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Abstract: Studies of learning algorithms typically concentrate on situations where
potentially ever growing training sample is available. Yet, there can be situations (e.g.,
detection of differentially expressed genes on unreplicated data or estimation of time delay
in non-stationary gravitationally lensed photon streams) where only extremely small samples
can be used in order to perform an inference. On unreplicated data, the inference has
to be performed on the smallest sample possible—sample of size 1. We study whether
anything useful can be learnt in such extreme situations by concentrating on a Bayesian
approach that can account for possible prior information on expected counts. We perform
a detailed information theoretic study of such Bayesian estimation and quantify the effect
of Bayesian averaging on its first two moments. Finally, to analyze potential benefits of the
Bayesian approach, we also consider Maximum Likelihood (ML) estimation as a baseline
approach. We show both theoretically and empirically that the Bayesian model averaging
can be potentially beneficial.

Keywords: Poisson distribution; unreplicated data; Bayesian learning; expected
Kullback–Leibler divergence

1. Introduction

Studies in (computational) learning theory mostly tend to concentrate on situations where potentially
ever increasing number of training examples is available. While such results can lead to deep insights
into the workings of learning algorithms, e.g., linking together characteristics of the data generating
distributions, learning machines and sample sizes, there can be situations where, by very nature of the
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problem, only extremely small samples are available. In such situations it is of utmost importance to
theoretically analyze exactly what and under what circumstances can be learnt. One example of such a
scenario in count data is detection of differentially expressed genes, where even subtle changes in gene
expression levels can be indicators of biologically crucial processes [1]. When replicas are costly to
obtain one can attempt to use the limited data at one’s disposal to make the relevant inferences, as for
example in the Audic and Claverie approach [2–6]. Another situation where available count data can
be extremely sparse is estimation of time delay in non-stationary gravitationally lensed photon streams.
When the scale of variability of the source is of order, say, of more than tens of days and observation gaps
are not too long, one can resolve the time delay between lensed images of the same source by working
directly with daily measurements of fluxes in the radio, optical or X-ray range [7–10]. However, when
the variability scale is of the order of hours, one must turn to photon streams in the lensed images. One
possibility of time delay detection in such cases is through comparing counts in relatively short and
time-shifted moving time windows in the lensed photon streams.

In this paper we theoretically study what happens in the extreme situation of unreplicated data when
the inference has to be performed on the smallest sample possible—sample of size 1. We consider a
model-based Bayesian approach that averages over possible Poisson models with weighting determined
by the posterior over the models, given the single observation. In fact, such a Bayesian approach has been
considered in the bioinformatics literature under the assumption of flat improper prior over the Poisson
rate parameter [2–6]. One can, of course, be excused for being highly sceptical about the relevance of
such inferences, yet the methodology has apparently been used in a number of successful studies. In an
attempt to build theoretical foundations behind such inference schemes, we proved a rather surprising
result [11]: The expected Kullback–Leibler divergence from the true unknown Poisson distribution to its
model learnt from a single realization never exceeds 1/2 bit.

Even though the field of bioinformatics is moving fast and better procedures for detection of
differentially expressed genes have been introduced (e.g., not relying on the Poisson assumption,
specifically taking into account potential dependencies among the genes, etc.), the primary focus of
this study is different. Irrespective of the application domain, we theoretically investigate how reliably
can a model for count data be build from a single count observation, under the assumption of a Poisson
source. There are two issues that need careful consideration:

1. Equal a-priori weighting (flat prior) over possible (unknown) Poisson sources is unrealistic.
Typical values of observed counts are usually bounded by the nature of the problem (e.g., gene
magnification setting used in the experiments or time window on the photon streams). One
may have a good initial (a-priori) guess as to what ranges of typical observed counts might be
reasonably expected. In particular, we are interested in the low count regimes. In such cases, it is
desirable to incorporate such prior knowledge into the inference mechanism. In this study, we do
this in the Bayesian framework through prior distribution over the expected counts.

2. To understand potential benefits of the proposed learning/inference method (in our case Bayesian
approach), it is important to compare it with a simple straightforward baseline (here maximum
likelihood estimation). We contrast the expected Kullback–Leibler divergences from the true
unknown Poisson distribution to its Bayesian and maximum likelihood estimates, inferred from
a single realization.
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The paper has the following organization. In Section 2 we introduce the maximum likelihood and
Bayesian (with flat prior over mean rates) approaches to inferring predictive distribution over counts
based on a single count observation. We also briefly review past work on information theoretic properties
of the two approaches. Section 3 contains derivation of a more general Bayesian approach with gamma
prior on the mean count parameter. In Section 4 we calculate the first two central moments of our
generalized model. This enables us to better understand the influence of the prior on the inferred
model and highlight the differences with the previous approach using the flat (improper) prior. In
Section 5 we perform an information theoretic study of learning capabilities of the generalized model.
Empirical investigations are presented in Section 6 and the main findings are discussed and summarized
in Section 7.

2. Single Count Data—Bayesian and Maximum Likelihood Approaches

In this section we will briefly review the original Audic–Claverie [2] and maximum likelihood
approaches outside the bioinformatics context.

2.1. Bayesian Averaging in the Audic–Claverie Approach

Let x be an observed count in an experiment. When repeating the experiment, possibly under different
conditions, we observe a (possibly different) count y. The quantity of interest is the probability of
observing y given that we already observed x, not knowing the identity of the generating Poisson source

P (X = x|λ) = e−λλ
x

x!
(1)

where λ ≥ 0 is the (unknown) parameter representing the mean count value.
Under the null hypothesis (not differentially expressed genes), both counts x and y come from the

same underlying Poisson distribution P (·|λ). The key instrument in the Audic–Claverie approach is
a distribution PAC(y|x) over counts y informed by the observed count x, under the null hypothesis.
PAC(y|x) is obtained by Bayesian averaging (infinite mixture) of all possible Poisson distributions
P (y|λ′) with mixing proportions equal to the posteriors p(λ′|x) under the flat prior over λ. Formally, the
probability of count y, given the observed count x from the same (unknown) Poisson distribution is:

P (y|x) =

∫ ∞

0

p(y, λ|x) dλ

=

∫ ∞

0

P (y|λ, x) p(λ|x) dλ

=

∫ ∞

0

P (y|λ) P (x|λ) p(λ)∫∞
0
P (x|λ′) p(λ′) dλ′

dλ (2)

Imposing the flat (improper) prior p(λ) over the Poisson parameter λ results in

PAC(y|x) =
1

y!

∫∞
0
e−2λ λx+y dλ∫∞

0
e−λ λx dλ

Since Gamma distribution parameterized by a, b > 0 takes the form

Gamma(λ|a, b) = 1

Γ(a)
ba λa−1 e−bλ
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where Γ(a) =
∫∞
0
ua−1e−udu is the Gamma function, we have

PAC(y|x) =
1

y! 2x+y+1

Γ(x+ y + 1)

Γ(x+ 1)
(3)

which, since x and y are integers (i.e., Γ(x) = (x− 1)!), can be rewritten as

PAC(y|x) =
1

2x+y+1

(x+ y)!

x! y!
(4)

=
1

2x+y+1

(
x+ y

x

)
(5)

PAC(·|x) can then be used, e.g., for principled inferences, construction of confidence intervals or
statistical testing.

2.2. Information Theory of PAC(y|x)

Consider a “true” underlying Poisson distribution P (y|λ) (1) over possible counts y ≥ 0. We first
use P (·|λ) to generate a count x and then employ PAC(y|x) (5) as a model distribution over y, given
the already observed count x. We ask: If we repeated the process above, how different, in terms of
Kullback–Leibler divergence, are on average the two distributions over y? One would naturally hope
that PAC(y|x) is sufficiently representative of the true unknown distribution P (y|λ).

In [11] we proved that, given an underlying Poisson distribution P (x|λ), if we repeatedly generated a
“representative” count x from P (x|λ), the average divergence E(λ) of PAC(y|x) from the truth P (y|λ)
would never exceed 1/2 bit.

Theorem 1 [11] Consider an underlying Poisson distribution P (·|λ) parameterized by some λ > 0.
Then

E(λ) = EP (x|λ)[ DKL[P (y|λ)∥PAC(y|x)] ] =
1

2
log 2 + O

(
1

λ

)
where DKL[P (y|λ)∥PAC(y|x)] is the Kullback–Leibler divergence from P (y|λ) to PAC(y|x),

DKL[P (y|λ)∥PAC(y|x)] =
∞∑
y=0

P (y|λ) log
P (y|λ)
PAC(y|x)

The expected divergence (in bits) can be well-approximated (up to order O(λ−3)) by [11]:

E(λ) ≈ 1

2
− 1

12λ

(
1− 1

2

)
− 1

24λ2

(
1− 1

22

)
(6)

2.3. PAC(y|x) vs. Maximum Likelihood

In this section we will briefly recall information theoretic analysis of the maximum likelihood estimate
PML(y|x) in place of PAC(y|x) [12]. First note that Poisson distribution P (y|λ) is only defined for
positive λ. In the case of observing zero count x = 0, we cannot directly use the “maximum likelihood
estimate” P (y|0). One option for dealing with zero observed counts is to allow for some form of model
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regularization, e.g., infer a Poisson model P (y|ϵ), for some small ϵ > 0. In other words, if a count
x ≥ 1 is observed, follow the standard maximum likelihood procedure and infer PML(y|x) = P (y|x)
as the Poisson model; if a zero count is observed, x = 0, infer PML(y|0) = P (y|ϵ) for some fixed
ϵ ∈ (0, 1]. This is the route taken in [12] and adopted in this paper. Only a minimum amount of necessary
regularization due to zero observed counts is employed in the otherwise straightforward ML approach.

Theorem 2 [12] Consider an underlying Poisson distribution P (·|λ) parameterized by some λ > 0 and
a regularization constant ϵ ∈ (0, 1]. The expected divergence in bits Υ(λ, ϵ) between the true Poisson
source and its (regularized) maximum likelihood estimate based on a single observation,

Υ(λ, ϵ) = EP (x|λ)[ DKL[P (y|λ)∥PML(y|x)] ]

is equal to

Υ(λ, ϵ) = λ

(
log2 λ−

∞∑
x=1

P (x|λ) log2 x

)
+ e−λ (ϵ− λ log2 ϵ) (7)

Note that the expected divergence Υ(λ, ϵ) can get prohibitively large when regularizing with small
ϵ > 0. As an illustration, in Figure 1 we show expected divergence Υ(λ, ϵ = 1) of the ML estimation
(zero count regularized with ϵ = 1) for a range of mean parameter values λ of the underlying Poisson
source (solid line). Also shown is the expected divergence E(λ) of PAC(y|x) (dashed line). Except for
very small Poisson source rates λ, PAC(y|x) is clearly benefitting from the stabilizing effect of Bayesian
averaging, given the extremely small sample size.

Figure 1. Expected divergence (in bits) Υ(λ, ϵ = 1) of the ML estimation (zero count
regularized with ϵ = 1) (solid line). Also shown is the expected divergence E(λ) of PAC(y|x)
(dashed line).
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3. Generalized PAC(y|x) with Gamma Prior

In this section we will generalize PAC(y|x) through the use of (conjugate) gamma prior

P (λ|α, β) = βα

Γ(α)
λα−1e−βλ

on the Poisson mean parameter λ. The positive parameters α, β determine the overall shape of the prior.
Given a single observation x, the posterior

P (λ|x, α, β) = P (x|λ) P (λ|α, β)∫∞
0
P (x|λ) P (λ|α, β) dλ

is the gamma distribution with parameters α+ x and β + 1,

P (λ|x, α, β) = (β + 1)α+x

Γ(α+ x)
λα+x−1 e−(β+1)λ

The mean of P (λ|x, α, β) is equal to (α + x)/(β + 1). A loose intuitive interpretation of the prior
parameters α, β (assuming they are integers) is that prior to seeing the current data (in our case only one
observation (count) x), we have seen β “observations”, x′1, x

′
2, ..., x

′
β , with the total cumulative count

α = x′1 + x′2 + ... + x′β . Hence the mean parameter estimate would shift from x (ML estimation
corresponding to α, β → 0) to (x′1 + x′2 + ...+ x′β + x)/(β + 1).

As in the case of PAC(y|x), having observed a count x, we build a predictive distribution over future
counts y by integrating out the mean parameter λ with respect to the posterior P (λ|x, α, β),

PG(y|x, α, β) =

∫ ∞

0

P (y|λ) P (λ|x, α, β) dλ

=
(β + 1)α+x

Γ(α+ x)

1

y!

∫ ∞

0

λα+x+y−1 e−(β+2)λ dλ (8)

From normalization of the gamma distribution we get∫ ∞

0

λa−1 e−bλ dλ =
Γ(a)

ba

and so ∫ ∞

0

λα+x+y−1 e−(β+2)λ dλ =
Γ(x+ y + α)

(β + 2)x+y+α

leading to

PG(y|x, α, β) =
1

y!

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α
(9)

It can be easily verified that the original PAC(y|x) is obtained as a special case of PG(y|x, α, β) when
α = 1 and β → 0. If Jeffrey’s prior were used instead of the flat prior in PAC(y|x), we would obtain
PG(y|x, α, β) with α = 1/2 and β → 0 etc.

If α is an integer, we have

PG(y|x, α, β) =
(
1 + β

2 + β

)x′+1(
1

2 + β

)y (
x′ + y

y

)
(10)
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where x′ = x + α − 1 is the observed count including prior observations. This expression generalizes
PAC(y|x) (5),

PAC(y|x) =
(
1

2

)x+1(
1

2

)y (
x+ y

y

)
While PG(y|x, α, β) (9) can be used with any appropriate setting of α, β (e.g., given a prior knowledge

of the range of counts one may reasonably expect), in this contribution we concentrate on using the
gamma prior to mitigate for the unrealistic equal weighting of all λ > 0 in the flat prior behind PAC(y|x).
Indeed, the observed counts are typically bounded by the nature of the problem and one can represent
this through setting α = 1 and varying β > 0 in the gamma prior P (λ|α, β) underlying PG(y|x, α, β).
Some examples of such priors are shown in Figure 2. Decreasing β leads to weaker emphasis on low λ,
eventually recovering the flat (improper) prior for β = 0.

Figure 2. Gamma prior P (λ|α = 1, β). Shown are the priors for three possible values of
parameter β, β ∈ {1, 0.1, 0.05}.
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In Section 2.3 maximum likelihood estimation was regularized at zero count by imposing a
non-zero “count” ϵ instead of the observed zero one. The generalized form of PAC(y|x), PR(y|x, β) =
PG(y|x, α = 1, β) can be also viewed as an alternative “soft” form of regularization of the maximum
likelihood approach at zero counts.

Parameter β in the Gamma prior

P (λ|α = 1, β) = β e−βλ

can be set in a data driven manner, e.g., using the following strategy: Given the observed count x, we
require that the area up to x + 1 covered by the prior is equal to θ, for some threshold θ ∈ (0, 1) (e.g.,
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θ = 1/4). In other words, F (x + 1|β) = θ, where F (λ|β) = 1 − e−βλ is the cumulative distribution
function of P (λ|α = 1, β). This leads to

β(x) = − ln(1− θ)

x+ 1
(11)

For zero observed count x = 0, β(0) = − ln(1− θ) and the prior gets more concentrated on smaller
values of λ as likely candidates for the mean count of the underlying Poisson source. With increasing
count values x > 0 the parameter β(x) decreases to 0 and the prior gradually approaches the flat prior of
PAC(y|x).

Finally, we contrast PG(y|x, α, β) with the negative binomial distribution

PNB(y|r, q) =
1

y!

Γ(r + y)

Γ(r)
qr(1− q)y (12)

with parameters r > 0 and q ∈ [0, 1]. One interpretation of the negative binomial distribution
PNB(y|r, q) is that it corresponds to a Gamma–Poisson mixture that one obtains by imposing a Gamma
prior P (λ|r, (1−q)/q) on the mean count parameter λ of the Poisson distribution P (y|λ) and integrating
out λ. In our context it is natural to identify r and (1 − q)/q with hyperparameters α and β used in
PG(y|x, α, β). It follows that q = (β + 1)−1. Hence, we rewrite (12) as

PNB(y|α, (β + 1)−1) =
1

y!

Γ(α+ y)

Γ(α)

βy

(β + 1)α+y
(13)

Direct comparison of (13) with (9) leads to an intuitive insight: The β prior measurements of total count
α introduced by the gamma prior P (λ|α, β) are in the case of PG(y|x, α, β) extended with a single
observation x, resulting in β + 1 observations of total count α+ x. This can be represented by

PNB(y|α+ x, (β + 2)−1) =
1

y!

Γ(x+ y + α)

Γ(x+ α)

(β + 1)y

(β + 2)x+y+α
(14)

It follows that
PG(y|x, α, β)

PNB(y|α+ x, (β + 2)−1)
= (β + 1)x+α−y.

Bayesian averaging in PG(y|x, α, β) with respect to the posterior over λ, given a count x, differs from
the corresponding negative binomial distribution PNB(y|α + x, (β + 2)−1) by the factor (β + 1)x+α−y

that depends on the difference between the prior+observed count α+ x and y.

4. First and Second Moments of the Generalized PAC(y|x)

In [11] we showed that PAC(y|x) and the underlying Poisson distribution are quite similar in their
nature: for any (integer) mean rate λ ≥ 1, the Poisson distribution P (·|λ) has two neighboring modes
located at λ and λ− 1, with P (λ|λ) = P (λ− 1|λ). Analogously, given a count x ≥ 1, PAC(·|x) has two
neighboring modes, one located at x, the other at x− 1, with PAC(x|x) = PAC(x− 1|x). As in Poisson
distribution, the values of PAC(y|x) decrease as one moves away from the modes in both directions. In
this section we derive the first two moments of the generalized PAC(y|x), PG(y|x, α, β). As a special
case, we will show that as a result of Bayesian averaging, the variance of PAC(y|x) is double that of the
underlying (unobserved) Poisson distribution.
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Theorem 3 Consider a non-negative integer x and the associated generalized model PG(y|x, α, β).
Then,

EPG(y|x,α,β)[y] =
x+ α

β + 1
, V ar[y] =

β + 2

β + 1
EPG(y|x,α,β)[y]

Proof: Let us evaluate

EPG(y|x,α,β)[y] =
∞∑
y=0

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y

=
∞∑
y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

(y − 1)!

=
∞∑

y′=0

Γ(x+ y′ + 1 + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y′+1+α

1

y′!

=
∞∑

y′=0

Γ(x+ y′ + α) · (x+ y′ + α)

Γ(x+ α)

(β + 1)x+α

(β + 2) · (β + 2)x+y′+α

1

y′!
(15)

In the third equality we have used substitution y′ = y − 1 and the last equality follows from Γ(z + 1) =

z · Γ(z). By (15),

EPG(y|x,α,β)[y] =
∞∑
y=0

PG(y|x, α, β)
x+ α+ y

β + 2
(16)

=
x+ α

β + 2
+

1

β + 2
EPG(y|x,α,β)[y] (17)

Solving (17) we obtain

EPG(y|x,α,β)[y] =
x+ α

β + 1
(18)

For the variance of PG(y|x, α, β) we have

V arPG(y|x,α,β)[y] = EPG(y|x,α,β)[y
2]− (EPG(y|x,α,β)[y])

2 (19)

Now,

EPG(y|x,α,β)[y
2] =

∞∑
y=0

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y2

=
∞∑
y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y2

=
∞∑
y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

(y − 1)!
y

=
∞∑

y′=0

Γ(x+ y′ + 1 + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y′+1+α

1

y′!
(y′ + 1)
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=
∞∑

y′=0

(x+ y′ + α) Γ(x+ y′ + α)

Γ(x+ α)

(β + 1)x+α

(β + 2) (β + 2)x+y′+α

1

y′!
(y′ + 1)

=
1

β + 2

∞∑
y′=0

PG(y
′|x, α, β) [(x+ y′ + α) (y′ + 1)]

=
1

β + 2

∞∑
y′=0

PG(y
′|x, α, β) [x+ y′ + α]

+
1

β + 2

∞∑
y′=0

PG(y
′|x, α, β) [y′ (x+ α) + y′2] (20)

Using (16), (18) and (20), we obtain

EPG(y|x,α,β)[y
2] = EPG(y|x,α,β)[y] +

x+ α

β + 2
EPG(y|x,α,β)[y] +

1

β + 2
EPG(y|x,α,β)[y

2]

=
x+ α

β + 1

(
1 +

x+ α

β + 2

)
+

1

β + 2
EPG(y|x,α,β)[y

2] (21)

which can be solved as

EPG(y|x,α,β)[y
2] =

(x+ α) (x+ α+ β + 2)

(β + 1)2
(22)

Plugging (22) into (19) we obtain

V arPG(y|x,α,β)[y] =
(x+ α) (β + 2)

(β + 1)2
=
β + 2

β + 1
EPG(y|x,α,β)[y]

�

Given an observation x, the maximum likelihood estimate of the underlying Poisson distribution is
the Poisson distribution with mean x,

P (y|x) = e−xx
y

y!

After observing x, the mean of the maximum likelihood and PAC(·|x) estimates is x and x + 1,
respectively. Hence, Bayesian averaging in PAC(·|x) induced by the flat improper prior over the mean
rate λ results in increased expected value x+1 of the next count from the same underlying source, given
that the current count x. However, a much more marked consequence of using the flat prior can be seen
in the variance of PAC(·|x): while variance of the maximum likelihood is x, it is 2(x+ 1) in PAC(·|x).

Theorem 3 illustrates the role of more concentrated prior over λ on the generalized model. The
mean expected count, after seeing x, is equal to the mean of the posterior P (λ|x, α, β) over λ, namely
(α + x)/(β + 1). As explained earlier, observed single count x with prior β counts of cumulative
value α results in β + 1 counts of cumulative value α + x. Hence the mean count per observation is
(α + x)/(β + 1). As with Poisson distribution, the variance of the generalized model is closely related
to its mean and approaches the mean with increasing number of prior counts β.

As for the soft regularization PR(y|x, β) = PG(y|x, α = 1, β), its mean is, as expected, biased
towards values smaller than the observed count x, provided β > 1/x. Increased values of β result in
smaller variance of PR(y|x, β). But how do such prior parameter modifications manifest themselves
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in terms of accuracy of estimation of the underlying source? This question is investigated in the
next section.

5. Expected Divergence of the Generalized PAC(y|x) from the True Underlying Poisson
Distribution

Consider an underlying Poisson source P (x|λ) generating counts x. In this section we would like to
quantify the average divergence

EG(λ; β) = EP (x|λ)[ DKL[P (y|λ)∥PR(y|x, β)] ] (23)

of the corresponding generalized PAC(y|x), PR(y|x, β) = PG(y|x, α = 1, β) (“softly” regularized
ML), from the truth P (y|λ), if we repeatedly generated a “representative” count x from P (x|λ). The
same question was considered in the context of maximum likelihood estimation in Section 2.3. In
particular, we are interested in specifying under what circumstances is the generalized form of PAC(y|x),
PR(y|x, β) = PG(y|x, α = 1, β), preferable to the original PAC(y|x) = PG(y|x, α = 1, β → 0) and
how it fares with the maximum likelihood estimation PML(y|x) of Section 2.3.

Theorem 4 Consider an underlying Poisson distribution P (·|λ) parameterized by some λ > 0. Then
for β ≥ 0,

EG(λ; β) = log2

(
β + 2

β + 1

)
− 1

2
+ λ

[
2 log2

(
β + 2

2

)
− log2(β + 1)

]
+O(λ−1) (24)

A higher order approximation (up to order λ3) reads:

EG(λ; β) = log2

(
β + 2

β + 1

)
− 1

2
+ λ

[
2 log2

(
β + 2

2

)
− log2(β + 1)

]
− 1

12λ

(
1− 1

2

)
− 1

24λ2

(
1− 1

22

)
− 19

360λ3

(
1− 1

23

)
+O(λ−4) (25)

Proof: Let us first express the divergence Dβ(λ, x) = DKL[P (y|λ)∥PR(y|x, β)]. We have

Dβ(λ, x) = −H[P (y|λ)]− EP (y|λ)[logPR(y|x, β)]

where H[P (y|λ)] = −EP (y|λ)[logP (y|λ)] is the entropy of the source P (y|λ) and

EP (y|λ)[logPR(y|x, β)] = − log x!

−EP (y|λ)[y] log(β + 2)− (x+ 1) log

(
β + 2

β + 1

)
−EP (y|λ)[log y!] + EP (y|λ)[log(x+ y)!]

Denoting (for integer d ≥ 0) EP (y|λ)[log(y + d)!] by F (λ, d), we write

Dβ(λ, x) = −H[P (y|λ)] + log x!

+λ log(β + 2) + (x+ 1) log

(
β + 2

β + 1

)
+F (λ, 0)− F (λ, x)
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We are now ready to calculate the expectation EG(λ; β) = EP (x|λ)[Dβ(λ, x)].

EG(λ; β) = −H[P (y|λ)] + F (λ, 0)

+λ log(β + 2) + (λ+ 1) log

(
β + 2

β + 1

)
+F (λ, 0)− EP (x|λ)[F (λ, x)]

We have proved in [11] that EP (x|λ)[F (λ, x)] = F (2λ, 0), and so

EG(λ; β) = −H[P (y|λ)] + log

(
β + 2

β + 1

)
+λ log

(
(β + 2)2

β + 1

)
+2F (λ, 0)− F (2λ, 0)

Since

−H[P (y|λ)] = EP (y|λ)[logP (y|λ)]
= −λ log e+ EP (y|λ)[y] log λ− EP (y|λ)[log y!]

= −λ log e+ λ log λ− F (λ, 0) (26)

we have

EG(λ; β) = log

(
β + 2

β + 1

)
+λ

[
log λ+ log

(
(β + 2)2

β + 1

)
− log e

]
+F (λ, 0)− F (2λ, 0) (27)

Using entropy approximation (see [11]), one obtains

F (λ, 0) = λ(log λ− log e) +
1

2
log(2πeλ) +O(λ−1)

leading to (in log base 2)

F (λ, 0)− F (2λ, 0) = −1

2
+ λ(log2 e− log2 λ− 2) +O(λ−1)

Finally,

EG(λ; β) = log2

(
β + 2

β + 1

)
− 1

2

+λ

[
log2

(
(β + 2)2

β + 1

)
− 2

]
+O(λ−1)

which is equivalent to (24).
The higher order expression (25) is simply obtained by using higher order approximation to

F (λ, 0)− F (2λ, 0). �
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Note that for β → 0 we recover our original result [11] that the expected divergence E(λ) of the
original PAC(y|x) from the “truth” P (y|λ) is (up to terms of order λ−1) never greater than 1/2 bit. The
soft regularization in PR(y|x, β) (using prior P (λ|α = 1, β) with β > 0) can result in larger expected
divergence from the underlying source than is the case for PAC(y|x) (using improper flat prior over λ).
Moreover, (unlike in PAC(y|x)) such a regularization causes linear divergence of EG(λ; β) for large λ.
The next theorem specifies for which underlying Poisson sources the soft regularization approach of
PR(y|x, β) is preferable to the original PAC(y|x).

Theorem 5 For Poisson sources with mean rates

λ < κ(β) =
log
(
1 + β

β+2

)
log
(
1 + β2

4 (β+1)

) (28)

it holds E(λ) > EG(λ; β) and hence PR(y|x, β) is on average guaranteed to approximate (in the
Kullback–Leibler divergence sense) the underlying source better than the original PAC(y|x).

Proof: It was shown in [11] that for the original PAC(y|x),

E(λ) = λ(log λ− log e+ 2 log 2) + log 2

+F (λ, 0)− F (2λ, 0). (29)

From (27) and (29) we have that the difference between the expected divergences of the original and
generalized forms of PAC(y|x) is

E(λ)− EG(λ; β) = log 2− log

(
β + 2

β + 1

)
+λ

[
2 log 2− log

(
(β + 2)2

β + 1

)]
= log

2 (β + 1)

β + 2

+λ log
4 (β + 1)

(β + 2)2
(30)

The result follows from solving for E(λ) > EG(λ; β). �
The graph (in log-log scale) of κ(β) is shown in Figure 3. An alternative way of data-driven setting

of parameter β is suggested by the fact that κ(β) is lower bounded by β−1. If the experimental setting
is such that most counts are expected not to exceed some xmax, β can be set to β = 1/xmax, so that
PR(y|x, β) is preferable to PAC(y|x).

In Figure 4 we present the expected divergences EG(λ; β) (solid line) and E(λ) (dashed line) for
β = 0.2 (left) and β = 0.01 (right). As expected, for underlying sources with small mean counts λ
the advantage of using the regularized form PR(y|x, β) (as opposed to the original PAC(y|x)) is more
pronounced. However, for larger λ there is a heavy price to be paid in terms of inaccurate modelling by
PR(y|x, β).
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Figure 3. Graph of κ(β). For Poisson sources with mean rates λ < κ(β), E(λ) > EG(λ; β)
and hence PR(y|x, β) is on average guaranteed to approximate the underlying source better
than the original PAC(y|x).
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Figure 4. Expected divergences EG(λ; β) (solid line) and E(λ) (dashed line) for β = 0.2

(left) and β = 0.01 (right).
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6. Empirical Investigations

To investigate potential value of the more sophisticated Bayesian approach in the original and the
generalized Audic–Claverie frameworks (Sections 2.1 and 3, respectively) against the baseline of simple
(regularized) maximum likelihood estimation (Section 2.3), we conducted a series of simple illustrative
experiments. In the generalized Audic–Claverie framework developed in this study, we used the two
schemes for setting the regularization parameter β suggested in Sections 3 and 5. In the regularized
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maximum likelihood approach PML(y|x) we set ϵ = 1. From Figure 1, it appears that the biggest
difference between the expected divergences from the true underlying Poisson source P (x|λ) to the
original PAC(·|x) and the maximum likelihood estimate occurs for small mean rates λ roughly around
λ = 5. We therefore run the experiments with λ = 5.

For illustration purposes, we follow the data generation mechanism used in [13] to compare methods
for distinguishing between differential expression of genes associated with two treatment regimes. We
stress that in no way we suggest that our experiments have strong relevance for bioinformatics, nor
do we claim that the framework of [13] is the best test bed for assessing differential gene expression
detection algorithms. We use the framework of [13] merely to illustrate whether the sophistication of
the Bayesian approach (as opposed to simple (regularized) maximum likelihood) can bring benefits in a
practical situation with low-count data.

Gene counts are simulated across the two treatment groups T1 and T2. The tests are assessed by
comparing false positive and true positive rates. In each experiment 10,000 gene pair counts (x1,j, x2,j),
j = 1, 2, ..., 10, 000, were produced, counts x1,j and x2,j associated with regimes T1 and T2, respectively.
As specified above, the sampling rate for T1 was fixed at λ1 = 5 throughout the experiment. We varied
the mean log2 fold change (LFC) between T1 and T2 from −2 to 2. Each gene pair count (x1,j, x2,j),
j = 1, 2, ..., 10, 000, was obtained through a generative process specified in [13] and described in detail
in Appendix A.

Having generated the gene pair counts, we used methods considered in this study to make a decision
for each j = 1, 2, ..., 10, 000, whether the counts x1,j, x2,j originated from the same underlying source,
i.e., whether when generating y1,j and y2,j , the mean rates in the two regimes T1 and T2 were identical
(LFCj = 0). Given the “test distribution” Q(y|x) and a confidence level ϑ ∈ [0, 1], we guess that
x1,j, x2,j originated from the same source if the (1− ϑ)-quantile around the mean of Q(y|x1,j) contains
x2,j and vice-versa, i.e., if the (1 − ϑ)-quantile around the mean of Q(y|x2,j) contains x1,j . In place
of Q(y|x) we used PAC(y|x), its regularized form PR(y|x, β) and the regularized maximum likelihood
estimate PML(y|x) with ϵ = 1.

For a given confidence level ϑ ∈ [0, 1] and test statistic Q(y|x) we calculate the false positive
rate (type I error rate) as the proportion of times a gene count pair (x1,j, x2,j) was declared to have
originated from two different underlying sources (differentially expressed gene) when in fact LFCj

was zero. The true positive rate (statistical power) was determined as the proportion of times a gene
was correctly declared differentially expressed - (x1,j, x2,j) declared to have originated come from two
different underlying sources and LFCj ̸= 0.

Plot of false positive rate vs. true positive rate obtained for different values of ϑ constitutes a receiver
operating characteristic (ROC) curve. If the ROC curve for one test distribution is always above another,
this suggests its superiority in classifying genes as differentially expressed. Trivial classification of
genes as differentially expressed using a completely random guess would yield the identity (diagonal)
ROC curve. ROC curves for the maximum likelihood method (ϵ = 1, red dashed line) and the soft
regularization model PR(y|x, β), β = 1/50, 1/100 (solid lines) are plotted in Figure 5. Not surprisingly,
the Bayesian approach (solid lines) outperforms the penalized maximum likelihood one (red dashed
line). However, the original PAC(y|x) (β = 0, black line) and the soft regularization model (color
solid lines) achieve almost identical performances. In this challenging setting (single observations at
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low mean rate with additional noise), the scheme for setting the regularization parameter β suggested in
Section 5 has little effect on the resulting classification performance. We also ran experiments to test the
“dynamic” scheme for setting β introduced in Section 3, but no significant performance improvements
were achieved.

Figure 5. ROC curves for test distributions PAC(y|x) = PR(y|x, β → 0) (solid black line),
PR(y|x, β = 1/100) (solid blue line), PR(y|x, β = 1/50) (solid green line) and PML(y|x)
with ϵ = 1 (dashed red line). Mean rate of the underlying Poisson source was fixed at λ = 5.
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Finally, we devised yet another scheme for determining the hyper-parameters α and β of the prior
P (λ|α, β) from the data. In the spirit of type II maximum likelihood, we find the most likely values of
α, β, given the observed counts C = {x1, x2, ..., xn}, using P (C|α, β) =

∏n
i=1 P (xi|α, β), where

P (xi|α, β) =
∫ ∞

0

P (xi|λ) p(λ|α, β) dλ (31)

Using this method, we first optimize the prior hyperparameters on the observed data. The “optimized”
prior P (xi|α∗, β∗) now reflects the possible ranges of mean counts λ one can expect given the data. We
then repeated the experiments using the generalized model PG(y|x, α∗, β∗) derived from the optimized
prior. In this way we can assess to what degree the relatively minor performance differences between
the generalized and maximum likelihood models in Figure 5 are due to constraining α to α = 1 (in
PR(y|x, β)), or due to inherent difficulty of learning from single counts. The resulting ROC analysis is
shown in Figure 6. The data driven setting of hyperparameters α, β leads to slight improvement over
PAC(y|x) and PR(y|x, β).
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Figure 6. ROC curves for test distributions PAC(y|x) = PR(y|x, β → 0) (solid black line)
and PG(y|x, α∗, β∗) (dashed red line). Mean rate of the underlying Poisson source was fixed
at λ = 5.
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7. Discussion and Conclusion

Studies of learning algorithms traditionally concentrate on situations where potentially ever increasing
number of training examples is available. However, there are situations where only extremely small
samples can be used in order to perform an inference. In this contribution we concentrated on extreme
case of low count data governed by Poisson distribution, where only a single observation is available.
We performed a rigorous theoretical investigation of the appropriateness of various model estimators,
based on the single observation. We considered a Bayesian approach along the lines of [2], where the
model built on the basis of a single observed count is no longer Poisson, even though we know that the
generating source is Poisson (but do not know the mean rate).

We showed that the Bayesian approach is more optimal than the regularized maximum likelihood, in
the sense that the expected Kullback–Leibler divergence from the source to the model is smaller for the
Bayesian approach. Furthermore, we generalized the original model of [2] to account for possible prior
information on expected expression counts. Detailed information theoretic study of learning capabilities
of such a generalized model was conducted for the case of low count data. We also quantified the effect
of Bayesian averaging on its first two moments.

We demonstrated both theoretically and empirically that the Bayesian model averaging on the
generalized model can be potentially beneficial. For large λ, the expected divergence Υ(λ, ϵ) of the
maximum likelihood estimator from the true Poisson source is dominated by the term

λ

(
log λ−

∞∑
x=1

P (x|λ) log x

)
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since limλ→∞ e−λ (ϵ− λ log ϵ) = 0. We empirically determined that for λ ≥ 10, Υ(λ, ϵ = 1) expressed
in bits is bounded by 0.7 < Υ(λ, ϵ = 1) < 0.8. Hence, for mean Poisson rates λ ≥ 10, the difference
between the expected divergences of the Audic–Claverie and ML estimates from the true source is never
less than 0.2 bits and never more than 0.3 bits. In other words,

0.2 < Υ(λ, ϵ = 1)− E(λ) < 0.3, λ ≥ 10
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Appendix A

In the generative process of [13], each gene pair count (x1,j, x2,j), j = 1, 2, ..., 10, 000, was obtained
as follows:

1. The sampling rate λ2,j for the treatment group T2 is obtained as

λ2,j = 2(log2 λ1)−LFCj

LFCj ∼ Uniform{−2.0,−1.5,−1.0, ..., 1.5, 2.0}

2. A pair of gene counts (y1,j, y2,j) is sampled with respect to Poisson(λ1) and Poisson(λ2,j),

y1,j ∼ Poisson(λ1), y2,j ∼ Poisson(λ2,j)

3. Zero mean Gaussian noise is then added to each gene count (rounding to the nearest integer using
the rounding operator [·]):

y′i,j = yi,j + [ηj], i = 1, 2

ηj ∼ N

(
0, σj =

vj
ψ

)
vj =

λ1 + λ2,j
2

where ψ = 10.
4. The batch and lane effects are simulated as follows. Batch effects are accounted for by adding

Gaussian noise to each noisy count y′i,j ,

y′′i,j = y′i,j + [η′i,j]

η′i,j ∼ N

(
0,
y′i,j
10

)
Lane effects are simulated by Poisson sampling from y′′1,j and y′′2,j at different rates varying
between lanes,

xi,j ∼ Poisson(δj · y′′i,j)
δj ∼ Uniform{0.65, 0.8, 0.95}
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