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Abstract:



This paper shows the feasibility of utilizing the Kernel Spectral Clustering (KSC) method for the purpose of community detection in big data networks. KSC employs a primal-dual framework to construct a model. It results in a powerful property of effectively inferring the community affiliation for out-of-sample extensions. The original large kernel matrix cannot fitinto memory. Therefore, we select a smaller subgraph that preserves the overall community structure to construct the model. It makes use of the out-of-sample extension property for community membership of the unseen nodes. We provide a novel memory- and computationally efficient model selection procedure based on angular similarity in the eigenspace. We demonstrate the effectiveness of KSC on large scale synthetic networks and real world networks like the YouTube network, a road network of California and the Livejournal network. These networks contain millions of nodes and several million edges.
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1. Introduction


In the modern era, complex networks are ubiquitous. Their omnipresence is reflected in domains like social networks, web graphs, road graphs, communication networks, biological networks and financial networks. Complex networks can be represented as graphs ([image: there is no content]), where the nodes (V) represent vertices in the graph and edges (E) depict the relationship between these nodes. These networks exhibit community like structure, where nodes within a community are densely connected and the connections are sparse between the communities. The problem of community detection has also been framed as graph partitioning and graph clustering [1] and has received a lot of attention lately [2,3,4,5,6,7,8,9,10,11,12,13]. Among the myriad variety of algorithms for community detection, the Kernel Spectral Clustering (KSC) method is related to the spectral clustering methods [10,11,12,13]. Spectral clustering methods are standard techniques for graph partitioning. The underlying model is based on eigen-decomposition of the Laplacian matrix derived from the affinity matrix of the nodes in the community. The major drawback of these spectral clustering methods is the construction of the large affinity matrix ([image: there is no content]), where N is the number of nodes in the network, which requires to calculate the similarity between every pair of nodes in the network. As the size of the network increases, the [image: there is no content] computation and storage of this affinity [image: there is no content] matrix become infeasible.



Recently, a spectral clustering formulation based on weighted kernel PCA with primal-dual framework was proposed in [14]. The formulation resulted in a model with a powerful property of inferring community memberships for out-of-sample nodes. The model is built on a small subset of the big data network that captures the inherent community structure. One then solves an affordable eigenvalue problem on this smaller subgraph and uses the out-of-sample extension property. The KSC method was extended for community detection by [8]. However, the two important steps, the subset selection and the model selection proposed by [8], are computationally expensive and memory inefficient. The two major contributions of the paper are:

	
We propose a novel memory-and computationally efficient model selection technique to tune the parameter of the model using angular similarity in the eigenspace between the projected vectors of the nodes in the validation set.



	
We show that kernel spectral clustering is applicable for community detection in big data networks.








The authors in [8] utilized Modularity [15] for the purpose of model selection. However, they need to keep a square, non-sparse [image: there is no content] matrix for validation of the model using Modularity. This makes the approach infeasible when the networks are large scale. We provide a novel model selection technique based on angular similarity between the projected vectors in the eigen-spectrum. The authors in [8] used Expansion sampling [16] technique for subset selection. The method is based on the principle of expander graphs and optimizes the expansion factor function. However, the method is computationally expensive as shown in [17] and stochastic by nature. Therefore, for the given big data network, for each iteration of Expansion sampling, the obtained subgraph would be different. We use the Fast and Unique Representative Subset (FURS) selection technique [17] for obtaining a representative subset of the big data network. The method is computationally less expensive and is a better representative of the community structure than most of the state-of-the-art sampling techniques like SlashBurn [18], Metropolis [19], Snowball Expansion [16], Random Node [20] sampling, etc., as shown through extensive comparisons in [17]. The KSC method was recently extended to evolving networks as described in [21]. In this paper, all considered graphs are unweighted and undirected unless specified otherwise. All the experiments were performed on a machine with 12 GB RAM and 2.4 GHz Intel Xeon processor. The maximum size of the kernel matrix that can be stored in the memory of our PC is 5,000×5,000. The approach that we present can be easily implemented in a distributed environment as well and can handle big data networks.



The rest of the paper is organized as the follows. Section 2 provides details about the kernel spectral clustering method. Section 3 describes the angular similarity based model selection procedure. Section 4 gives insight into the FURS selection technique to obtain a representative subgraph. Section 5 describes the experiments undertaken along with the results on big data networks. We conclude in Section 6.




2. Kernel Spectral Clustering


We first provide details about the notations used.



2.1. Notations


	(1)

	
A graph is mathematically represented as [image: there is no content] where V represents the set of nodes and [image: there is no content] represents the set of edges in the network. Physically, the nodes represent the entities in the network and the edges represent the relationship between these entities.




	(2)

	
The cardinality of the set V is denoted as N.




	(3)

	
The cardinality of the set E is denoted as e.




	(4)

	
The matrix A is a [image: there is no content] matrix and represents the affinity or similarity matrix.




	(5)

	
For unweighted graphs, A is called the adjacency matrix and [image: there is no content] if [image: there is no content], otherwise [image: there is no content].




	(6)

	
The subgraph generated by the subset of nodes S is represented as [image: there is no content]. Mathematically, [image: there is no content] where [image: there is no content] and [image: there is no content] represents the set of edges in the subgraph.




	(7)

	
The degree distribution function is given by [image: there is no content]. For the graph G it can written as [image: there is no content] while for the subgraph S it can be presented as [image: there is no content]. Each vertex [image: there is no content] has a degree represented as [image: there is no content].




	(8)

	
The degree matrix is represented as D, a diagonal matrix with diagonal entries [image: there is no content].




	(9)

	
The adjacency list corresponding to each vertex [image: there is no content] is given by [image: there is no content].




	(10)

	
The neighboring nodes of a given node [image: there is no content] are represented by Nbr([image: there is no content]).




	(11)

	
The median degree of the graph is represented as M.








2.2. General Background


Spectral clustering uses the information contained in the affinity matrix to detect structures in the given network. In case of data points, the similarity between the points is measured with respect to the mutual distance (e.g., Euclidean, cosine, RBF distance) between the points. Thus, the obtained similarity matrix can be considered as a weighted graph where each point has a certain extent of similarity with other points in the dataset. For our case, we already have a weighted graph A, where [image: there is no content] if [image: there is no content] else [image: there is no content]. Therefore, in our case the spectral clustering method can be applied directly. However, for the KSC method, we need to build a graph over the network to represent the similarity between the nodes in a kernel based framework.



The spectral graph theory can provide insights into several properties of the graph-like partitions existing in the graph. These insights are obtained by studying the eigen-spectrum of the Laplacian matrix [10,11,22]. Several Laplacian matrices exist, including the unnormalized Laplacian defined as [image: there is no content], the symmetric normalized Laplacian [image: there is no content], the non-symmetric normalized Laplacian [image: there is no content]. This Laplacian is related to the random walk on the graph, hence denoted by [image: there is no content]. For a random walk Laplacian, clustering can be understood as detecting the partitions such that a random walker will spend maximum time in that partition with a few jumps to other clusters. This minimizes the transition probability between the clusters. The transition matrix of the random walker on the graph can be obtained by normalizing the adjacency matrix A such that the sum of its row ends up being 1. Thus the transition matrix can be depicted as [image: there is no content], where the entry [image: there is no content] represents the probability of a jump from node [image: there is no content] to node [image: there is no content]. The corresponding eigenvalue problem becomes [image: there is no content] and was shown to be the dual problem of a constrained optimization problem typical of least squares support vector machines (LS-SVM) [23].




2.3. Primal-Dual Formulation


The KSC method is described by a primal-dual framework. The model is determined during the training phase, and the parameter of the model, i.e., k (number of clusters), is estimated during the validation stage. Finally, the model is tested on the test data to provide community affiliation to the unseen nodes.



In case of networks, the training data comprises the adjacency list of all the vertices [image: there is no content]∈[image: there is no content], where [image: there is no content] represents the set of nodes used for training the model. Let the cardinality of the set [image: there is no content] be [image: there is no content]. Big data networks can be stored into memory in sparse format as these networks are highly sparse. However, if the graph does not fit in the main memory, it can be split into blocks of adjacency lists and stored on the hard disk. We can then iterate over these blocks by selecting the adjacency lists corresponding to the nodes in the training set [image: there is no content]. This set of adjacency lists can be efficiently stored in the memory as real world networks are highly sparse and there are very few connections for each node [image: there is no content]∈[image: there is no content]. The maximum length of the adjacency list of a node in the training data can be equal to N, when the node is connected to all the other nodes in the network. During the test phase, the cluster memberships for each of the unseen nodes can be predicted by uploading the adjacency list of the test node in the memory and using the out-of-sample extension property of the model. This makes the approach feasible for big data networks, unlike approaches that require the entire graph to be stored in the main memory. Moreover, the computational complexity of our approach is dominated by the time required to construct the kernel matrix. It is given by [image: there is no content], i.e., the time required to calculate the similarity between sparse adjacency lists of the nodes in the training data.



Given [image: there is no content] training nodes [image: there is no content]={[image: there is no content]}i=1[image: there is no content],[image: there is no content] and [image: there is no content]∈[image: there is no content]. Here [image: there is no content] represents the adjacency list of the [image: there is no content] training node and the number of nodes in the training set is [image: there is no content]. Given [image: there is no content] and the number of communities k, the primal problem of the spectral clustering via weighted kernel PCA is formulated as follows [14]:


minw(l),e(l),[image: there is no content]12∑l=1[image: there is no content]w(l)⊺w(l)-12N∑l=1[image: there is no content]γle(l)⊺DΩ[image: there is no content]e(l)suchthate(l)=Φw(l)+[image: there is no content]1[image: there is no content],l=1,…,k-1



(1)




where e(l)=[e1(l),…,e[image: there is no content](l)]⊺ are the projections onto the eigenspace, [image: there is no content] indicates the number of score variables required to encode the k communities, DΩ[image: there is no content]∈R[image: there is no content]×[image: there is no content] is the inverse of the degree matrix associated to the kernel matrix Ω. Φ is the [image: there is no content]×[image: there is no content] feature matrix, Φ=[ϕ(x1)⊺;…;ϕ(x[image: there is no content])⊺] and [image: there is no content] are the regularization constants. We note that [image: there is no content]≪N, i.e., the number of nodes in the training set, is much less than the total number of nodes in the big data network. The kernel matrix Ω is the obtained by calculating the similarity between the adjacency list of each pair of nodes in the training set. Each element of Ω, denoted as Ωij=K([image: there is no content],[image: there is no content])=ϕ([image: there is no content])⊺ϕ([image: there is no content]), is obtained by calculating the cosine similarity between the adjacency lists of [image: there is no content] and [image: there is no content], which has been shown to be an effective similarity measure for large scale data [24]. Thus, Ωij=xi⊺[image: there is no content]∥[image: there is no content]∥∥[image: there is no content]∥ and can be calculated efficiently using notions of set unions and intersections. This corresponds to using a normalized linear kernel function [image: there is no content] [23]. The clustering model is then represented by:


[image: there is no content]=w(l)⊺ϕ([image: there is no content])+[image: there is no content],i=1,…,[image: there is no content]



(2)




where [image: there is no content] is the mapping to a high-dimensional feature space [image: there is no content], [image: there is no content] are the bias terms, [image: there is no content]. However, for big data networks we can utilize the explicit expression of the underlying feature map and [image: there is no content]=RN. The projections [image: there is no content] represent the latent variables of a set of [image: there is no content] binary cluster indicators given by sign([image: there is no content]), which can be combined with the final groups using an encoding/decoding scheme. The dual problem corresponding to this primal formulation is:


[image: there is no content]



(3)




where [image: there is no content] is the centering matrix, which is defined as [image: there is no content]=I[image: there is no content]-(11[image: there is no content]⊺DΩ[image: there is no content]1[image: there is no content])(1[image: there is no content]1[image: there is no content]⊺DΩ[image: there is no content]). The [image: there is no content] are the dual variables and the kernel function [image: there is no content] plays the role of similarity function. This dual problem is closely related to the random walk model.




2.4. Encoding/Decoding Scheme


In ideal situations when the communities are non-overlapping, we will obtain k well separated clusters and the matrix D[image: there is no content][image: there is no content]Ω has [image: there is no content] piece-wise constant eigenvectors. This is because the multiplicity of the largest eigenvalue (i.e., 1) is [image: there is no content] as depicted in [22]. In the eigenspace every cluster [image: there is no content], [image: there is no content] is a point and is represented with a unique codebook cp∈{-1,1}[image: there is no content]. To obtain this codebook [image: there is no content] we transform the rows of the projected vector matrix obtained from the training data by binarizing it, i.e., [image: there is no content]. However, in real world networks, the communities do overlap and we have nearly piece-wise constant eigenvectors. The codebook set [image: there is no content] is also obtained by selecting the top k most frequent codebook vectors. Due to the centering matrix [image: there is no content], the eigenvectors have zero mean and the optimal threshold for binarizing the eigenvectors is self-determined (equal to 0). Taking into account that the first eigenvector [image: there is no content] already provides a binary clustering, the number of score variables needed to encode k clusters is [image: there is no content]. The decoding scheme consists of comparing the cluster indicators obtained in the validation/test stage with the codebook and selecting the nearest codebook based on Hamming distance. This scheme corresponds to the ECOC decoding procedure [25] and is used in out-of-sample extensions as well. The proposed extension is based on the score variables, which correspond to the projections of the mapped out-of-sample points onto the eigenvectors found in the training stage. The cluster indicators can be obtained by binarizing the score variables for the out-of-sample points as follows:


sign(etest(l))=sign([image: there is no content][image: there is no content]+[image: there is no content]1Ntest)



(4)




where [image: there is no content], [image: there is no content] is the [image: there is no content]×[image: there is no content] kernel matrix evaluated using the test points with entries Ωtest,ri=K(xrtest,[image: there is no content]), [image: there is no content] and i=1,…,[image: there is no content]. Here [image: there is no content] represents the number of nodes in the test set. This natural extension to out-of-sample points is the main advantage of the kernel spectral clustering framework. In this way the clustering model can be trained, validated and tested in an unsupervised learning procedure. If the [image: there is no content] cannot fit the memory, then we divide the test set into blocks and perform the testing operations iteratively on a single computer. However, this operation can easily be performed in parallel in a distributed environment.





3. Model Selection by Means of Angular Similarity


Model selection is a crucial step in KSC. In order to obtain correct cluster parameters for the model, we propose a novel and computationally efficient mechanism using the concept of angular similarity. In [8], the authors used Modularity as a model selection criterion. However, the validation matrix required for Modularity calculation can blow up as the size of the network becomes large and might be infeasible to store into memory. Therefore, we need to work with the sparse adjacency lists of the nodes in the validation set instead of creating a square validation matrix. Since we are using the cosine similarity metric to estimate each element of the kernel matrix Ω, the model is free of a tuning parameter σ, unlike the original formulation of KSC [14] when using a Gaussian RBF kernel. Thus, the only parameter to be determined for our procedure is the number of clusters k in the network.



We propose a criterion Balanced Angular Fit for estimating the number of clusters [image: there is no content] in the network. This criterion exploits the projections of the training and validation nodes in the eigenspace. For a given value of [image: there is no content], we estimate the cluster memberships of the nodes in the training set [image: there is no content] based on the codebook [image: there is no content]. We assign each training node to the cluster corresponding to the codebook vector for which its Hamming distance is the minimum. Thus, for a given value of [image: there is no content], we can obtain the clustering [image: there is no content], where [image: there is no content] contains the set of training nodes belonging to the [image: there is no content] cluster. We calculate the cluster mean ([image: there is no content]) for each cluster w.r.t. to the projections of the training nodes belonging to the [image: there is no content] cluster in the eigenspace.



Once we obtain the cluster means for all the clusters, we use the projections of the validation nodes in the eigenspace. The idea is to calculate the angular similarity between the projection of each validation node and each of the cluster means. The cluster mean that makes the least angle with the projection of the validation node is the closest or most similar for that node. Thus, we assign the cluster corresponding to that cluster mean to the given validation node. For each validation node ([image: there is no content]), we want to obtain [image: there is no content], where


[image: there is no content]



(5)







The closer the projection of the validation node is to that of a given cluster mean, the smaller the angle it has with it and the larger the cosine value of that angle. Therefore, for each validation node we have the cluster to which it is assigned along with the maximum cosine similarity value. We maintain the maximum cosine similarity value for each validation node in a dictionary [image: there is no content]. The dictionary is maintained as [image: there is no content], where [image: there is no content] is the maximum cosine similarity value for the validation node ([image: there is no content]). The obtained clustering is [image: there is no content], where [image: there is no content] contains the set of validation nodes belonging to cluster i. We now define Balanced Angular Fit ([image: there is no content]) as:


BAF(k)=∑i=1k∑validj∈[image: there is no content]1k.MaxSim(validj)|[image: there is no content]|



(6)







The [image: there is no content] simply sums up the cosine similarity values of all the validation nodes belonging to each cluster divided by the cardinality of that cluster. It then divides this overall value by the total number of clusters k in the network. The range of values that [image: there is no content] can take is [image: there is no content]. This is because the maximum similarity value that a validation node can have w.r.t. a cluster mean is 1 (i.e., the angle between them is zero). Because we sum up the cosine similarity values of all the validation nodes in a cluster and divide it by the cardinality of that cluster, the metric is inherently balanced and this fraction cannot exceed one. This process is repeated for each cluster, and in order to normalize the metric, we divide it by the number of clusters in the network. In the worst case scenario, when all the validation nodes are wrongly assigned to clusters with whose cluster mean it makes an angle of π, the [image: there is no content] can end up being [image: there is no content]. However, we observed empirically that the [image: there is no content] value ranges between [image: there is no content] in all our experiments. Higher values of [image: there is no content] indicate better graph partitions found in the validation set. To estimate the parameter k, we iteratively increase the value of k from 3 till a maximum value and select the value of k for which the [image: there is no content] is maximum. The [image: there is no content] will not work for [image: there is no content] as the cluster mean obtained are one-dimensional, one value is positive and the other is negative. The projections of validation nodes are also one-dimensional and either positive or negative and thus the minimum angle between the projections of the validation nodes and the best cluster mean will always be zero. Thus, the [image: there is no content] value will turn out to be 1. The [image: there is no content] measure can not only be used as a model selection criterion but also serve the purpose of an evaluation metric for testing the quality of the clustering. There can be several values of k for which the [image: there is no content] values can be high. If the interval between these values of k is large, then it can be identified with the underlying hierarchy in the network.



In Figure 1, the red colored “*” marked points represent the cluster means in 2-D projected eigenspace where the number of cluster k in the network is equal to 3. The projections of the validation nodes are represented as blue colored “.” points in 2-D. From Figure 1, one can easily conclude the presence of three clusters and the same can be inferred by [image: there is no content]. We can observe that angle between the projections of the validation points and the corresponding best cluster mean is quite small. This is also inferred from the high [image: there is no content] value of [image: there is no content] for [image: there is no content]. We also observe that the nodes in the validation set whose projections are in the first quadrant have maximum deviation from their cluster mean, which affects the overall [image: there is no content] value. From the figure on the right, we observe that for [image: there is no content], the [image: there is no content] value is equal to 1 as suggested earlier and thus ignored while reporting the correct number of clusters.


Figure 1. Model Selection for KSC based on [image: there is no content].



[image: Entropy 15 01567 g001]









4. Selecting a Representative Subgraph


An inherent requirement of the KSC method is to generate a model on the training set. Since, KSC generates a [image: there is no content]×[image: there is no content] size kernel matrix, if the size of [image: there is no content] becomes too large then the KSC procedure would become infeasible. Thus, we need to select a subset of nodes that is representative for the underlying community structure. The obtained subgraph allows to build a model on it during the training phase and provides a meaningful out-of-sample extension to nodes that are not present in the training set. State-of-the-art techniques for sampling large scale graphs include SlashBurn algorithm [18], Snowball Expansion sampling [16], Metropolis [19] and random sampling techniques. An exhaustive comparison of these methods with Fast and Unique Representative Subset (FURS) selection approach was done in [17]. FURS is computationally less expensive and preserves the inherent community structure as evaluated on the various quality metrics like computation time, clustering coefficient, degree distribution, coverage, fraction of communities preserved and variation of information metric, as described in [17].



The motivation is to select a subset of nodes that approximately maximizes the coverage of the graph under the constraint that the selected nodes belong to different dense regions in the graph. Coverage is defined as the ratio of the number of unique nodes directly reachable from the nodes in the selected subset to the total number of nodes in the graph. Coverage is determined by the degree distribution of the nodes in the graph. The idea is to first sort the nodes based on their degree in descending order during each iteration and pick the node with highest degree. Once such a node is selected, its immediate neighbors are deactivated (as they can be reached directly from this node) during that iteration and the node is placed in the selected subset without affecting the graph topology. We then select the node with highest degree among the active nodes and the process is repeated until either all the nodes are deactivated or we reach the subset size. If all nodes are deactivated before we reach the desired subset size, a new iteration is started and the deactivated nodes are reactivated. They are sorted according to their degree in descending order and the process of node selection, deactivation and reactivation is repeated till we obtain the desired subset. FURS results in a subset of nodes that span most or all of the communities in the network. We outline the FURS approach in Algorithm 1.



 [image: Entropy 15 01567 i001]



For big data networks, which cannot fit into memory, FURS can be applied to each individual block of the network that can be stored into memory. Thus, the obtained subset would approximately maximize the coverage of the network and capture the inherent community structure.



4.1. Subset Selection from Synthetic Network


We first demonstrate the FURS selection technique on a small synthetic network. The synthetic graph was generated by the software provided by Fortunato as mentioned in [6]. This software is used to generate an undirected and unweighted synthetic graph of [image: there is no content] nodes with [image: there is no content] edges and 7 communities. The software allows to set a mixing parameter μ that reflects the extent of overlap among the communities. We set the mixing parameter to a moderate value of [image: there is no content] (higher values of mixing parameter lead to highly overlapped communities). Figure 2 depicts the communities as discs of different colors and reflects the extent of overlap between these communities.


Figure 2. Communities and their extent of overlap in the synthetic network.



[image: Entropy 15 01567 g002]






In Figure 2, we do not highlight all the nodes and all the edges. Rather, we show the communities as discs. The communities that are overlapping have more connections among themselves as in comparison with their connections to the other communities.





Some of the statistics about the network are that the minimum degree of a node is 17, the maximum degree is 40 and the median degree of the graph is 23. The minimum number of nodes in a community is 603 and the maximum number of nodes in a community is 913. We then perform our subset selection technique resulting in the sample set S. The subset size is set as [image: there is no content] of the nodes in the network as suggested by the authors in [20]. Figure 3 represents the network [image: there is no content] with all the vertices and the edges between these vertices. It also captures the set of representative nodes S as the yellow colored “o” shaped vertices within the network.


Figure 3. Network along with its representative subset of nodes.



[image: Entropy 15 01567 g003]








The FURS selection technique concurs with our claim that the representative subset consists of members of all or most of the communities of the graph. This can be observed easily from Figure 3 where we see that the yellow colored “o” shaped nodes, which are a by-product of FURS selection technique and span all the communities. We further show this explicitly in Figure 4, where we depict that the fraction of nodes selected from each community are nearly proportional to the size of the community in the original graph. In order to show that the selected nodes have high degree, we present the degree distribution of the entire data network and compare it with the degree distribution of the subset obtained via FURS in Figure 4. From Figure 4, we observe that all the selected nodes have degree greater than M (median degree).


Figure 4. Comparison of data and degree distribution for the synthetic network and the FURS selected subgraph.



[image: Entropy 15 01567 g004]









4.2. Comparison with other Techniques on Synthetic Networks


We also compare the FURS selection technique with SlashBurn and Random sampling methods on a variety of synthetic networks of increasing size and using multiple mixing parameters as depicted in Figure 5. These synthetic networks were also generated by the software provided by Fortunato as mentioned earlier. We maintain the size of the subset as [image: there is no content] of the nodes in the network based on experimental findings in [20] and set the k for “k-hubset” for SlashBurn as [image: there is no content] of the nodes as recommended in [18]. For the Infomap [7] and Louvain [9] community detection techniques, we evaluate the subset obtained by FURS on various metrics such as computation time, clustering coefficients (CCF), coverage, variation of information (VI). We also evaluate the ratio of the number of communities in the large network to the number of communities obtained in the subgraph for the different sampling techniques using Louvain method (fraction of communities preserved). These metrics and a bunch of other metrics are described in detail along with their evaluations on several community detection algorithms in [17].


Figure 5. Comparison of FURS, SlashBurn and Random sampling techniques for various evaluation metrics on synthetic networks with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] nodes, with mixing parameter μ varying from [image: there is no content] to [image: there is no content] along the x-axis and the value of the metric plotted on the y-axis.



[image: Entropy 15 01567 g005]






In Figure 5 the lines determine the value of evaluation metrics like time required, clustering coefficient, coverage, variation of information and fraction of communities covered for each value of mixing parameter [image: there is no content]. These lines correspond to 3 different sampling algorithms including the FURS selection, SlashBurn and Random sampling methods on synthetic networks containing [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] nodes respectively. Several of these values are exactly the same and hence some of these lines completely overlap as observed from Figure 5. From Figure 5, we observe that Random sampling is the least expensive computationally but doesn’t preserve the original community structure. This can be observed from the variation of information (VI) for Louvain and Infomap method (lower values of VI are better) and also the fraction of communities preserved for Louvain method. Surprisingly, the coverage value turns out to be high for Random sampling except for networks with 5000 nodes. The SlashBurn algorithm is computationally expensive and doesn’t capture the CCF as well as FURS and Random sampling techniques. However, the SlashBurn approach is highly consistent w.r.t. the other evaluation metrics. The FURS selection technique is computationally less intensive than SlashBurn and better preserves the CCF. With the exception of synthetic networks with 5000 nodes, the FURS technique preserves the community structure of larger networks even with high mixing parameter as depicted in Figure 5. So, for large scale networks it is better to use the FURS selection technique.





We provide an algorithm that summarizes the KSC approach for big data networks in Appendix A.





5. Experiments and Analysis


We conducted experiments on several big datasets, including a synthetic network with [image: there is no content] nodes, a social network with about 4 million nodes, a road network of city with around 2 million nodes, and YouTube network with more than 1 million nodes. These real world datasets are obtained from [26].



5.1. Dataset Description


	
Synthetic Network: The synthetic network is generated from the software provided in [6] with a mixing parameter of [image: there is no content]. The number of nodes in the network is [image: there is no content], the number of edges in the network is [image: there is no content] and the number of communities in the network is 6.



	
YouTube Network: In YouTube social network, users form friendship with each other and the users can create groups that others can join. This network has more than 1 million nodes and around [image: there is no content] million edges. Thus the network is highly sparse.



	
roadCA Network: A road network of California. Intersections and endpoints are represented by nodes and the roads connecting these intersections are represented as edges. The number of nodes in the network is around 2 million and the number of edges in the network is more than [image: there is no content] million.



	
Livejournal Network: It is a free online social network where users are bloggers and they declare friendship among themselves. The number of nodes in the network is around 4 million and the network has around 35 million edges.







5.2. FURS on these Datasets


We first apply the FURS technique on these datasets to select a training set and validation set of nodes. As mentioned earlier, the maximum number of nodes that we select using FURS selection technique is [image: there is no content] nodes in order to have a kernel matrix that adheres to the memory restrictions. The step that we follow is to first select the training set using FURS, then these set of nodes are removed from the graph. We then run another iteration of FURS to select the validation set of nodes. Table 1 highlights the values of various evaluation metrics for these datasets for the FURS selection technique for the training set of nodes.



Table 1. Various evaluation metrics on FURS for each dataset.







	
Dataset

	
Nodes

	
Edges

	
Time

	
Coverage

	
Clustering Coefficient

	
Degree Distribution






	
Synthetic

	
500,000

	
23,563,412

	
103.49

	
0.44

	
0.906

	
0.786




	
YouTube

	
1,134,890

	
2,987,624

	
20.546

	
0.28

	
0.975

	
0.959




	
roadCA

	
1,965,206

	
5,533,214

	
30.816

	
0.135

	
0.89

	
0.40




	
Livejournal

	
3,997,962

	
34,681,189

	
181.21

	
0.173

	
0.92

	
0.953












From Table 1, we can observe that even after selecting just [image: there is no content] nodes, which is equivalent to [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] fraction of nodes in the four networks respectively, the coverage value is quite high. The clustering coefficient and degree distribution values have been converted into similarity metric as described in [16]. The maximum value for the clustering coefficient and degree distribution can be 1. Hence, the higher the value, the better the quality of the subset selected. We observe from Table 1 that these quality metrics have quite high values with the exception of [image: there is no content] value of degree distribution for roadCA network. We also notice that the time required for subset selection for the Synthetic network is more than that for networks like YouTube and roadCA, which have more nodes. However, this is because the Synthetic network is much denser than these real world networks with around 23 million edges in comparison with nearly [image: there is no content] and [image: there is no content] million edges in the YouTube and roadCA networks respectively.




5.3. Results and Analysis


The kernel spectral clustering results in a model based on the subgraph selected by the FURS subset selection technique and uses its out-of-sample extension property to provide cluster labels for new unseen nodes. Since most of the spectral clustering methods, graph partitioning methods and graph clustering methods require to take into consideration the full network into the main memory, it would be unfair to compare KSC with these methods. There are several graph clustering techniques like Louvain method, Infomap method, CNM [4], which can scale up to million nodes on a single computer. However, if the size of the network increases such that it can no longer fit in the memory, then these methods would become infeasible.





Figure 6 shows the model selection or identification of the number of clusters k for the different datasets. We plot 3 dominant peaks for each of the 4 datasets. Currently, we select the peaks based on an adhoc procedure. We sort [image: there is no content] values and select the maximum and restrict from selecting peaks in the immediate neighborhood as we might miss the hierarchical structure in that case. As mentioned earlier, the [image: there is no content] metric is not only suitable for model selection but can also be used as an effective cluster evaluation metric. The higher the [image: there is no content] value, the better the partitioning of the network. We observe that for the Synthetic network the [image: there is no content] values are high for small number of clusters. Thus, in this case we make an exception and select the peaks close to each other. For the Synthetic network we do locate a peak at [image: there is no content] with [image: there is no content], which is the actual number of clusters present in the network. For the YouTube network, we observe that we reach the first dominant peak at [image: there is no content] and then the [image: there is no content] value starts to decrease before it starts to increase again and locates the next dominant peak at [image: there is no content]. This shows the effectiveness of the [image: there is no content] metric for identification of hierarchical structure in the big data network. For the YouTube network the [image: there is no content] values decrease initially as the value of k increases indicating that the clusters are not well-formed. However, its value start to increase from [image: there is no content] as we are now obtaining the second level of hierarchy. The [image: there is no content] value is [image: there is no content] for [image: there is no content] which indicates that there are 97 well partitioned clusters at the second level of hierarchy for the YouTube network. For the roadCA and Livejournal networks, the [image: there is no content] generally follows a decreasing trend with the increment in the number of clusters with a few spurious dominant peaks as depicted in Figure 6. The maximum number of clusters in the network was fixed as 200 in our experiments and we observe that it is sufficient to provide a general trend for [image: there is no content] versus the number of clusters (k) curve.


Figure 6. [image: there is no content] for different values of k for the various big data networks.



[image: Entropy 15 01567 g006]






Table 2 provides details about three dominant peaks, time required for training, i.e., time required for building the kernel matrix and obtaining the model ([image: there is no content],[image: there is no content]), validation time and the time required for testing. For testing, we use the entire big data network as test set. We noticed that it is not possible to store the big [image: there is no content] in the main memory and we divided the test data into blocks containing adjacency list of maximum [image: there is no content] nodes as described in Algorithm 2 in Appendix A. The maximum number of nodes we selected for training set is [image: there is no content], taking into account the memory constraints.



Table 2. Experimental results for various Big Data Networks







	
Dataset

	
Peak1

	
BAF1

	
Peak2

	
BAF2

	
Peak3

	
BAF3

	
Train Time (Seconds)

	
Validation Time (Seconds)

	
Test Time (Seconds)






	
Synthetic

	
3

	
0.8605

	
4

	
0.719

	
6

	
0.6817

	
103.45

	
111.42

	
10234.5




	
YouTube

	
5

	
0.9348

	
97

	
0.8654

	
139

	
0.7877

	
88.64

	
97.86

	
20055.45




	
roadCA

	
9

	
0.798

	
20

	
0.6482

	
138

	
0.5917

	
97.412

	
105.13

	
38960




	
Livejournal

	
4

	
0.94355

	
41

	
0.8014

	
73

	
0.6951

	
121.43

	
134.56

	
97221.4












From Table 2, we observe that the training time for building the model for these big data networks is quite small. The training time comprises of constructing the kernel matrix (Ω) and performing eigen-decomposition to obtain the model ([image: there is no content],[image: there is no content]). The validation time comprises of creating [image: there is no content], using out-of-sample extensions to obtain [image: there is no content] and obtain the model parameter, i.e., the number of clusters k using the [image: there is no content] metric. The maximum time required is the test time, i.e., time required to create [image: there is no content] and cluster memberships using out-of-sample extensions for each block of the large network. We observe that the number of blocks into which the Synthetic network, YouTube network, roadCA network and Livejournal network are divided is 100, 227, 394 and 800 respectively. The average testing time for each block of each dataset is nearly the same as the time required for training the model for that dataset. The testing operation can easily be performed in a distributed environment. Thus, the time required for testing can be scaled down by a factor of 20–40 depending on the number of computers in the cluster of the distributed environment. We observe that the time required for training the Synthetic network is more than that of YouTube and roadCA networks, although they have more number of nodes. This is because the Synthetic network is much denser than these two real world datasets.



We also compare the proposed KSC method using BAF metric (BAF-KSC) with original KSC formulation using BLF criterion (BLF-KSC), Louvain, Infomap and CNM on evaluation metrics like Modularity (Q) and conductance (Con) for several small scale real world networks to provide a comparison of the performances. We have considered a wide range of networks varying from flight network (Openflights), network based on trust (PGPnet), biological network (Metabolic), citation networks (HepTh, HepPh), communication network (Enron), review based network (Epinion) to collaboration network (Condmat). Most of these networks can be found at [26].





From Table 3 we observe that the BAF-KSC and BLF-KSC methods results in small number of clusters. This is because we consider the first peak corresponding to the highest [image: there is no content] and [image: there is no content] value respectively. We also observe that since the KSC method results in small number of clusters the conductance (Con) value is the quite low for most of the networks. The lower the conductance value the better the quality of the clusters. We also observe that the Modularity (Q) metric value is generally high for the BAF-KSC and BLF-KSC methods but less in comparison to Louvain method. We also observe the Q value is higher for the proposed KSC method (BAF-KSC) over the original KSC formulation (BLF-KSC) for 7 real world networks. Higher values of Modularity (Q) mean more modular graph partitions. The Louvain method is the best w.r.t. the Q metric as it optimizes the Modularity function. However, the conductance for the Louvain method for the various real world networks is generally 10 times more than the conductance for the KSC method. The CNM and BLF-KSC methods results in best conductance for Epinion networks as it identifies small number of well separated clusters for these networks.



Table 3. Performance comparison of BAF-KSC method with BLF-KSC, Louvain, Infomap and CNM methods on quality metrics like Modularity (Q) and Conductance (Con) for several real world networks.







	
Dataset

	
BAF-KSC

	
BLF-KSC [14]

	
Louvain [9]

	
Infomap [7]

	
CNM [4]






	

	
Clusters

	
Q

	
Con

	
Clusters

	
Q

	
Con

	
Clusters

	
Q

	
Con

	
Clusters

	
Q

	
Con

	
Clusters

	
Q

	
Con




	
Openflights

	
5

	
0.533

	
0.002

	
5

	
0.523

	
0.002

	
109

	
0.61

	
0.02

	
18

	
0.58

	
0.005

	
84

	
0.60

	
0.016




	
PGPnet

	
8

	
0.58

	
0.002

	
9

	
0.53

	
0.002

	
105

	
0.88

	
0.045

	
84

	
0.87

	
0.03

	
193

	
0.85

	
0.041




	
Metabolic

	
10

	
0.22

	
0.028

	
5

	
0.215

	
0.012

	
10

	
0.43

	
0.03

	
41

	
0.41

	
0.05

	
11

	
0.42

	
0.021




	
HepTh

	
6

	
0.45

	
0.0004

	
5

	
0.432

	
0.0004

	
172

	
0.65

	
0.004

	
171

	
0.3

	
0.004

	
6

	
0.423

	
0.0004




	
HepPh

	
5

	
0.56

	
0.0004

	
5

	
0.41

	
0.001

	
82

	
0.72

	
0.007

	
69

	
0.62

	
0.06

	
6

	
0.48

	
0.0007




	
Enron

	
10

	
0.4

	
0.002

	
7

	
0.21

	
0.001

	
1272

	
0.62

	
0.05

	
1099

	
0.37

	
0.27

	
6

	
0.25

	
0.0045




	
Epinion

	
10

	
0.22

	
0.0003

	
10

	
0.22

	
0.0

	
33

	
0.006

	
0.0003

	
17

	
0.18

	
0.0002

	
10

	
0.14

	
0.0




	
Condmat

	
6

	
0.28

	
0.0002

	
13

	
0.43

	
0.0003

	
1030

	
0.79

	
0.03

	
1086

	
0.79

	
0.025

	
8

	
0.38

	
0.0003












6. Conclusions


In this paper we showed that the Kernel Spectral Clustering (KSC) method is a powerful tool for community detection in big data networks. While the problem of community detection has received a lot of attention in the past, the state-of-the-art approaches work under the assumption that the entire network can fit in the main memory. However, with the increasing amount of information, the size of the networks will only increase and big data networks may not necessarily fit in the main memory.



The KSC method employs an optimization based framework to construct the model, which has a very useful out-of-sample extension property. However, the model that is constructed should be such that it adheres to the memory restrictions. Therefore, there is a need to select a representative subgraph of the big data network on which the model can be built. We use the FURS selection procedure for this purpose. It selects nodes from different dense regions of the graph while maximizing the coverage and preserves the inherent community structure of the big data network.



In order to obtain the model parameters (i.e., the number of clusters k in the network in case of large complex networks), we propose a novel metric Balanced Angular Fit. The [image: there is no content] metric works with a codebook [image: there is no content] and the projections of the validation set to determine the ideal number of clusters k in the big data network. The metric is both memory- and computationally efficient, unlike the previously proposed Modularity metric. The out-of-sample extensions property allows inferring community affiliation for unseen nodes. It is because of this property that we can handle large scale networks relatively easily. Finally, we show that the KSC method works effectively on a big Synthetic Network and several real world big data networks. Future work may focus on automatically determining the dominant peaks in [image: there is no content]versus number of clusters curve.
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Algorithm 1: FURS Algorithm

Data: A list of nodes with their corresponding degree values L = (V, f(V)), the median degree M
and the adjacency matrix A containing information about neighbors Nbr(v;), Vv; € V.

Result: A subset of representative nodes S whose cardinality 1s Ng

L:=(V,f(V)),Yv; € V such that f(v;) > M

L :=sort(L) // Based on the degree values in descending order

while |S| < Ng do

// REACTIVATION Step

if L == {} then

L := LUA{v;, f(v;)}, Yu; € V that was deactivated.

L :=sort(L) // Based on the degree values in descending order

end

// HUB SELECTION

v1 := L.pop() // pop out the highest degree node

S:=5SUwv;// Add to output set S

Nb <+ Nbr(vy) // Neighboring nodes of

// Create a temporary list and add Nb along with their
corresponding degree, if Nbr(vy) is not already present in
the list.

// DEACTIVATION Step

L := L.deactivate(Nb, f(Nb)) // Deactivate the neighbors of

end
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Data: Given a graph G = (V, F/), which might not necessarily be stored in the memory.

Result: The partitions of the graph G, i.e., divide graph into k clusters.

Convert and store the graph G in sparse format.

if If GG fits in the main memory then

else

end

Select the training set of nodes X4, (i.e., maximum size = 5, 000 nodes) using FURS.

Select the validation set of nodes (same size as X;,) after removing the subgraph .S corresponding to
X4 using FURS.

Calculate the kernel matrix {2 by applying cosine similarity operations on sparse adjacency lists of Vz, j
Vi, Vj € Xip.

Perform eigen-decomposition of €2 to obtain the model, i.e., a"), b;.

(0)

Use out-of-sample extension property to obtain the projection values for the validation set, i.e., e, ;. ..

Use BAF and e(l)

alig O estimate the number of clusters k.

After estimating k, use the out-of-sample property and the decoding scheme to assign clusters to unseen

test nodes (We use the entire network as test data).

Divide (G into blocks where each block contains an adjacency list of maximum 5, 000 nodes.

To obtain training and validation nodes from all parts of the graph, divide the size of the subset to be
selected by the number of blocks used to store G. For example, if the subset size is 5, 000 nodes, the
number of blocks required to store the & is 10, then divide the subset size by 10 to estimate a value
ot 500.

Select this estimated number of training nodes from each block by running the FURS selection technique
on each block. This results 1in a subset of nodes that approximately maximizes the coverage of the graph.
Run an 1teration over all the blocks and remove all the edges corresponding to the selected subset of
training nodes.

Calculate the kernel matrix €2 by applying cosine similarity operations on sparse adjacency lists of Vi, 7
Vi, Vj € Xgp.

Perform eigen-decomposition of €2 to obtain the model, i.e., a"), b;.

Re-perform the operations specified for selecting training nodes to select the validation set.

If the validation set size > training set size, it might become infeasible to store €2,,;;4 1n the main
memory. To overcome this problem, divide the validation set into blocks containing adjacency list of
maximum 5, 000 nodes. The maximum size of {2,,;;4 would be 5, 000 x 5, 000, which can be stored in
memory as mentioned earlier.

Use out-of-sample extension property to obtain the projection values for each block of validation set,

(0)

validpock, *

Use BAF on all the blocks of e(l)

”UCLlidblOck

l.e., €

- to estimate the number of clusters k.

(%

After estimating £, use the out-of-sample property and the decoding scheme to assign clusters to unseen
test nodes.
Each block of (& is used as test data and cluster memberships are assigned to the nodes in the

corresponding blocks.
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