hessian matrix. In the Gaussian domain, the 

multivariate probability density function is given as: 

 (5)

where  is the mean vector; is the covariance matrix of ; and  is the determinant of  [22]. 

As , the covariance is obtained by:  

ܥ ൌ
2ሺכܧ െ ௠௜௡ሻܧ

௉ܰ
௑ܪ
ିଵሾܧሺܠሻሿ (6)

where ܪஎ
ିଵሾܧሺxሻሿ is the inverse matrix of . Mathematically, E* should be greater than Emin 

because the Hessian matrix should be positive-definite at a minimum. However, in practical usage, this 

condition may not be satisfied as E* is dependent upon the data constraining the model. If the optimization 

goal is to have the minimum difference between E* and Emin, the absolute difference between E* and 

Emin can be used in Equation (4). Since Equation (4) is an analytic equation of , it is compatible 

with any optimization technique and any groundwater model. 

We adopted a finite difference approximation method [20] to obtain second-order derivatives of 

functions for the Hessian matrix. For the diagonal elements of the Hessian matrix, centered difference 

approximation for a univariate function ݂ሺݔሻ was used: 

݂"ሺݔሻ ڌ
݂ሺݔ ൅ ሻݔ߂2 െ 2݂ሺݔ ൅ ሻݔ߂ ൅ ݂ሺݔሻ

ଶݔ߂
 (7)

where ݂"ሺݔሻ is the second-derivative of ݂ሺݔሻ for a given small value of ∆ݔ. The off-diagonal elements 

of the Hessian matrix are in a form of bivariate function ݂ሺݔଵ,  ଶሻ and its second-order derivativeݔ

function is: 

݂"ሺݔଵ, ଶሻݔ ൌ
݂ሺݔଵ ൅ ,ଵݔ߂ ଶݔ ൅ ଶሻݔ߂ െ ݂ሺݔଵ ൅ ଵሻݔ߂ െ ݂ሺݔଶ ൅ ଶሻݔ߂ ൅ ݂ሺݔଵ, ଶሻݔ
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 (8)

where ݂"ሺݔଵ, ,ଵݔଶሻ is the second-derivative of ݂ሺݔ ଶሻ for given small values of ᇞݔ ଵݔ  and ᇞ ଶݔ  for 

variables of ݔଵ and ݔଶ, respectively. 

4. MODFLOW-2000 

MODFLOW-2000 [19] is a three-dimensional finite difference model consisting of five processes: 

Global (GLO), Ground-Water Flow (GWF), Observation (OBS), Sensitivity (SEN), and Parameter-

Estimation (PES) processes. The GLO process is to control overall program for four other processes, 

open files, and read global data such as space and time discretization into finite-difference grids. The 

GWF process is to solve groundwater flow equations including the formulation of the finite-difference 
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equations and data inputs and outputs. The OBS process compares model outputs with observed or 

measured quantities. Statistics produced by the OBS process and a post-processing program can be 

used to evaluate the accuracy of the model. The SEN process calculates sensitivities of hydraulic heads 

throughout the model with respect to specified input parameters. If the OBS process is active, 

observation sensitivities for the simulated head values are calculated using grid sensitivities. A 

modified Gauss-Newton nonlinear regression method is used in the PES process to calibrate input 

parameters in an iterative manner by minimizing the weighted least-squares objective function. In 

MODFLOW-2000, PES iterations are used to solve the nonlinear regression problems and these iterations 

begin with the starting input parameter values listed in the SEN process input file. A steady-state 

simulation calculates sensitivities only once for a single time step while a transient state simulation 

calculates hydraulic heads and their sensitivities at each stress period of time. 

5. Implementation of ITb with MODFLOW-2000 

The ITb is performed after the model is optimized by MODFLOW-2000. Implementing Equations (7) 

and (8) requires the head outputs from the optimized parameters and additional sets of head outputs by 

adding user-defined ᇞ  to the optimized parameters. Equations (7) and (8) are then used to create the ݔ

Hessian matrix that contains the approximate partial second derivatives of head with respect to the 

uncertain input parameters. Using the eigenvalues of the Hessian matrix Equation (6) calculates the 

covariance matrix, the standard deviation, and the correlation coefficients of the optimized input parameters. 

Since the optimized parameters are linked to explicit features over a specific area in a study site, the area 

associated with the most uncertain parameter is the area that needs further site exploration. In this manner 

the site exploration becomes efficient and would be cost-effective to save time, labor, and resources. 

6. Synthetic Model Application 

We adopted an example case cited in [19] to verify validity of the ITb approach. The setup for this 

synthetic model is shown in Figure 2. The system consists of two confined aquifers, each 50 m thick. 

The upper aquifer is labeled as Aquifer 1 and the lower one as Aquifer 2. A 10 m thick confining unit 

separates the two confined aquifers. A river flows west of this system and is hydraulically connected to 

Aquifer 1. To simulate the river, the entire west boundary is treated as a head-dependent boundary 

fixed to the constant value of 100 m. Towards the east is an adjoining hillside, which is a major 

contribution to the recharge of the system. This recharge is assumed to be known and hydraulically 

connected to both the Aquifers 1 and 2. A constant head boundary of 100 m is set along the east side of 

the system representing a flow divide. Areal recharge to Aquifer 1 is divided into two equal zones. 

Zone 1 is closer to the river and Zone 2 is farther away from the river. No flow boundaries are set up 

on the north and south sides. Wells are present in the studied area as shown in Figure 2b. There is one 

well, centrally located, that is assumed to pump water with the same flow rate from both the aquifers. 

The model has an area of 18,000 m by 18,000 m and is discretized into 1,000 m by 1,000 m sized 

squares so that the grid has 18 rows and 18 columns. For the finite-difference method, time 

discretization is specified to simulate the model for a steady state period followed by a transient state 

period. The steady state period has no pumping and is simulated with one stress period having one 

time step. The transient period has a constant pumping rate and is simulated with four stress periods 
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having one time step. The first three stress periods are 1, 3, and 6 days long, and each has one time 

step; the fourth is 272.8 days long and has 9 time steps, and each time-step length is 1.2 times the 

length of the previous time-step length [19]. Other parameters and their values are listed in Table 1 and 

model input files are provided in [19]. 

Figure 2. The synthetic model setup. (a) The original schematic setup in Hill et al. [19]. 

(b) Plan view of the synthetic model setup. 
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Table 1. Input parameters for the synthetic model. 

Parameter Value 

Recharge in Zone 1, RCH_1 0.63 m/yr 
Recharge in Zone 2, RCH_2 0.32 m/yr 
Storage coefficient of Aquifer 1, SS_1 1.3 × 10−3 
Storage coefficient of Aquifer 2, SS_2 2.0 × 10−4 
Vertical hydraulic conductivity of confining layer 1.0 × 10−7 m/s 
Hydraulic conductivity of riverbed 1.2 × 10−3 m/s 
Hydraulic conductivity of Aquifer 1, HK1 3.0 × 10−4 m/s 
Hydraulic conductivity of Aquifer 2, HK2 4.0 × 10−5 m/s 
Pumping rate in each layer 1 and 2 1.10 m3/s 
Hydraulic head of river 100 m 

The parameters in Table 1 are considered as uncertain parameters in [19]. In the present application 

of ITb, the hydraulic conductivity of Aquifer 1, HK1 and that of Aquifer 2, HK2 are the two target 

parameters to be optimized while other parameter values are fixed. The observed hydraulic heads are 

obtained from the sampling wells shown in Figure 2. The starting values, true values and optimized 

values of HK1 and HK2 are listed in Table 2. The minimum error Emin, which is the sum of squared, 

weighted residual of MODFLOW-2000 at the optimized state, was 43.37 (unitless). After running 

MODFLOW-2000, we applied the ITb to generate the Hessian matrix and its eigenvalues by 

perturbing the hydraulic conductivities for the hydraulic heads. The results of the ITb calculation are 

shown in Table 3. The value of the expected error, E* is assumed to be 100 (unitless). Table 3 shows 

that the standard deviation of HK1 is almost ten times greater than that of HK2, which may imply that 

HK1 is more uncertain than HK2. However, this may not be true as the optimized values of HK1 and 

HK2 are also an order of magnitude apart. To avoid the scale difference the coefficient of variation 

was calculated for each parameter as listed in Table 3. The coefficient of variation shows that HK1 is 

still more uncertain than HK2. The correlation coefficient is −0.76 suggesting that HK1 and HK2 are 

closely related in opposite direction of change, so that an increase in one will result in a decrease in the 

other and vice versa. Figure 3 shows the bivariate probability density function (PDF) and univariate 

PDFs for HK1 and HK2 using the variance in Equation (6). The univariate PDFs indicate that the true 

values of HK1 and HK2 are located within the range of standard deviation around the optimized 

values. This proves that for the given head observations, the optimization process of MODFLOW-2000 is 

successful in estimating HK1 and HK2. Figure 4 shows the change of parameter uncertainty with 

respect to the different expected errors. If the expected error is much greater or smaller than the global 

minimum, then the uncertainty increases. The bars represent the standard deviation of HK1. It is clearly 

shown that as the expected error increases, there is a subsequent increase of the parameter uncertainty. 

Table 2. Parameter values after optimization process of MODFLOW-2000. 

Parameter True Value Starting Value Optimized Value 

HK1 (m/s) 4.0 × 10−4 3.0 × 10−4 4.26 × 10−4 
HK2 (m/s) 4.4 × 10−5 4.0 × 10−5 4.82 × 10−5 
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Table 3. Statistical outputs of the synthetic model. 

Parameter Standard Deviation (m/s) Coefficient of Variation (Unitless) 

HK1 5.25 × 10−5 10.23 × 10−2 
HK2 4.76 × 10−6 9.88 × 10−2 

Figure 3. The bivariate probability density function (PDF) and univariate PDFs for HK1. 

and HK2. 

 

Figure 4. Parameter uncertainty of HK1 for the expected error E*. The bars indicate the 

standard deviation of HK1. 

 
7. Case Study: Kansas City Plant 

The Kansas City Plant (KCP) is located 12 miles south of downtown Kansas City, Missouri. It was 

established in 1942 and occupies approximately 141 acres of the 300-acre Bannister Federal complex. 
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The KCP is responsible for production and procurement of non-nuclear components for nuclear weapons. 

The KCP does not perform any onsite waste disposal. Onsite sanitization is mainly for non-hazardous 

classified wastes. The hazardous wastes are sent offsite for treatment or disposal. The waste management 

operations at the plant mainly consist of storing these hazardous wastes until they are taken offsite. In 

addition to hazardous wastes, some low-level radioactive wastes are also generated. For national security 

reasons, some wastes are classified. Selective recycling and industrial wastewater pretreatment are the 

main treatment operations at the KCP [23]. 

From the 1940s to the 1960s, a part of the northeast area (NEA) was used as a dumping site for 

waste from the KCP, resulting in extensive soil and groundwater contamination. Additional contamination 

from the release of polychlorinated biphenyl (PCB) and a man-made chemical, which was banned 

from U.S. manufacturing in 1979, continued through the early 1970s [23]. The immediate concern was 

the contaminant plume getting into the Blue River (Figure 5). The contaminant plume consisted of 

volatile organic compounds including trichloroethylene, 1,2-dichloroethylene, and vinyl chloride. To 

prevent migration of the contaminant to the Blue River, an interceptor trench was installed in 1990 and 

operated until 1998 to catch the plume. After extensive site investigation in 1998, a passive iron wall 

permeable reactive barrier (PRB) was installed to replace the interceptor trench. This passive iron wall 

was not successful as the contaminant bypassed the southern end of the wall. The groundwater flow 

simulation predicted that containment of the contaminant would require pumping rates in excess of 30 

gallons per minute (gpm). The existing interceptor trench tried to contain the contaminant by pumping 

at a rate of 6 gpm, hence the modeling design was discarded and further hydrological analysis of the 

NEA groundwater flow system was made [23]. To characterize the groundwater flow system, [23] 

collected data from 28 newly installed temporary wells and the existing monitoring wells, 12 stilling 

wells, four mini-piezometers, and a weir. Recharge from the cattail drainage was found to cause 

groundwater mounding, which deflected the plume to the east soon after entering the lower NEA 

(Figure 5). This mound was considered to be a consistent hydrologic feature because of the frequent storm 

events in Kansas City. The plume in the vicinity of the iron wall was more than 60 m wide. 

For the ITb application we divided the area of study into 50 by 50 cells that are 4.42 m by 4.16 m 

giving us an area of approximately 221 m in the east-west direction and 208 m in the north-south 

direction. The geology consists of alluvial sediments overlaying impervious shale. The alluvial aquifer 

in the lower NEA consists of a 4.57 to 7.62 m thick upper clayey-silt layer underlain by a 0.30 to 1.52 

m thick basal gravel layer. The contrast of hydraulic conductivities in these two layers made the 

potentiometric surface of the more permeable basal gravel layer 0.3 m to 0.6 m lower than the 

potentiometric surface in the less permeable clayey-silt, creating a downward hydraulic gradient. For 

modeling purposes we considered the clayey-silt layer and the basal gravel layer to be of average 

thickness 5.49 m and 0.91 m, respectively, with average hydraulic conductivities of 0.23 m/day and 

10.36 m/day, respectively. The dimensions of the interceptor trench were 4.57 m wide, 65.53 m long 

and 9.14 m deep. The iron wall PRB was designed such that it was 0.6 m wide in the 5.5 m deep upper 

clayey-silt layer and 1.83 m wide in the basal gravel layer, with a length of 39.62 m and hydraulic 

conductivity ranging from 91.44 to 152.4 m/day. 
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Figure 5. The hydraulic conductivity distribution for the KCP site (modified from [23]). 

Each zone of hydraulic conductivity is defined with a closed boundary and different color. 

(a) The lower basal gravel layer. (b) The upper clayey silt layer. 
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In the KCP model, we adopted head observations from the 26 wells located in the model domain 

and used them for a steady state simulation; hence the stress period for all observations was 1. The 

hydraulic conductivity values were obtained from [23] for the clayey-silt layer and the basal gravel 

layer. The hydraulic conductivity values from the wells in each zone were averaged and assigned as a 

zonal hydraulic conductivity for that zone. The SEN file had the hydraulic conductivities of the 18 

zones in the model. The clayey-silt and the basal gravel layers had seven different hydraulic 

conductivity zones each (Figure 5). The remaining four zones were used for the layer of peat or 

humus, the fill layer, and the areas around the clayey-silt and the basal gravel layers. The model was 

set up with no flow boundaries on the north and south boundaries. The west boundary had a constant 

head boundary while the east boundary had no flow boundary. We assumed the vertical hydraulic 

conductivity to be 1/20 times that in the horizontal direction. The head change and residual 

convergence criteria were both taken as 1.0E-5 and no damping was set in the model. 

The KCP case study [23] listed the observed minimum and maximum hydraulic conductivities of 

all the wells in both the upper clayey-silt layer and the lower basal gravel layer. Among them the six 

wells having the largest difference of hydraulic conductivities are listed in Table 4 and located in 

Figure 5a. The well numbers with “L” stand for the lower basal gravel layer. Note that the difference 

between minimum and maximum hydraulic conductivities is up to nearly ten times that of the 

minimum value. During the PRB design process the averages of such highly variable hydraulic 

conductivities were adopted [23]. Interestingly all the six wells are located south of the iron wall of 

PRB where the contaminant plume bypassed. 

Table 4. Pumping test results at six selected wells in Figure 5. 

Well Number 
Minimum Hydraulic 
Conductivity (m/day) 

Maximum Hydraulic 
Conductivity (m/day) 

Average Hydraulic 
Conductivity 

(m/day) 

215L 30.96 149.81 89.88 
238L 23.86 238.59 131.23 
242L 24.91 249.06 136.98 
243L 21.88 54.71 38.30 
246L 20.19 201.89 111.04 
259L 23.89 119.45 71.67 

For the ITb application, we targeted three zones having different hydraulic conductivities. We 

included the zone where the plume bypassed the PRB and also two other zones around cattail drainage 

having recharge of water that deflected the groundwater flow towards east and south. We limited the 

number of zones to just three because the complexity and computational time increases with addition 

of more zones. All three zones were located in the lower basal gravel layer as shown in Figure 5(a). 

We named those as Zones 1, 2, and 3, respectively. The initial values for Zones 1, 2, and 3 were 

optimized using MODFLOW-2000 to give the best representation of model-to-site configuration. The 

minimum error from the MODFLOW-2000 was Emin = 32.37 (unitless). The standard deviation of the 

three parameters and their correlation coefficients along with initial and optimized hydraulic 

conductivities are listed in Table 5. We assumed the expected error E*to be 40 (unitless). It is shown 

that Zone 3 is the most uncertain of the three. As discussed in [23], this zone has three to ten times 
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higher hydraulic conductivity compared to the one used in the PRB design. The correlation 

coefficients show that there is almost no correlation between Zones 1 and 3, and Zones 2 and 3, while 

Zones 1 and 2 are negatively correlated, meaning that an increase of hydraulic conductivity in Zone 1 

would lead to a decrease of hydraulic conductivity in Zone 2 and vice versa. If additional site 

exploration is required, Zone 3 would be the first area to be investigated since it has the most uncertain 

hydraulic conductivity estimation. 

Table 5. Optimized hydraulic conductivities and standard deviations for three zones of the 

Kansas City Plant (KCP) model. 

Zone 
Initial Hydraulic 

Conductivity (m/day) 
Optimized Hydraulic 
Conductivity (m/day) 

Standard Deviation 
(m/day) 

1 9.22 13.02 129.33 

2 17.11 31.15 30.89 
3 26.44 32.81 155.25 

Correlation Coefficient between Zone 1 and Zone 2 = -0.51E-00; Correlation Coefficient between Zone 1 and 

Zone 3 = −9.85E-02; Correlation Coefficient between Zone 2 and Zone 3 = -9.85E-02. 

8. Conclusions 

We developed an ITb formulation to quantify uncertainty of optimized parameters for a groundwater 

model. In developing ITb formulation, the normalization constraint and the error constraint are imposed 

because they are the most objective information that is statistically reliable during a modeling process. 

The expected error is generally defined by conceptual model errors, measurement errors such as 

spurious fluctuations of head or instrumentation errors. If the parameters are optimized at the global 

minimum of modeling error and the global minimum is close to the expected error, the model result is 

likely to have low uncertainty because the size of expected error is similar with the global minimum of 

the model error. The ITb approach is capable of identifying which inputs of a groundwater model are 

the most uncertain and which information can be used for additional site exploration. 
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Appendix A—Information Theory Formulation [18] 

We refer to [18] for better understanding of ITb formulation for readers. The entropy,  is given by: 

 (A1) 

S

( ) ln ( )S d   x x x
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Two constraints are introduced to obtain the probability . The first constraint is the normalization 

constraint: 

 (A2)

The second constraint is the misfit constraint associated with the error from available data. For the 
misfit function, , the “expected” misfit,  is given by: 

 (A3)

To construct , the entropy  is imposed by the constraints in Equations (A2) and (A3) using 

Lagrange’s method [21]: 

 (A4)

where and are the Lagrange multipliers. Maximization of  with respect to  yields: 

 (A5)

therefore:  

 (A6)

For practical reasons, and to make the evaluation of the probability density feasible, we expand 

around the most probable state  of . The most probable state,  is obtained when the 

global minimum of  is reached. The most probable state, also maximizes the probability 

density because  is a monotonic function of . Taylor expansion of  around gives: 

 (A7)

where  is the Hessian matrix for  with respect to  evaluated at x=xm,  is the 

perturbation vector , and  is the transpose of . The latter approximation is valid when we 

have a narrow probability distribution around , where the quadratic term is the dominant factor. 

The linear term is dropped since, by construction, the gradient of the probability density at its 

maximum is equal to zero. For a multi-modal probability distribution, when one of the maxima is 

larger than the others, it is legitimate to ignore the latter. Although a complete description of the 

probability could be obtained using few parameters (i.e., averages and variances), the idea of best 

estimate and confidence intervals would be irrelevant when the multimodal probability density has 

comparable maxima. From Equation (A6), the Hessian matrix in Equation (A7) becomes: 

 (A8)

The quadratic approximation of the probability density is then given by: 

 (A9)

 (A10)

The probability function of  is rewritten as: 

( ) x

( ) 1d  x x

( )E x *E

* ( ) ( )E E d  x x x

( ) x S

S  S  (x)dx 1    (x)E(x)dx  E* 
  S ( ) x

 S


 [ln(x)  ( 1)E(x)]dx  0

ln ( ) ( 1) ( ) 0E      x x

ln ( ) x mx x mx

( )E x mx

ln ( ) x  ln ( ) x mx

1
ln ( ) ln ( ) ln ( ) [ln ( )]

2
T T
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mx
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ln ( ) ln ( ) [ ( )]

2
T

m H E     xx x x x x
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 (A11)

where: 

(A12)

To evaluate the multidimensional integrals required to calculate the constraints (A2) and (A3), we 

utilize the spectral decomposition of the Hessian matrix, , which is given by: 

 (A13)

where G is the eigenvector matrix and is a diagonal matrix whose diagonal entries are the 

eigenvalues of the Hessian matrix. We assume that the Hessian matrix of the misfit function is positive 

definite around . Such an assumption makes it possible to evaluate the quadratic integration 

analytically. For a multivariate case, the multivariate probability density function is given as: 

 (A14)

where  is the number of model parameters;  is the mean vector; is the covariance matrix of ; 

and  is the determination of . As , the covariance is obtained by: 

 (A15)

which satisfies: 

 (A16)

By doing so, we arrive at an expression for the Lagrange multipliers  and  in terms of the 

eigenvalues of the Hessian matrix of the misfit function. These expressions are given by: 

 (A17)

and: 

 (A18)

where is the eigenvalue of , and  is the global minimum of . 

By applying Equations (A17) and (A18) to Equation (A11), the probability distribution 

around the most probable state of is written as: 

 (A19

9)
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In the ITb approach, Equation (A12) is calculated after parameter optimization. If the parameter of 

interest is optimized as  at , the Hessian matrix,  and its eigen values,  are calculated 

around the optimized value, . Any optimization technique is compatible with this equation. 
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