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Abstract: A method is shown for computing transfer entropy over multiple time lags for 

coupled autoregressive processes using formulas for the differential entropy of multivariate 

Gaussian processes. Two examples are provided: (1) a first-order filtered noise process 

whose state is measured with additive noise, and (2) two first-order coupled processes each 

of which is driven by white process noise. We found that, for the first example, increasing 

the first-order AR coefficient while keeping the correlation coefficient between filtered and 

measured process fixed, transfer entropy increased since the entropy of the measured 

process was itself increased. For the second example, the minimum correlation coefficient 

occurs when the process noise variances match. It was seen that matching of these 

variances results in minimum information flow, expressed as the sum of transfer entropies 

in both directions. Without a match, the transfer entropy is larger in the direction away 

from the process having the larger process noise. Fixing the process noise variances, 

transfer entropies in both directions increase with the coupling strength. Finally, we note 

that the method can be generally employed to compute other information theoretic 

quantities as well. 
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1. Introduction  

Transfer entropy [1] quantifies the information flow between two processes. Information is defined 

to be flowing from system X to system Y whenever knowing the past states of X reduces the 

uncertainty of one or more of the current states of Y above and beyond what uncertainty reduction is 

achieved by only knowing the past Y states. Transfer entropy is the mutual information between the 

current state of system Y and one or more past states of system X, conditioned on one or more past 

states of system Y. We will employ the following notation. Assume that data from two systems X and 

Y are simultaneously available at k timestamps:  1221:2 ,,...,,   nnknknnkn ttttt . Then we express 

transfer entropies as: 

       nknnknnnknnnknnknn
k

yx xyyHyyHyxyITE :2:21:21:2:21 ,|||;    (1) 

       .,|||; :2:21:21:2:21 nknnknnnknnnknnknn
k

xy yxxHxxHxyxITE  
 

(2) 

Each of the two transfer entropy values TEx→y and TEy→x is nonnegative and both will be positive 

(and not necessarily equal) when information flow is bi-directional. Because of these properties, 

transfer entropy is useful for detecting causal relationships between systems generating measurement 

time series. Indeed, transfer entropy has been shown to be equivalent, for Gaussian variables, to 

Granger causality [2]. Reasons for caution about making causal inferences in some situations using 

transfer entropy, however, are discussed in [3–6]. A formula for normalized transfer entropy is 

provided in [7]. 

The contribution of this paper is to explicitly show how to compute transfer entropy over a variable 

number of time lags for autoregressive (AR) processes driven by Gaussian noise and to gain insight 

into the meaning of transfer entropy in such processes by way of two example systems: (1) a first-order 

AR process X = {xn} with its noisy measurement process Y = {yn}, and (2) a set of two mutually-coupled 

AR processes. Computation of transfer entropies for these systems is a worthwhile demonstration since 

they are simple models that admit intuitive understanding. In what follows we first show how to 

compute the covariance matrix for successive iterates of the example AR processes and then use these 

matrices to compute transfer entropy quantities based on the differential entropy expression for 

multivariate Gaussian random variables. Plots of transfer entropies versus various system parameters 

are provided to illustrate various relationships of interest. 

Note that Kaiser and Schreiber [8] have previously shown how to compute information transfer 

metrics for continuous-time processes. In their paper they provide an explicit example, computing 

transfer entropy for two linear stochastic processes where one of the processes is autonomous and the 

other is coupled to it. To perform the calculation for the Gaussian processes the authors utilize 

expressions for the differential entropy of multivariate Gaussian noise. In our work, we add to this 

understanding by showing how to compute these quantities analytically for higher time lags. We now 

provide a discussion of differential entropy, the formulation of entropy appropriate to continuous-

valued processes as we are considering. 
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2. Differential Entropy 

The entropy of a continuous-valued process is given by its differential entropy. Recall that the 
entropy of a discrete-valued random variable is given by the Shannon entropy i

i
i ppH  log

  
(we shall always choose log base 2 so that entropy will be expressed in units of bits) where pi is the 

probability of the ith outcome and the sum is over all possible outcomes. 

Following [9] we derive the appropriate expression for differential entropies for conditioned and 

unconditioned continuous-valued random variables. When a process X is continuous-valued we may 

approximate it as a discrete-value process by identifying pi = fiΔx where fi is the value of the pdf at the 

ith partition point and Δx is the refinement of the partition. We then obtain: 
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Note that since the X process is continuous-valued, then, as Δx → 0, we have H(X) → + infinity. 

Thus, for continuous-valued processes, the quantity h(X), when itself defined and finite, is used to 

represent the entropy of the process. This quantity is known as the differential entropy of random 

process X. 

Closed-form expressions for the differential entropy of many distributions are known. For our 

purposes, the key expression is the one for the (unconditional) multivariate normal distribution [10]. 

Let the probability density function of the n-dimensional random vector x be denoted f(x), then the 

relevant expressions are: 
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(4) 

where detC is the determinant of matrix C, the covariance of x. In what follows, this expression will be 

used to compute differential entropy of unconditional and conditional normal probability density 

functions. The case for conditional density functions warrants a little more discussion. 

Recall that the relationships between the joint and conditional covariance matrices, CXY and CY|X, 

respectively, of two random variables X and Y (having dimensions nx and ny, respectively) are given by: 



Entropy 2013, 15 770 

 

 

  .|cov

cov

12
1

112122|

2221

1211

































XY

XY

CxXY

Y

X
C

 (5) 

Here blocks 11 and 22 have dimensions nx by nx and ny by ny, respectively. Now, using Leibniz’s 

formula, we have that: 
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Hence the conditional differential entropy of Y, given X, may be conveniently computed using: 
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 (7) 

This formulation is very handy as it allows us to compute many information-theoretic quantities 

with ease. The strategy is as follows. We define C(k) to be the covariance of two random processes 

sampled at k consecutive timestamps {tn−k+2, tn− k+1, …, tn, tn+1}. We then compute transfer entropies 

for values of k up to k sufficiently large to ensure that their valuations do not change significantly if k 

is further increased. For our examples, we have found k = 10 to be more than sufficient. A discussion 

of the importance of considering this sufficiency is provided in [11]. 

3. Transfer Entropy Computation Using Variable Number of Timestamps 

We wish to consider two example processes each of which conforms to one of the two model 

systems having the general expressions:  

   

1 0 1 1

1 1 1(1)
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 (8) 

and: 
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
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 
   (9) 

Here, vn and wn are zero mean uncorrelated Gaussian noise processes having variances R  

and Q, respectively. For system stability, we require the model poles to lie within the unit circle. 
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The first model is of a filtered process noise X one-way coupled to an instantaneous, but noisy 

measurement process Y. The second model is a two-way coupled pair of processes, X and Y. 
Transfer entropy (as defined by Schreiber [1]) considers the flow of information from past states 

(i.e., state values having, timetags  nknknnkn tttt ,...,, 22:2   ) of one process to the present  1nt  

state of another process. However, note that in the first general model (measurement process) there is 

an explicit flow of information from the present state of the X process; xn+1 determines the present 

state of the Y process yn+1 (assuming c− 1 is not zero). To fully capture the information transfer from 

the X process to the current state of the Y process we must identify the correct causal states [4]. For the 

measurement system, the causal states include the current (present) state. This state is not included in 

the definition of transfer entropy, being a mutual information quantity conditioned on only past states. 

Hence, for the purpose of this paper, we will temporarily define a quantity, “information transfer,” 

similar to transfer entropy, except that the present of the driving process, xn+1, will be lumped in with 

the past values of the X process: xn−k+2:xn. For the first general model there is no information 

transferred from the Y to the X process. We define the (non-zero) information transfer from the X to 

the Y process (based on data from k timetags) as: 

       .,|||; 1:2:21:21:21:21   nknnknnnknnnknnknn
k

yx xyyHyyHyxyIIT  (10) 

The major contribution of this paper is to show how to analytically compute transfer entropy for AR 

Gaussian processes using an iterative method for computing the required covariance matrices. 

Computation of information transfer is additionally presented to elucidate the power of the method 

when similar information quantities are of interest and to make the measurement example more 

interesting. We now present a general method for computing the covariance matrices required to 

compute information-theoretic quantities for the AR models above. Two numerical examples follow. 

To compute transfer entropy over a variable number of multiple time lags for AR processes of the 

general types shown above, we compute its block entropy components over multiple time lags.  

By virtue of the fact that the processes are Gaussian we can avail ourselves of analytical entropy 

expressions that depend only on the covariance of the processes. In this section we show how to 

analytically obtain the required covariance expressions starting with the covariance for a single  

time instance. Taking expectations, using the AR equations, we obtain the necessary statistics to 

characterize the process. Representing these expectation results in general, the process covariance 

matrix C(1)(tn) corresponding to a single timestamp, tn, is: 
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(11) 

To obtain an expanded covariance matrix, accounting for two time instances (tn and tn+1), we 

compute the additional expectations required to fill in the matrix C (2)(tn): 
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Because the process is stationary, we may write: 
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Thus we have found the covariance matrix C(2) required to compute block entropies based on two 

timetags or, equivalently, one time lag. Using this matrix the single-lag transfer entropies may  

be computed. 

We now show how to compute the covariance matrices corresponding to any finite number of time 

stamps. Define vector 

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n
n y

x
z . Using the definitions above, write the matrix C(2) as a block matrix 

and, using standard formulas, compute the conditional mean and covariance Cc of 1nz given nz : 
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(15) 

Note that the expected value of the conditional mean is zero since the mean of the nz  process, z , 

is itself zero. 
With these expressions in hand, we note that we may view propagation of the state nz  to its value 

1nz  at the next timestamp as accomplished by the recursion: 
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(16) 

Here S is the principal square root of the matrix Cc. It is conveniently computed using the inbuilt 

Matlab function sqrtm. To see analytically that the recursion works, note that using it we recover at 

each timestamp a process having the correct mean and covariance: 

      zznnznznn zDzzuSzDEzzzE   ||1  (17) 

and: 
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Thus, because the process is Gaussian and fully specified by its mean and covariance, we have 

verified that the recursive representation yields consistent statistics for the stationary AR system. 

Using the above insights, we may now recursively compute the covariance matrix C(k) for a variable 

number (k) of timestamps. Note that C(k) has dimensions of 2k × 2k. We denote 2 × 2 blocks of C(k) as 

C(k)
ij for i, j = 1,2, ..., k , where C(k)

ij is the 2-by-2 block of C(k) consisting of the four elements of  

C(k) that are individually located in row 2i − 1 or 2i and column 2j − 1 or 2j. 

The above recursion is now used to compute the block elements of C(3). Then each of these block 

elements is, in turn, expressed in terms of block elements of C(2). These calculations are shown in 

detail below where we have also used the fact that the mean of the zn vector is zero: 
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By continuation of this calculation to larger timestamp blocks (k > 3), we find the following pattern 

that can be used to extend (augment) C(k−1) to yield C(k). The pattern consists of setting most of the 

augmented matrix equal to that of the previous one, and then computing two additional rows and 

columns for C(k), k > 2, to fill out the remaining elements. The general expressions are: 
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At this point in the development we have shown how to compute the covariance matrix: 

       1 1 1 1cov cov
Tk k

n n n n n k n kC z x y x y x y         (24) 

Since the system is linear and the process noise wn and measurement noise vn are white zero-mean 

Gaussian noise processes, we may express the joint probability density function for the 2k variates as: 

        
     
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1 1 1 1 1
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z C z
f z pdf z pdf x y x y x y
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

     

               
 
 

  
(25) 

Note that the mean of all 2k variates is zero. 

Finally, to obtain empirical confirmation of the equivalence of the covariance terms obtained using 

the original AR system and its recursive representation, numerical simulations were conducted.  

Using the example 1 system (below) 500 sequences were generated each of length one million.  

For each sequence the C(3) covariance was computed. The error for all C(3) matrices was then averaged, 

assuming that the C(3) matrix calculated using the method based on the recursive representation was the 

true value. The result was that for each of the matrix elements, the error was less than 0.0071% of its 

true value. We are now in position to compute transfer entropies for a couple of illustrative examples.  

4. Example 1: A One-Way Coupled System 

For this example we consider the following system: 

 
 RNvvxhy

QNwwaxx

nnncn

nnnn

,0~:

,0~:

11

1








 
(26) 

Parameter hc specifies the coupling strength of the Y process to the first-order AR process X, and R 

and Q are their respective (wn and vn) zero-mean Gaussian process noise variances. For stability,  
we require |a| < 1. Comparing to the first general representation given above, we have ,0m  ,0 aa   

and ahc c1 . The system models filtered noise xn and a noisy measurement, yn, of xn. Thus the xn 

sequence represents a hidden process (or model) which is observable by way of another sequence, yn. 

We wish to examine the behavior of transfer entropy as a function of the correlation  between xn  

and yn. One might expect that the correlation  between xn and yn to be proportional of the degree of 

information flow; however, we will see that the relationship between transfer entropy and correlation is 

not quite that simple. 

Both the X and Y processes have zero mean. Computing the joint covariance matrix C(1) for xn and 

yn and their correlation we obtain:
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   

 
   nn

nn

ncnn

ncn

n

yVarxVar

yxE

xVarhyxE

RxVarhyVar

a

Q
xVar











2

21







Entropy 2013, 15 775 

 

 

Hence the process covariance matrix C(1) corresponding to a single timestamp, tn is: 

     
    .cov 2
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(28) 

In order to obtain an expanded covariance matrix, accounting for two time instances (tn and tn+1) we 

compute the additional expectations required to fill in the matrix C(2): 
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(29)

 

Thus we have found the covariance matrix C(2) required to compute block entropies based on a 

single time lag. Using this matrix the single-lag transfer entropies may be computed. Using the 

recursive process described in the previous section we can compute C(1°). We have found that using 

higher lags does not change the entropy values significantly. 

To aid the reader in understanding the calculations required to compute transfer entropies using 

higher time lags, it is worthwhile to compute transfer entropy for a single lag. We first define transfer 

entropy using general notation indicating the partitioning of the X and Y sequences in to past and 
future  xx


,  and  yy


, , respectively. We then compute transfer entropy as a sum of block entropies: 

       
              
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(30) 

Similarly: 

         xyxhxhxxhyxhxxyITE xy


,,,,|;   (31) 

The Y states have no influence on the X sequence in this example. Hence TEy→x = 0. Since we are 

here computing transfer entropy for a single lag (i.e., two time tags tn and tn+1) we have: 

           111
2 ,,,,|;   nnnnnnnnnnnyx yyxhyhyyhyxhyyxITE

 (32) 

By substitution of the expression for the differential entropy of each block we obtain: 
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(33) 

For this example, note from the equation for yn+1 that state xn+1 is a causal state of X influencing the 

value of yn+1. In fact, it is the most important such state. To capture the full information that is 
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transferred from the X process to the Y process over the course of two time tags we need to include 

state xn+1. Hence we compute the information transfer from x → y as: 
           111111
2 ,,,,,,|;,   nnnnnnnnnnnnnnyx yyxxhyhyyhyxxhyyxxIIT

 (34) 
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(35) 

Here the notation  2
][],[det iiC  indicates the determinant of the matrix composed of the rows and 

columns of C(2) indicated by the list of indices i shown in the subscripted brackets. For example, 
 2

]4:1[],4:1[det C  is the determinant of the matrix formed by extracting columns {1, 2, 3, 4} and rows  

{1, 2, 3, 4} from matrix C(2). In later calculations we will use slightly more complicated-looking 
notation. For example,  10

]20:2:2[],20:2:2[det C  is the determinant of the matrix formed by extracting columns 

{2, 4 ,…, 18, 20} and the same-numbered rows from matrix C(1°). (Note C(k)
[i],[i] is not the same as 

C(k)
ii as used in Section 3). 

It is interesting to note that a simplification in the expression for information transfer can be 

obtained by writing the expression for it in terms of conditional entropies: 

       11111
2 ,,|||;,   nnnnnnnnnnyx xyxyhyyhyyxxIIT

 (36) 

From the fact that yn+1 = xn+1 + vn+1 we see immediately that: 
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(37) 

Hence we may write: 
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(38) 

To compute transfer entropy using nine lags (ten timestamps) assume that we have already 

computed C(10) as defined above. We partition the sequence 
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Now, using these definitions, and substituting in expressions for differential block entropies  

we obtain: 
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(40) 

Similarly: 
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(41) 

As a numerical example we set hc = 1, Q = 1, and for three different values of a (0.5, 0.7 and 0.9) 

we vary R so as to scan the correlation  between the x and y processes between the values of 0 and 1. 

In Figure 1 it is seen that for each value of parameter a there is a peak in the transfer entropy 

TE(k)
x→y. As the correlation  between xn and yn increases from a low value the transfer entropy 

increases since the amount of information shared between yn+1 and xn is increasing. At a critical value 

of  transfer entropy peaks and then starts to decrease. This decrease is due to the fact that at high 

values of  the measurement noise variance R is small. Hence yn becomes very close to equaling xn so 

that the amount of information gained (about yn+1) by learning xn, given yn, becomes small.  

Hence h(yn+1 | yn) - h(yn+1 | yn, xn) is small. This difference is TE(2)
x→y.  

Figure 1. Example 1: Transfer entropy TE(k)
x→y versus correlation coefficient  for three 

values of parameter a (see legend). Solid trace: k = 10, dotted trace: k = 2. 
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The relationship between  and R is shown in Figure 2. Note that when parameter a is increased, a 

larger value of R is required to maintain  at a fixed value. Also, in Figure 1 we see the effect of 

including more timetags in the analysis. When k is increased from 2 to 10 transfer entropy values fall, 

particularly for the largest value of parameter a. It is known that entropies decline when conditioned on 

additional variables. Here, transfer entropy is acting similarly. In general, however, transfer entropy, 

being a mutual information quantity, has the property that conditioning could make it increase as well [12].  

Figure 2. Example 1: Logarithm of R versus  for three values of parameter a (see legend). 

 

The observation that the transfer entropy decrease is greatest for the largest value of parameter a is 

perhaps due to the fact that the entropy of the X process is itself greatest for the largest a value and 

therefore has more sensitivity to an increase in X data availability (Figure 3). 

From Figure 1 it is seen that as the value of parameter a is increased, transfer entropy is increased 

for a fixed value of . The reason for this increase may be gleaned from Figure 3 where it is clear that 

the amount of information contained in the x process, HX, is greater for larger values of a. Hence more 

information is available to be transferred at the fixed value of  when a is larger. In the lower half of 

Figure 3 we see that as  increases the entropy of the Y process, HY, approaches the value of HX. This 

result is due to the fact that the mechanism being used to increase  is to decrease R. Hence as R drops 

close to zero yn looks increasingly identical to xn (since hc = 1). 
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Figure 3. Example 1: Process entropies HX and HY versus correlation coefficient  for 

three values of parameter a (see legend). 

 

Figure 4 shows information transfer IT(k)
x→y plotted versus correlation coefficient . Now note that 

the trend is for information transfer to increase as  is increased over its full range of values. °  

Figure 4. Example 1: Information transfer IT(k)
x→y versus correlation coefficient  for 

three different values of parameter a (see legend) for k = 10 (solid trace) and k = 2  

(dotted trace). 
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This result is obtained since as  is increased yn+1 becomes increasingly correlated with xn+1. Also, 

for a fixed  the lowest information transfer occurs for the largest value of parameter a. We obtain this 

result since at the higher a values xn and xn+1 are more correlated. Thus the benefit of learning the 

value of yn+1 through knowledge of xn+1 is relatively reduced, given that yn (itself correlated with xn) is 

presumed known. Finally, we have IT(10)
x→y < IT(2)

x→y since conditioning the entropy quantities 

comprising the expression for information transfer with more state data acts to reduce their difference. 

Also, by comparison of Figure 2 and Figure 4, it is seen that information transfer is much greater than 

transfer entropy. This relationship is expected since information transfer as defined herein (for k = 2) is 

the amount of information that is gained about yn+1 from learning xn+1 and xn, given that yn is  

already known. Whereas transfer entropy (for k = 2) is the information gained about yn+1 from learning 

only xn, given that yn is known. Since the state yn+1 in fact equals xn+1, plus noise, learning xn+1 is 

highly informative, especially when the noise variance is small (corresponding to high values of ). 

The difference between transfer entropy and information transfer therefore quantifies the benefit of 

learning xn+1, given that xn and yn are known (when the goal is to determine yn+1). 

Figure 5 shows how information transfer varies with measurement noise variance R. As R increases 

the information transfer decreases since measurement noise makes determination of the value of yn+1 

from knowledge of xn and xn+1 less accurate. Now, for a fixed R, the greatest value for information 

transfer occurs for the greatest value of parameter a. This is the opposite of what we obtained for a 

fixed value of  as shown in Figure 4. The way to see the rationale for this is to note that, for a fixed 

value of information transfer, R is highest for the largest value of parameter a. This result is obtained 

since larger values of a yield the most correlation between states xn and xn+1. Hence, even though the 

measurement yn+1 of xn+1 is more corrupted by noise (due to higher R), the same information transfer is 

achieved nevertheless, because xn provides a good estimate of xn+1 and, thus, of yn+1.  

Figure 5. Example 1: Information transfer IT(10)
x→y versus measurement error variance R 

for three different values of parameter a (see legend). 
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5. Example 2: Information-theoretic Analysis of Two Coupled AR Processes. 

In example 1 the information flow was unidirectional. We now consider a bidirectional example 

achieved by coupling two AR processes. One question we may ask in such a system is how transfer 

entropies change with variations in correlation and coupling coefficient parameters. It might be 

anticipated that increasing either of these quantities will have the effect of increasing information flow 

and thus transfer entropies will increase. 

The system is defined by the equations: 

 
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(42) 

For stability, we require that the eigenvalues of the constant matrix 







dc

ba
 lie in the unit circle. 

The means of processes X and Y are zero. The terms wn and vn are the X and Y processes noise terms 

respectively. Using the following definitions: 
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(43) 

we may solve for the correlation coefficient  between xn and yn to obtain: 
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(45) 

Now, as we did previously in example 1 above, compute the covariance C(2) of the variates obtained 

at two consecutive timestamps to yield: 
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(46) 

At this point the difficult part is done and the same calculations can be made as in example 1 to 

obtain C(k); k = 3,4, …, 10 and transfer entropies. For illustration purposes, we define the parameters of 

the system as shown below, yielding a symmetrically coupled pair of processes. To generate a family 

of curves for each transfer entropy we choose a fixed coupling term  from a set of four values. We set 

Q = 1000 and vary R so that  varies from about 0 to 1. For each  value we compute the transfer 

entropies. The relevant system equations and parameters are: 
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(47) 

Hence, we make the following substitutions to compute C(2):  
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 (48) 

For each parameter set {, Q, R} there is a maximum possible ,   obtained by taking the limit as 

R→ ∞ of the expression for  given above. Doing so, we obtain: 
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where: 
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(51) 
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There is a minimum value of  also. The corresponding value for R, Rmin, was found by means of 

the inbuilt Matlab program fminbnd. This program is designed to find the minimum of a function in 

this case (a, b, c ,d, R, Q)) with respect to one parameter (in this case R) starting from an initial guess 

(here, R = 500). The program returns the minimum functional value (min) and the value of the 

parameter at which the minimum is achieved (Rmin). After identifying Rmin a set of R values were 
computed so that the corresponding set of  values spanned from min to the maximum   in fixed 

increments of  (here equal to 0.002). This set of R values was generated using the iteration: 
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(52) 

For the four selections of parameter  we obtain the functional relationships shown in Figure 6. 

From Figure 6 we see that for a fixed , increasing R increases (or decreases)  depending on 

whether R is less than (or greater than) Q (Q = 1000). Note that large increases in R > Q are required 

to marginally increase  when  nears its maximum value. The reason that the minimum  value 

occurs when Q equals R is because whenever they are unequal one of the processes dominates the 

other, leading to increased correlation. Also, note that if R << Q, then increasing  will cause  to 

decrease since increasing the coupling will cause the variance of the y process Var(yn), a term 

appearing in the denominator of the expression for , to increase. If Q << R, a similar result is obtained 

when  is increased. 

Figure 6. Example 2: Process noise variance R versus correlation coefficient  for a set of 

 parameter values (see figure legend). 

 

Transfer entropies in both directions are shown in Figure 7. Fixing , we note that as R is increased 

from a low value both  and TEx− >y initially decrease while TEy− >x increases. Then for further 
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increases of R,  reaches a minimum value then begins to increase, while TEx→y continues to decrease 

and TEy→x continues to increase.  

Figure 7. Example 2: Transfer entropy values versus correlation  for a set of  parameter 

values (see figure legend). Arrows indicate direction of increasing R values. 

 

Figure 8. Example 2: Transfer entropies difference (TEx− >y – TEy − > x) and sum  

(TEx− > y + TEy− > x) versus correlation  for a set of  parameter values (see figure legend). 

Arrow indicates direction of increasing R values. 

 

By plotting the difference TEx→y – TEy→x in Figure 8 we see the symmetry that arises as R 

increases from a low value to a high value. What is happening is that when R is low, the X process 

dominates the Y process so that TEx→y > TEy→x. As R increases, the two entropies equilibrate. Then, 

as R rises above Q, the Y process dominates giving TEx→y < TEy→x. The sum of the transfer entropies 
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shown in Figure 8 reveal that the total information transfer is minimal at the minimum value of  and 

increases monotonically with . The minimum value for  in this example occurs when the process 

noise variances Q and R are equal (matched). Figure 9 shows the changes in the transfer entropy 

values explicitly as a function of R. Clearly, when R is small (as compared to Q = 1000), TEx→y > 

TEy→x. Also it is clear that at every fixed value of R, both transfer entropies are higher at the larger 

values for the coupling term . 

Figure 9. Example 2: Transfer entropies TEx→y and TEy→x versus process noise variance R 

for a set of  parameter values (see figure legend). 

 

Another informative view is obtained by plotting one transfer entropy value versus the other as 

shown in Figure 10.  

Figure 10. Example 2: Transfer entropy TEx− > y plotted versus TEy− > x for a set of  
parameter values (see figure legend). The black diagonal line indicates locations where 

equality obtains. Arrow indicates direction of increasing R values. 
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Here it is evident how TEy→x increases from a value less than TEx→y to a value greater than TEx→y 

as R increases. Note that for higher coupling values  this relative increase is more abrupt. 

Finally, we consider the sensitivity of the transfer entropies to the coupling term . We reprise 

example system 2 where now  is varied in the interval (0, ½) and three values of R (somewhat 

arbitrarily selected to provide visually appealing figures to follow) are considered: 
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(53) 

Figure 11 shows the relationship between  and , where x = y =  for the three R values.  

Note that for the case R = Q the relationship is symmetric around  = ¼. As R departs from equality 

more correlation between xn and yn is obtained. 

Figure 11. Example 2: Correlation coefficient  vs coupling coefficient  for a set of R 

values (see figure legend). 

 

The reason for this increase is that when the noise driving one process is greater in amplitude than 

the amplitude of the noise driving the other process, the first process becomes dominant over the other. 

This domination increases as the disparity between the process noise variances increases (R versus Q). 

Note also that as the disparity increases, the maximum correlation occurs at increasingly lower values 

of the coupling term . As the disparity increases at fixed  = ¼ the correlation coefficient  increases. 

However, the variance in the denominator of  can be made smaller and thus  larger, if the variance 

of either of the two processes can be reduced. This can be accomplished by reducing . 
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The sensitivities of the transfer entropies to changes in coupling term  are shown in Figure 12. 

Consistent with intuition, all entropies increase with increasing . Also, when R < Q (blue trace) we 

have TEx->y > TEy->x and the reverse for R > Q. (red). For R = Q, TEx->y = TEy->x (green). 

Figure 12. Example 2: Transfer entropies TEx→y (solid lines) vs TEy→x (dashed lines) vs 

coupling coefficient  for a set of R values (see figure legend). 

 

Finally, it is interesting to note that whenever we define three cases by fixing Q and varying the 

setting for R ( one of R1, R2 and R3 for each case) such that R1 < Q, R2 = Q and R3 = Q2/R1 (so that 

Ri+1 = QRi/R1 for i = 1 and i = 2) we then obtain the symmetric relationships TEx - >y(R1) = TEy - >x(R3) 

and TEx - >y(R3) = TEy - >x(R1) for all  in the interval (1, ½). For these cases we also obtain  

(R1) = (R3) on the same  interval. 

6. Conclusions 

It has been shown how to compute transfer entropy values for Gaussian autoregressive processes 

for multiple timetags. The approach is based on the iterative computation of covariance matrices. Two 

examples were investigated: (1) a first-order filtered noise process whose state is measured with 

additive noise, and (2) two first-order symmetrically coupled processes each of which is driven by 

independent process noise. We found that, for the first example, increasing the first-order AR 

coefficient at a fixed correlation coefficient, transfer entropy increased since the entropy of the 

measured process was itself increased. 

For the second example, it was discovered that the relationships between the coupling and 

correlation coefficients and the transfer entropies is more complicated. The minimum correlation 

coefficient occurs when the process noise variances match. It was seen that matching of these 

variances results in minimum information flow, expressed as the sum of both transfer entropies. 

Without a match, the transfer entropy is larger in the direction away from the process having the larger 
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process noise. Fixing the process noise variances, transfer entropies in both directions increase with 

coupling strength . 
Finally, it is worth noting that the method for computing covariance matrices for a variable number 

of timetags as presented here facilitates the calculation of many other information-theoretic quantities 

of interest. To this purpose, the authors have computed such quantities as crypticity [13] and 

normalized transfer entropy using the reported approach. 
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