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Abstract: The entropy of shortest distance (ESD) between geographic elements (“elliptical 

intrusions”, “lineaments”, “points”) on a map, or between "vugs", "fractures" and "pores" in 

the macro- or microscopic images of triple porosity naturally fractured vuggy carbonates 

provides a powerful new tool for the digital processing, analysis, classification and space/time 

distribution prognostic of mineral resources as well as the void space in carbonates, and in 

other rocks. The procedure is applicable at all scales, from outcrop photos, FMI, UBI, USI 

(geophysical imaging techniques) to micrographs, as we shall illustrate through some 

examples. Out of the possible applications of the ESD concept, we discuss in details the 

sliding window entropy filtering for nonlinear pore boundary enhancement, and propose 

this procedure as unbiased thresholding technique. 
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1. Introduction 

In the early years of Information Theory, Good ([1,2], see also [3,4]) introduced the influential 

“how to keep the forecaster honest” paradigm, that is how to design a payoff system which would 

force the forecaster to give an unbiased prediction. Much later (in 1972 [5]) it was proved mathematically 

that the only way to do this is intimately connected with the concept of Shannon entropy. 

1.1. Motivation 

In the parlance of Petroleum Exploration, permeability—one of the most important petrophysical 

property of reservoir rocks, and the principal target of our recent research—is never “estimated” or 

“computed” from well logs, well pressure transients, or small cuttings of rock: it is always “predicted”. 

There is, of course, a hidden caveat in the term: any prediction can go wrong. Soothsaying is a dangerous 

business. In Dante's Inferno the souls of soothsayers who misled their clients have their heads twisted 

to the rear, so they walk backward. But it is so easy to understand why the diviners had cheated. Who 

would dare to upset a Caesar who ordered “Go bid the priests to do present sacrifice; And bring me their 

opinions of success” (Shakespeare: Julius Caesar II, 2,5—italics ours; the last three sentences are 

paraphrased from the study [6]). 

2. Methodology 

2.1. Mathematical Model 

Let the probability of the ith possible event be Nipi ,,1,  and suppose the forecaster gets a 

payoff   Nipf i ,,1,  if he predicts this event, that is his expected payoff is   ii pfp . If we want 

to keep the forecaster honest, we must select a function  ipf  such that for any other probability 

distribution Niqi ,,1,   one has: 

   iiii qfppfp    (1)

that is, the expected payoff is maximal if the forecaster predicts the events according to their correct 

probability. In a brilliant paper, Pál Fischer [5] proved that the only function satisfying Inequality (1) is 
)ln()( pconstpf  that is—apart from a constant factor—the expected payoff is the Shannon entropy 

  ii pfpH . Putting aside the “forecaster” analogy, we can say that the only reasonable and 

unbiased quantitative "value" what we can associate with the information about a probability 
distribution Nipi ,,1,  is its entropy,   ii pfpH . 

This consideration had been one of the motivations for our group to introduce, some 10 years ago, 

the TRISA relative-entropy triangle to analyze and conveniently plot the joint development and mutual 

dependency of three variables, measured in incommensurable units [7,8]. In the present paper we use 

Shannon entropy in a very different context, as a measure of the structural (configurational) disorder of 

random geometrical patterns [9]. In the statistical physics of point patterns configurational entropy is 
defined as WkS B ln where W is the number of different configurations, assuming that all 

configurations are equally probable (Boltzmann's equation, Bk  is the Boltzmann constant, Figure 1). If 
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the configurations have different probabilities Wipi ,,1,  then combinatorial reasoning and 

application of the Stirling’s approximation yield i

W

i
iB ppkS ln

1



  ([10,11]). 

Figure 1. Ludwig Boltzmann’s grave in the Central Vienna Cemetery, with his famous 

equation, S=k log W. 

 

In the geometrical probability theory of irregularly placed points the distances to nearest neighbor, 

and their probability distribution, have become a standard tool to characterize spatial relationships in 

populations [12]. It was first proved by Hertz ([13], simplified in [12]), that if a large number of points 
are Poisson-distributed on the plane with density , and for every point NiPi ,,1,  its distance to the 

nearest neighbor is ir then the average value of ir  , that is 
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Thus, the randomness of a point arrangement can be characterized by the ratio [12]: 
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For a completely random point distribution 1R , if all points are at the same position then 0R , 

for periodical arrangements one can have 1R (such as 2R for a square lattice, 1491.2R for the 

hexagonal lattice, [12]). 

Another convenient measure of irregularity is the Shannon-entropy of the distribution of nearest 
neighbor distances  ir . For a regular square lattice, all distances  ir  are equal, and the Shannon 

entropy of the distance-to-nearest-neighbor distribution is 0. The more irregular is the lattice, the larger 
will be the variation among the values  ir , and consequently, the larger will be the Shannon entropy 

of their distribution. If, for a randomly selected point iP , and any 0x we have, independently of the 

index i, that    dxxrjix dxxijPPdist
j

)(Pr ,min 












   where 



0

1)(;1)(0 dxxrxr

and Pr means probability of a random event, dist is the Euclidean distance, then: 

dxxrxrH 



0

)(ln)(  (4)

is a meaningful (and, as we discussed above in connection with the forecaster problem, the only objective) 

measure of the irregularity of a point distribution. 

The intimate connection between distance-to-nearest-neighbors and entropy is expressed by a Theorem 

of Kozachenko and Leonenko ([14–16]) which states that, under some mild conditions, for N points 

distributed in the d-dimensional Euclidean space: 
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where dNH ,  is the entropy of the d-dimensional point distribution, the factor in square brackets is the 

volume of the d-dimensional unit sphere,  = 0.5772 …. is Euler's constant,  the gamma function. For 

the 2-dimensional case: 

)1ln(lnln
2
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By the inequality between the geometric and arithmetic means of positive numbers ([17]) 
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 , which gives an upper bound for the entropy of an 

arrangement of N points: 

)1ln(lnln22,  NrH AvN   (5c)

2.2. Entropy of the Shortest Distance 

In Economic Geology, Geochemistry, and Mineral Exploration there are legions of empirical rules, 

which claim cause-effect relations between observable planar objects (such as faults, lineaments on 

aerial photographs; halos with increased radon activity, etc.) and the presence of proved mineral 
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occurrences [18–21]. A hypothetical case is shown in Figure 2 where the lineaments (green lines) are 

apparently related to mineral occurrences (yellow dots). In the spirit of the "entropy of shortest 

distance" we expect that if the distances of the dots from the nearest lines are very randomly 

distributed, with large entropy, then there is no valid relation between the two sets of objects. On the 

other hand, if all distances are small, within the measurement accuracy only a few different values will 

be observed, and the distribution will have a small entropy. Thus, a low entropy of shortest dot-to-line 

distances would prove the causal relation between the two sets. The idea can be easily extended to 

three kinds of randomly distributed objects (“ellipses”, “lineaments”, “points”), see Figure 3. 

Figure 2. A model representing the case of strong correlation between the placement of the 

mineral occurrences (yellow dots), and lineaments. 

 

Of course other, metric approaches are also possible [12,18], based on the actual values of the 

shortest dot-to-line distances, their distribution, mean, their normality, etc. Still, as discussed 

previously, by Fischer’s [5] Theorem only the entropy can be considered as an objective measure. 

The ESD (entropy of shortest distance to neighboring element) idea was studied in depth in the PhD 

thesis of B. Sterligov [22] then it has been further developed, in collaboration with Professors S. 

Cherkasov and K. Oleschko to the user friendly PROGNOZ software [23]. Quite recently, we realized that 

making an analogy between the three geographic elements “ellipses”, “lineaments”, "points" and the 

macro- and microscopically observable “vugs”, “fractures” and “pores” of triple porosity naturally fractured 

vuggy carbonates, we get a powerful new tool for the digital processing, analysis, and classification of the 
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void space in carbonates, and other reservoir rocks. The procedure is applicable at all scales, from 

micrographs to outcrop photos, as we shall illustrate by examples. 

Out of the many possible ways to apply the ESD concept, we only discuss the sliding window 

entropy filtering for pore boundary enhancement, in the next Section. A similar technique, based on 

the ESD of Poisson distributed random points from nearest pores, will be briefly mentioned in the 

concluding part. 

Figure 3. Spatial relation between three shapes ("granite outcrops" blue, "mineral 

occurrences" (red), and "lineaments", black). Scaled down by a factor 510 ,the model might 

represent an outcrop of a vuggy, fractured limestone (see Figure 7), reducing it by 810 it 

will resemble an optical micrograph of a triple porosity carbonate (Figures 8,9). Our 

entropy technique remains applicable through this enormous range of scales. 

 

2.3.  Sliding Window Entropy Filtering for Bore Boundary Enhancement 

Using the standard notation of geometry [24–26] if A and B are sets in the n-dimensional Euclidean 
space nR  of finite measure  )(,)( BA  , then the Minkowski sum of A and B is defined as:  


ByAx

yxBA



;

)(  
(6)
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In the special case when B is the n-dimensional hypersphere, we call BAArS );( the extended 

hypersphere of radius r around A. In the 2-dimensional (planar) case, assuming that the set A is 

convex, and denoting the length of its circumference by c(A), by a Theorem of Tomiczková [26] the 
area of the extended circle );( ArS is given by: 

  )()()()()();( 2 ArcrAArcBAArS    (7)

where in the 2-dimensional case  is area. An example of “extended circle” around a rectangle is 

shown in Figure 4. If the radius of the circle B is r, the sides of the rectangle A are a and b, it is easy to 
check Equation (7) because )(2)(,)(,)( 2 baAcrBabA   and, directly from the figure, 

   222 rrbraabBA  . 

Figure 4. Minkowski sum of a rectangle of sides a, b with a circle of radius r ( brar  , ). 

 

Consider now a "pore" A in the digital image, suppose the distance of A from the nearest pore is D. 
Let  denote pixel size, select a reasonably large   ww -size (say 1010  pixels) window W, 

where w is less than half the distance of A from the closest pore, i.e.  K
D

w
2

, but at the same 

time it is much less than the size of the pore A. The "pore" in the image is distinguished with a separate 

color, or a distinct range of values of gray scale. The boundary of the pore is generally diffuse, not clearly 

defined because of non zero thickness of the thin sections (which commonly measured less than 30 

m). Let us consider the sequence of extended circles with increasing radii around A (see Figure 5): 

The sequence of these sets satisfies (where in the 2-D case the measure μ is area): 

KAAAA  10  and    KAAA   1)(  (8)

Taking set-theoretical differences between successive extended spheres around A of respective radii 
k and  1k  we get a sequence of rings K ,,1   ),,2;1( Kk  around the pore A defined as: 

1\  kkk AA  ),,1( Kk  . By the construction, each ring is one pixel wide. If the moving window 

W is closer to the pore A than D/2 then:  

     KWWAWW   1  (9)

and, consequently, (because the rings are distinct): 

 



K

i
iWAWW

1

)()(   (10)
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Figure 5. Illustration of the sliding window entropy technique for a better definition of the 
boundary of the pore 0A . The sliding window W, which moves out of 0A , has a size less 

than half the distance to the nearest pore. The sequence NAAA  10 is strictly 

increasing, the difference sets 1\  kkk AA  ),,1( Nk  form one pixel wide “rings” or 

“halos” around 0A . 
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Suppose the square-shaped window W moves, without rotation, staying parallel to its original 

position, along a linear path as shown in Figure 5. In the figure, W starts to move from a position 

where it is fully inside A, AW  , then it passes through intermediate positions when only a part of W 

is inside the pore:  AW , up to a final position when W is fully outside the pore and it is covered 

by M successive rings:  AW  and 1;
1






kA
Mk

ki
i . 

In any position of the moving window, the altogether 2w pixels in W define the set of 2w distances 
 wwww  ,,,,, 1111   where ij  is the shortest distance (with the precision of pixel-size ) 

between the pixel Wpij  , wji ,,2,1,   and the pore A. Considering these distances as random 

variables, any ij  can take a value from among the possible distances   K,,,0  and we can 

compute their empirical probability distribution  Kk pppp ,,,,, 10  as: 

  2/# wkp ijijk    (12)

where  S# denotes the number of elements of the set S. The Shannon entropy of this distribution is 





K

k
kk ppH

1

ln , with the usual convention that for 0p  the product pp ln is defined as 

0lnlim 0  ppp . Consider the three possible positions of the window W relative to the pore A. 
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If W is fully inside A then all distances ij  are 0, so that  0,1 10  Kppp   and 0H . 

If W is fully outside A but still inside the extended sphere of radius K around A, then in a typical 

case it will have non-empty intersections with w consecutive rings:  

 iW   for 1,,1,  wkkki   (13)

for some value of k in such a way that each intersection with a ring i contains about w pixels, and in 

the set iW  all distances are equal to the same value  ii . In this case, the typical probability 

distribution will be: 

 otherwisepandwkikforwwwp ii 01/1/ 2   (14)

The corresponding Shannon entropy is: 

w
ww

H
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ki

ln
1

ln
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 (15)

Consider now the most interesting case, when part of the window W lies inside pore A, the rest of it 

is outside in such a way that it has non-empty intersections with the first l rings only:  AW , 
 iW   for li ,,2,1   where .wl   In a typical case each intersection with a given ring i  

contains about w pixels, and in the set iW  all distances are equal to the same value i . In this case 

the probability distribution is:  
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which yields the entropy: 
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H ln1ln1 






 






   (17)

Figure 6 shows how the Shannon entropy (Equation (17)) increases as the box W gradually moves 

out from the pore, for the case when W consists of 1010  pixels. We emphasize that in order to 

compute the entropy, we do not have to actually construct the rings around the pore, but we do need an 

algorithm to find the distance of any pixel from the nearest pore.  

As seen from the graph (Figure 6), we can use the following algorithm to define the boundary A  

of the pore A: Select the size of W less than the half distance between nearest pores. In any position of 
the moving window W compute the distances  wwww  ,,,,, 1111  of its 2w pixels from the 

nearest pore with the precision of pixel-size . Define the probability distribution of the different 

distances,  Kk pppp ,,,,, 10   , where   2/# wkp ijijk   , (see Eq. 12), and calculate the 

corresponding Shannon entropy 



K

k
kk ppH

1

ln . When W is fully inside a pore, then 0H , when 

W is moving out of the pore, step by step, the entropy of distances from the pixels of W to the pore will 

increase to wln  (according to Equation (17)). The maximal possible entropy of the distribution of 
distances  wwww  ,,,,, 1111   would occur when all ij are different and equally probable, and 

this would be twice as large as H in Equation (15): 



Entropy 2013, 15 2393 

 

w
ww

H
w

j

w

i

ln2
1

ln
1

1
22

1
max  



 (18)

If we select W as consisting of 1010 pixels, then in Eq. (15) we have 303.210lnln d , and it is 

a reasonable criterion to define the interior of the pore with the inequality 2ln
1

 


K

k
kk ppH . More 

generally, using a ww - sized window, the boundary of the pore is defined by 

wppH
K

k
kk lnln

1

 


. 

Figure 6. Change of the Shannon entropy (Equation (17)) as W gradually moves out from the 

pore. 

 

3. Examples, Discussion, and Outlook 

3.1. PROGNOZ Application to Pore Boundary Detection 

The entropy technique has been incorporated in our PROGNOZ software package [23]. It has 

proven successful in different applications. It can be used for images at any scale as seen in Figures 7 

and 9, where Figure 7 is the photo of a carbonate outcrop from Saudi Arabia (lower Eocene Rus 

Formation, described in [27]), Figure 9 is the ESD map of the optical micrograph (shown in Fig. 8) of 

a sample taken from the same outcrop. As seen in the 3rd image of Figure 7, the entropy cutoff 2H

reliably defines the “pores” (more exactly, vugs and caves in this case, as the picture represents the 

outcrop scale). The inset in Figure 7 shows the histogram of distances from randomly selected points 

to the nearest pore. To compute a histogram such as this, it is not necessary to move a sliding window 

W all over the image, we only need to randomly generate a large number of Poisson distributed points 

and compute the entropy of the probability distribution of their distances from the nearest pore. The 

mathematical treatment of the Poisson-distributed points approach is very challenging, and we have 

not attempted it in this paper. Mark Berman [25] derived the distribution of the distances of a fixed 

point from Poisson-distributed objects of random sizes and directions, as well as the distribution of 

distances between a fixed object and random Poisson-distributed points.  We think that his results, 
combined with Tomiczková’s [26] Equation (7) for the area  );( ArS will form the foundations upon 

which the theory of ESD of random Poisson-distributed points from the nearest pore will be developed. 
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Figure 7. Entropy of shortest distance (ESD) processing of a carbonate outcrop photo. The 

second image in the sequence shows the entropy map over the whole image, as discussed 

in the text, the cutoff 2H defines the pores (3rd image). The inset shows the histogram 

of distances from randomly selected points to the nearest pore. 

 

Figure 8. 10 × magnification of a rock sample, taken from the outcrop in Figure 6. The 

position of the section is perpendicular to the face of the rock wall. 
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Figure 9. Entropy of shortest distance (ESD) isolines of the micrograph on Figure 7. The 

ranges of entropy values are different for the various objects: Large vugs (H = 0.2–0.7), 

small vugs and pores (H = 1–1.7), solid matrix (H = 1.9–2.4). 

 

3.2. Concluding Remarks and Outlook 

For triple-porosity carbonate rocks, apart from detecting void spaces on images, we also have to 

differentiate between pores, fractures and vugs. We expect that these three types of void space will be 

characterized by different entropy cutoffs. Some preliminary results are shown in Figure 9 representing 

the entropy map of the micrograph Figure 8, where we found for large vugs H = 0.2–0.7, for small 

vugs and pores H = 1–1.7, while in the solid matrix, far away from pores H = 1.9–2.4. For fractures, 

we expect a small entropy cut-off 0H . Of course, these ranges depend on the size of the sliding 

window, what in our case was  1010 . Both algorithms (the sliding window, and the Poisson 

points) are based on entropies of the probability distribution of the shortest distances of points from 

pores, rather than on entropies of these distances themselves considered as random variables. As 

compared to the entropy of the geometric distribution of N points on the plane (Equation 5b), which 

logarithmically scales with magnification λ: 

)1ln(lnln
2

)(
1

2,  


Nr
N

H
N

i
iN 

 ln2)1()1ln(lnln
2

2 2,
1

 


N

N

i
i HNr

N
 

(19)

(the upper bound of entropy in Equation (5c) has a similar scaling) both our ESD measures are scale 

free, as for example the entropy map in Figure 9 only depends on the image in Figure 8 and not on its 

scale. Still, we would hesitate to call these algorithms scale invariant, because the cut-off entropy values 
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characterizing pore- (or vug-, or fracture-) boundaries certainly depend on metric factors, which are the 

window size in the sliding window algorithm, and the density when we use Poisson-distributed points. 

Acknowledgments 

Financial support from the Project #168638 SENER-CONACYT-Hidrocarburos Yacimiento 

Petrolero como un Reactor Fractal (Project Leader Dr. Klaudia Oleshko) is gratefully acknowledged. 

The partial support was obtained from the PAPIIT program UNAM, México (the Grant IN 112812, 

Fractal Metrology). GK is thankful to his home Institution, KFUPM, and to the UNAM Campus, in 

Juriquilla, Qto., Mexico, for the peaceful and creative atmosphere for research at both places. The two 

anonymous Reviewers have done a wonderful job, what we gratefully appreciate. 

Conflict of Interest 

The author declares no conflict of interest. 

References 

1. Good, I.J. Rational decisions. J. Roy. Stat. Soc. Ser. B 1952, 14, 107–114. 

2. Good, I.J. Uncertainty. and Business Decisions; Liverpool University Press: Liverpool, UK, 1954. 

3. Aczél, J.; Daróczy, Z. On Measures of Information and Their Characterization; Academic Press: 

New York, NY, USA, 1957. 

4. McCarthy, J. Measures of the value of information. Proc. Natl. Acad. Sci. USA 1956, 42, 654–655. 
5. Fischer, P. On the inequality    iiii qfppfp   . Metrika 1972, 18, 199–208. 

6. Korvin, G. The value of information in the interactive, integrative and evolutionary world model: 

A case history. Humanomics 2000, 16, 15–24. 

7. Oleschko, K.; Korvin, G.; Figueroa, B. Entropy based triangle for designing sustainable  

soil management. In Proceedings of 17th World Congress on Soil Science, Bangkok, Thailand,  

14–20 August 2002. 

8. Oleschko, K.; Figueroa, B.; Korvin, G.; Martínez-Menes, M. Agroecometry: A toolbox for the 

design of virtual agricultura. Agricultura, Sociedad y Desarrollo (Agriculture, Society & 

Development), 2004, 1, 53–71. 

9. Ziman, J.M. Models of Disorder. In The Theoretical Physics of Homogeneously Disordered 

Systems; Cambridge University Press: Cambridge/London, UK-New York, NY, USA/Melbourne, 

Australia 1979. 

10. Landau, L.D.; Lifshitz, E.M. Statistical Physics, Pt. 1. 3rd Edition, Revised and Enlarged. 

Pergamon Press, Oxford, UK, 1980. 

11. Korvin, G. Shale compaction and statistical physics. Geophys. J. Royal Astron. Soc. 1984, 78, 35–50. 

12. Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in 

populations. Ecology 1954, 35, 445–453. 

13. Hertz, P. Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter 

mittlerer Dichte im Raume angeordnet sind. Math. Annalen. 1909, 64, 387–398. 



Entropy 2013, 15 2397 

 

14. Kozachenko, L.F.; Leonenko, N.N. Sample estímate of the Entropy of a random vector. 

Probl.Peredachi. Inf. 1987, 23, 9–16. 

15. Beirlant, J.; Dudewicz, E.J.; Györfi, L.; van der Meulen, E.C. Non parametric entropy estimation. 

An overview. Intl. J. Math. Stat. Sci. 1997, 6, 17–39. 

16. Singh, V.P.; Asce, F. Hydrological synthesis using entropy theory: Review. J. Hydrol. Engin. 

2011, 16, 421–433. 

17. Beckenbach, E.; Bellman, R. Inequalities; Springer Verlag: Berlin, Germany, 1983. 

18. Bonham-Carter G.F. Statistical associations of gold occurrences with Landsat-derived lineaments, 

Timmins-Kirkland area, Ontario. Can. J. Rem. Sensing 1985, 11,195–210. 

19. Bonham-Carter, G.F. Geographical Information Systems for Geoscientists. In Modeling with GIS; 

Elsevier: New York, NY, USA, 1994; p. 398. 

20. Rencz, A.N., Ed. Remote Sensing for the Earth Sciences. Manual of Remote Sensing. 3rd Ed.; 

Volume 3. John Wiley & Sons: New York, NY, USA, 1999. 

21. Hubbard, B.E.; Mack, T.J.; Thompson, A.L. Lineament analysis of mineral areas of interest in 

Afghanistan: U.S. Geological Survey Open-File Report 2012–1048, 2012. Available online: 

http://pubs.usgs.gov/of/2012/1048/ (accessed on 5 March 2013). 

22. Sterligov, B. Analyse. probabiliste des relations spatiales entre les gisements aurifères et les 

structures crustales: developpement méthodologique et applications à l'Yennisei Ridge (Russie.). 

Ph.D. Thesis, Lomonosov State University, Moscow, Russia & Institut des Sciences de la Terre 

d'Orleáns, Orleáns, France, 2010. 

23. Sterligov, B.; Cherkasov, S. Manual del paquete de cómputo “prognoz-PET” (PROGNOZ-PET 

Program Manual). Unpublished document, in Spanish. Moscow, Russia and Juriquilla, Qto., 

México, 2013. 

24. De Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry.  

In Algorithms and Applications; Springer Verlag: Berlin, Germany, 1997. 

25. Berman, M. Distance distributions associated with Poisson processes of geometric figures.  

J. Appl. Prob. 1977, 14, 195–199. 

26. Tomiczková, S. Area of the Minkowski sum of two convex sets.  

In Proceedings of 25th Conference. on Geometry & Computer Graphics, Prague,  

Czech Republic, 12–16 September 2005, pp. 255–260. Available online: 

http://geometrie.kma.zcu.cz/index.php/www/content/view/full/600?PHPSESSID=822215e0472f8

c71b1bb86967c9b597b/ (accessed on 15 April 2013). 

27. Abdullatif, O. Geomechanical properties and rock mass quality of the carbonate Rus formation, 

Dammam Dome, Saudi Arabia. Arabian J. Sci. Eng. 2000, 35, 173–194. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


