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Abstract: The Minimum Mutual Information (MinMI) Principle provides the least 

committed, maximum-joint-entropy (ME) inferential law that is compatible with prescribed 

marginal distributions and empirical cross constraints. Here, we estimate MI bounds (the 

MinMI values) generated by constraining sets Tcr comprehended by mcr linear and/or 

nonlinear joint expectations, computed from samples of N iid outcomes. Marginals (and 

their entropy) are imposed by single morphisms of the original random variables.  

N-asymptotic formulas are given both for the distribution of cross expectation’s estimation 

errors, the MinMI estimation bias, its variance and distribution. A growing Tcr leads to an 

increasing MinMI, converging eventually to the total MI. Under N-sized samples, the 

MinMI increment relative to two encapsulated sets Tcr1  Tcr2 (with numbers of constraints

1 2cr crm m ) is the test-difference max1, max2, 0N NH H H     between the two respective 

estimated MEs. Asymptotically, H follows a Chi-Squared distribution
2 1

21
( )2 cr crm mN    whose 

upper quantiles determine if constraints in Tcr2/Tcr1 explain significant extra MI. As an 

example, we have set marginals to being normally distributed (Gaussian) and have built a 

sequence of MI bounds, associated to successive non-linear correlations due to joint  

non-Gaussianity. Noting that in real-world situations available sample sizes can be rather 

low, the relationship between MinMI bias, probability density over-fitting and outliers is 

put in evidence for under-sampled data.  
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1. Introduction 

1.1. The State of the Art 

The seminal work of Shannon on Information Theory [1] gave rise to the concept of Mutual 

Information (MI) [2] as a measure of probabilistic dependence among random variables (RVs), with a 

broad range of applications, including neuroscience [3], communications and engineering [4], physics, 

statistics, economics [5], genetics [6], linguistics [7] and geosciences [8]. MI is the positive difference 

between two Shannon entropies of the RVs: the one assuming statistical independence ( )indH and the 

other ( )depH  considering their true dependence.  

This paper addresses the problem of estimating the MI conveyed by the least committed, inferential 

law (say the conditional probability density function pdf ( | )Y X between random variables RVs ,Y X ), 

which is compatible with prescribed marginal distributions and a set Tcr of mcr empirical  

non-redundant cross constraints (e.g., a set of cross expectations between a stimulus X and a response 

Y, for example in a neural cell, the Earth’s climate, an ecosystem). The constrained MI or the 

Minimum Mutual Information (MinMI) among RVs ,Y X is: min ( , )I X Y max( ) ( ) ( , )H X H Y H X Y  

max( ) ( | )H Y H Y X  , obtained after subtraction to the sum of fixed marginal entropies of the 

maximum joint entropy (ME) maxH , compatible with imposed cross constraints. The solution comes 

from application of the MinMI principle [9,10]. The MinMI is a MI lower bound depending on the 

marginal pdfs (e.g., Gaussians, Uniforms, Gammas), as well as the particular form of the cross 

expectations in Tcr (e.g., linear and non-linear correlations). There are only a few cases of known 

closed formulas for the MinMI and mcr=1:a) Gaussian marginals and Pearson linear correlation [8,11,12] 

and (b) Uniform marginals and rank linear correlation [11]. The authors have presented in [12] (PP12 

hereafter), a general formalism for computing, though not in an explicit form, the MinMI in terms of 

multiple (mcr > 1) linear and nonlinear cross expectations included in Tcr This set can consist of a 

natural population constraint (e.g., a specific neural behavior) or it can grow without limit through 

additional expectations computed within a sample with the MinMI increasing and converging eventually 

to the total MI. This paper is the natural follow-up of PP12 [12], studying now the statistics (mean or 

bias, variance and distribution) of the MinMI estimation errors: min, max, max, max( )N N NI H H H       

where max,NH is the ME estimation issued from N-sized samples of iid outcomes. Those errors are 

roughly similar to those of MI and entropy generic estimator’s errors (see [13,14] for a thorough 

review and performance comparisons between MI estimators). Their mean (bias), variance and  

higher-order moments are written in terms of 1N  powers, thus covering intermediate and asymptotic N 

ranges [15], with specific applications in neurophysiology [16,17,18]. Entropy estimators range from: 

(a) the histogram-based plug-in one [19] with a negative bias or the Miller-Madow correction [20] 

equal to ( 1) / (2 )m N  , where m is the number of univariate histogram bins to much more improved 
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estimators (e.g., kernel density estimators, adaptive or non-adaptive grids, next nearest neighbors) and 

others specially designed for small samples [21,22] 

1.2. The Rationale of the Paper 

The well-posedness of a MinMI min ( , )I X Y compatible with available cross information needs the 

knowledge of marginal X and Y PDFs, X  and Y , either imposed or inferred from sufficiently long 

samples. For that purpose, we can change X and Y into the cumulated probabilities 

( ) ( ) ; ( ) ( )
x y

X Yu x t dt v y t dt    , which are uniform RVs on the interval [0,1] (i.e., copulas [23]), 

through appropriate smoothly growing (injective) morphisms (or anamorphoses), while leaving the MI 

invariant [2]. Then, the MI ( , )I X Y becomes the negative copula entropy [24,25] given by 
1 1

0 0
( , ) [ , ]log( [ , ])I X Y c u v c u v du dv   , where the copula density is [ , ] ( , ) /[ ( ) ( )]XY X Yc u v x y x y   .  

The MinMI, subjected to crm  constraints of type [ ( , )] ; 1,...i i crE T u v i m 
 in the copula-space, is 

readily obtained by variational analysis (as in the ME method [2]) for 

1
[ , ] exp[ 1 ( ) ( ) ( , )]crm

u v i ii
c u v u u T u v  


     , where the Lagrange multipliers ( ), ( ),u v iu u  

correspond respectively to the preset (not subjected to sampling) continuum of constraints: 

[ , ] [ , ] 1c u v du c u v dv   and to the crm expectations (subjected to sampling error). The general 

solution is rather tricky since all the values ( ), ( ),u v iu u    are implicitly related. The constrained joint 

PDF and the inferential law are recovered from the constrained copula through the product:
( , ) [ , ] ( ) ( )XY X Yx y c u v x y   . 

In PP12 [12], we have generalized this problem to a less constrained MinMI version by changing 

marginal RVs into ME prescribed ones—the ME-morphisms (e.g., standard Gaussians)—and 

imposing a finite set of marginal constraints instead of the full marginal PDFs. Under these conditions, 

the number of control Lagrange multipliers is finite, leaving the possibility of using nonlinear 

minimization algorithms for the MinMI estimation, as already tested in [8]. The MinMI subjected to a 

set crT  of crm cross constraints is thus given by ,ind ME crH H , where ,ME crH is the joint ME and indH  is 

the sum of single fixed (preset) entropies. The MinMI estimator is written as , ,ind ME cr NH H , where 

, ,ME cr NH  is the ME constrained by the crm  sampling expectations obtained from N-sized samples. The 

MinMI estimation error is , , ,ME cr ME cr NH H . Therefore, as a generalization of the ME estimator bias [26], 

one verifies a MinMI positive bias equal to (larger/smaller than) / (2 )crm N  when the true population 

PDF including the tested sample, follows (is more leptokurtic/platykurtic than) the ME-PDF. This 

result is supported through Monte-Carlo experiments. 

Moreover, we introduce here the positive incremental MinMI given by the difference 

, 1 , 2ME cr ME crH H  between two MEs, forced by cross constraint sets 1 2cr crT T , which is interpreted as 

the MinMI coming from the difference set 2 1/cr crT T . The corresponding estimator is

, 1, , 2,ME cr N ME cr NH H . Both the MinMI and incremental MinMI estimators depend basically on errors of 

the expectations estimated from finite N-sized samples.  

In particular, under the null hypothesis Ho that , 1 , 2ME cr ME crH H  or 1 2,cr crT T  ME-congruent  

(see definition in PP12, [12]), the difference , 1, , 2,ME cr N ME cr NH H  works as a significance test of Ho. 
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Those tests can be used: (1) for testing statistical significant MI above zero or significant RV 

dependence or (2) for testing MI due to nonlinear correlations beyond MI due to linear correlations. 

Another important case (verified here) is the test of MI explained by joint non-Gaussianity beyond the 

MI explained by joint Gaussianity, in which Gaussian morphism (i.e., bijective, reversible variable 

transformation into another with a Gaussian pdf without loss of generality) is used for single variables. 

According to the above result, the bias of , 1, , 2,ME cr N ME cr NH H , subjected to Ho is 2 1( ) / 2cr crm m N , i.e., 

the number of cross constraints in the difference set 2 1/cr crT T  divided by 2 N . 

We further provide asymptotic analytical N-scaled formulas for the variance and distribution of 

MinMI estimation errors as functions of statistics of the ME cross constraints estimation errors. This is 

possible for N high enough where expectation errors are closely governed by a multivariate Gaussian 

distribution, uniquely determined by their bias and covariance matrix, thanks to the multivariate 

Central Limit Theorem. Since marginal morphisms are performed, the single variables are set to values 

from a look-up table of fixed quantiles (not subjected to sampling) and therefore the estimator’s  

squared-bias decreases faster than the estimator’s variance as N   . 

The correct modeling of covariances between sampling expectation’s errors under morphism is 

crucial for the correct computation of MinMI error statistics. We have verified an overall reduction of 

the cross expectation errors when compared to case where they are issued from iid realizations  

(no morphism performed). For instance the variance, noted as var( ( ))NE T  of the N-sized sampling 

mean ( )NE T , of a cross function ( , )T X Y  is given by 1 *var ( )NN T , where *T  is the residual of the 

best linear fit of T , using the conditional means ( | ), ( | )E T X E T Y  as predictors. Asymptotically, 
* *var ( ) var( )N T T  which is the variance of T, conditioned to the knowledge of marginal PDFs, 

computed at the joint PDF of the population. These conditional variances are exactly those coming 

from the MinMI solution, allowing for relating MinMI statistics with asymptotic no-replacement finite 

statistics under fixed marginals. The results are synthesized in the form of two theorems. 

Regarding the conversion of expectation errors to ME and MinMI errors, we have used a 

perturbative approach—a 2nd order Taylor expansion of the ME. This allows for closed analytical 

formulas to be obtained for MinMI variance and its distribution in a few cases (e.g., Chi-Squared 

distributions), in what we hereafter call the analytical approach. In order to confirm that, expectation 

errors are generated by surrogates of the governing multivariate Gaussian PDF; then, they are plugged 

into the Taylor expansion of MinMI and finally statistics (bias, variances, quantiles) are estimated 

from a large ensemble (semi-analytical approach). These statistics are compared with those obtained 

from a Monte-Carlo experiment where MinMI is computed ab initio from the sampling expectations – 

the Monte-Carlo approach. The closeness of results between the Monte-Carlo, the semi-analytical and 

the analytical approaches is tested using several statistical tests of bivariate non-Gaussianity and RV 

independency. This exhaustive validation has already been performed for testing analytical formulas of 

bias, variance, skewness and kurtosis of MI estimation errors [27].  

In accordance to the above synthesis, the paper structure starts with this introduction, followed by 

the formulation of MinMI and their estimators in Section 2. In Section 3 we present the modeling of 

sample mean errors that will constrain entropy and the effect of morphisms on statistics. Section 4 is 

devoted to the modeling of errors of MinMI, incremental MinMI and significance tests, followed by a 

practical case of MI estimation with under-sampled data (Section 5) and the discussion with 

conclusions in section 6. An appendix with some proofs is also provided. 
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2. Minimum Mutual Information and Its Estimators 

2.1. Imposing Marginal PDFs 

Let us formulate the problem of finding the minimum Mutual Information (MinMI) in the simplest 

framework of bivariate RVs ( , )X Y , over the Cartesian product of support sets 2
X YS S S   . 

The MinMI is constrained by the imposition of marginal PDFs ,X Y  and a set of cross expectations 

{ , ( )}cr cr crET θ T , where crT is a vector comprising crm cross ,X Y  functions and crθ  is the vector of 

their expectations. In the space of imposed PDF marginals, the MinMI comes uniquely as a function of 

crθ as *
,

( , , ) ( , , )
X Y X Y

cr X Y cr X YI H H H  
     θ θ , where [ log( )], [ log( )]

X YX YH E H E     

are preset Shannon entropies of ,X Y  respectively and *
,

( , , )
X Y

cr X YH


 θ  is the ME subjected to joint 

constraints and marginal PDFs where the ME-PDF is *
,X Y . That leads to the equivalence between 

computations of MinMI and ME [9]. In particular if ,X Y  are copula marginals (uniform PDFs in [0,1]), 

then 0
X Y

H H    and the MinMI is the copula entropy [24,25]. For instance, for standard 

Gaussians ,X Y  and a given correlation ( )cr gE T XY c  , the MinMI is 21
2( ) log(1 )g gI c c   . 

Obviously, the more cross constraints are imposed, the larger the MinMI will be. 

The general solution is obtained through variational analysis, rather similar to that for the ME [28] 

but with a continuity of constraints (the marginal PDFs) and a finite set of expectations: 

* *
, ,

( , , ) ( , , ) ; ( , , ) ( )

arg min ( ) 1 log ( , ) ( ) log ( , ) ( )

X Y X Y X Y

X Y
cr

cr X Y cr X Y cr X Y cr

T
cr cr X cr X Y cr Y cr crS S

I H H H H L

L Z X X dx Z Y Y dy

   
     

 

   

        
η

θ θ θ λ

λ η η η η θ
  (1) 

The MinMI-PDF *
, ( , )X Y X Y and the partition functions ,X YZ Z are 

  1*
, ( , ) ( , ) ( , ) exp 1 ( , ) ;

exp 1 ( , )1
( , ) ;

( ) ( , )

exp 1 ( , )1
( , )

( ) ( , )

X

Y

T
X Y X cr Y cr cr cr

T
cr cr

X cr S
X Y cr

T
cr cr

Y cr S
Y X cr

X Y Z X Z Y X Y

X y
Z X dy

X Z y

x Y
Z Y dx

Y Z x







     
   

   





λ λ λ T

λ T
λ

λ

λ T
λ

λ

 (2) 

The superscript T stands for transpose such that T
cr crλ T  is the canonical inner product between 

vectors crλ and crT . The proof is given in Appendix 1. Any PDF ( , )XY X Y  is a MinMI PDF 

corresponding to the single constraint  ( , ) 1 log ( , ) / [ ( ) ( )]cr XY X YX Y X Y X Y   T , leading to 1  , 
1( , ) ( )X XZ X X λ  and 1( , ) ( )Y YZ Y Y λ . 

The minimization of ( )L η  in (1) calls for the implementation of an iterative strategy as in [11] with 

successive adjustments of the implicitly linked partition functions.  
The present paper deals with small changes of ( , , )cr X YI  θ  coming from estimation errors crθ  

of the cross expectations evaluated from finite samples. For the purpose of inferring the consequent 

MinMI error statistics (bias, variance, distribution), we will use the second-order Taylor expansion of 
( , , )cr X YI  θ  in terms of the variation crθ : 
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*
,

1 3
, ,

( , , ) ( , , ) ( , , ) ( , , )

1/ 2( ) ( ) (|| || )

X Y

X Y

cr X Y cr cr X Y cr X Y cr X Y

T T
cr cr cr cr cr cr

I I I H

O



 

       


       

      

θ θ θ θ θ

λ θ θ C θ θ
 (1)

where 1
, ,X Ycr  

C is the inverse of the covariance matrix of the vector of constraining functions crT , 

conditioned to knowledge of marginal PDFs and evaluated at the MinMI-PDF *
,X Y  i.e.,  

* *
, ,

, , [( * * | , ] [( * * | ( | ), ( | )]
X Y X Y X Y

T T
cr cr cr X Y cr crE E E X E Y   

  C T T T T T T  (2)

where *
,X Y

E


is the expectation at *
,X Y .The perturbation *

,
* ( | , )

X Y
cr X YE


  T T T is the residual with 

respect to the conditional mean, obtained by methods of variational and functional analysis as the best 

linear fit  

* * *
, , ,

( | , ) [ ( | ) ] [ ( | ) ]
X Y X Y X Y

cr X Y cr X cr cr Y cr crE E X E Y
  

      T θ α T θ α T θ  (3)

where ,X Yα α are vectors of coefficients minimizing the mean square deviations to each component of 

crT using the X and Y conditional means of crT  as predictors. The proof is given in Appendix 1 as part 

of the proof of Theorem 1 presented in Section 2.2. 

2.2. Imposing Marginals through ME Constraints 

2.2.1. The Formalism 

In PP12 [12], we address the MinMI problem (1,2) by considering that ,X Y  are themselves  

ME-PDFs forced by a finite set of marginal, independent constraints, 
{ ( ( ), ( )), ( ) ( , )}ind X Y ind ind X YX Y E  T T T θ T θ θ . For that purpose we solve the ME problem [29] by 

imposing the constraints set { , } {( , ), ( , )}ind cr ind crT θ T T θ θ , thus leading to a weaker (i.e., smaller) 

MinMI solution than that obtained with the full imposition of the marginal PDFs. That is given by 
( , ) ( ) ( ) ( , , )cr ind ind cr X YI H H I    θ θ θ θ θ , where ( )H θ is the ME issued from the finite set of 

constraints (marginal and cross) and ( )ind X YH H H θ  is the ME corresponding uniquely to the 

marginal constraints [30]. In particular, if the support sets are [0,1]X YS S   and { , }ind ind T θ  (no 

constraints on marginals), then the joint PDF of ( , )X Y  is a copula [24] since their marginal PDFs are 
uniform in [0,1].The cross part crT includes only cross functions, not redundantly expressed as sums of 

marginal functions in indT . 

In practice one can impose the marginal PDFs from a priori RVs ˆ ˆ( , )X Y  (data variables) through 

ME-morphisms ˆ ˆ( ( ), ( ))X X X Y Y Y   (Equation 6 of PP12), (e.g., standard Gaussians), which are 

monotonically growing smooth homeomorphisms linking data to transformed ( , )X Y  variables. Then, 

thanks to the MI invariance ˆ ˆ( ( ), ( ))X X X Y Y Y   [2], one can consistently define the MinMI 

between ˆ ˆ( , )X Y  as that obtained with ( , )X Y . 

The joint ME-PDF is written in terms of a vector λ  of Lagrange multipliers [28] as: 
* 1( , ) ( , ) exp[ ( , )]TX Y Z X Y T,θ λ T λ T

, 
where ( , ) exp( )T

S
Z dxdy λ T λ T  is the partition function. 

The ME functional is   min (log ( , ) ) log ( , )T TH Z Z   ηθ η T θ η λ T θ λ , whose input is the vectorθ . 
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The marginal PDFs are supposed to be the ME-PDFs * *( ) ; ( )X X Y YX Y T ,θ T ,θ , verifying the marginal X 

and Y constraints respectively, since variables were built accordingly by ME-morphisms.  
As far as more cross constraints are added to { , }cr crT θ , the MinMI ( , )cr indI θ θ  increases converging 

to the full MI ( , )I X Y . Let us formalize that by supposing that the true joint PDF belongs to the  

ME-family characterized by an information moment superset { , } { , }  T θ T θ . 

The true joint PDF is given by *  T ,θ  with Shannon entropy given by the ME  H θ . The 

encapsulated moment sets obey to ind  θ θ θ . Therefore, thanks to Lemma 1 of PP12, the 

monotonic property of MEs is obtained: ( ) ( ) ( )indH H H  θ θ θ . This, according to Theorem 1 of 

PP12, allows for the decomposition of the MI ( , )I X Y into two positive terms, such that: 

/ /

/ /

( , ) ( ) ( ) ( , ) ( , ) 0

( ) ( ) 0 ; ( ) ( ) 0
ind

ind

ind

ind

I X Y H H I X Y I X Y

I H H I H H








    

     
θ θ θ θ

θ θ θ θ

θ θ

θ θ θ θ
 (6) 

The term / ind
Iθ θ is the MinMI associated to the finite set of cross moments crθ  and the second one is 

the remaining MI. The decomposition (6) allows us for defining a monotonic sequence of lower MI 

bounds converging to the total MI. That follows from the sequence of encapsulated moment sets 

0 0 , , , , 1 1{ , } { , } {( , ),( , )} { , } ... { , }, 1ind ind j j ind j cr j ind j cr j j j j          T T θ θ T θ T T θ θ T θ T θ (e.g. set of 

monomial bivariate moments of a certain total order j), whose ME-PDF approximates the true ME-PDF 

in the sense of the Kullback-Leibler divergence (KBD) i.e.,  * *
, ,|| ( ) ( ) 0

j jKL j
j

D H H 
   

  T θ T θ θ θ

with the MI given by the limit ( , ) ( ) lim[ ( )]ind jj
I X Y H H


 θ θ . The sets 0 0{ , }T θ and , ,{ , }ind j ind jT θ  are 

ME-congruent, i.e., their ME-PDF are the same. The j-th set must include enough constraints so as to 
keep a finite joint ME issued from { , }j jT θ and guarantee the convergence of the above KBD towards zero. 

Moreover that also guarantees that marginals of the joint ME-PDF converge to the preset marginal 
PDFs ,X Y  in the KBD sense. Therefore, the MinMI ,( , , ) ( , ) ( ) lim[ ( )]cr X Y ind jj

I I X Y H H  
  θ θ θ

. 

The addition of constraints leads to the decrease of ME, raising the useful concept of incremental 

MinMI next presented. The MI part that is explained by cross terms in the set difference 
/ ( 0), . .,j p p jj p i e  T T T T  is the incremental MinMI: 

* *
/ , , /0 /0( ) ( ) ( || ) 0

j j p pj p p j KL j pI H H D I I      T θ T θθ θ  (7) 

Estimation errors of /j pI are affected by the vector of moment errors jθ (from which pθ  is 

simply a projection). Since we preset marginal PDFs, jθ  is restricted to the cross part i.e., 

, ,j cr j cr j j   θ θ P θ  where ,cr jP  is the diagonal projector operator over cross expectations (cr and 

ind terms are set to 1 and 0 respectively). Looking for error statistics of /j pI , we use the second-order 

Taylor expression of ME: 
31

*( ) ( ) ( ) (1 / 2) ( ) ( )T T
cr cr cr cr cr cr cr crH H H O           θ θ θ P λ θ θ P C P θ θ  (8) 
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where, as usually, λ  (with dropped subscrits) is the whole vector of Lagrange multipliers of dimension 

dim( ) dim( )cr indθ θ and *C is the covariance matrix of the function vector T , both valid for the  

ME-PDF verifying the constraints *( )E T θ . We note that * *[ ' ' ]TEC T T  , where the star stands for 

evaluation over the ME-PDF and prime denotes deviation from the mean θ , i.e., '  T T θ . 
Therefore, by using (8), we express the variation of / ( )j pI j p due to variations ,cr jθ  as: 

3

/ / , , / , ,

1 1
/ , , / , * , * , ,

( ) ( ) (1 / 2) ( ) ( ) ( )

; ( ( ) )

T T
j p j p cr j cr j j p cr j cr j

T
j p cr j j cr p p j p cr j j cr p p cr p cr j

I O

C  

       

   

v θ θ A θ θ

v P λ P λ A P P C P P
 (9) 

where *,j jλ C  and *,p pλ C  are the whole vectors of Lagrange multipliers and the whole covariance 

matrices, valid for the ME-PDFs of orders j and p respectively. The matrix /j pA is built from the 

covariance matrices * jC  and *pC  valid at the ME-PDFs of order j and p respectively.  

When the ME-PDFs of order j and p are the same (which is useful for testing if the estimated /j pI

from data is significantly different from zero), or p = 0 (in which ,cr p P 0), then *pC  is a sub-matrix 

of * jC . In that case, /j pA  is positive semi-definite (PSD). This comes from the algebraic generic result 

stating that 1 1   PA C PC P  is PSD, where C is PSD, P  is a diagonal projection matrix, =PC PCP is 

the projected C with generalized inverse 1
PC such that 1 1  P P P PC C C C P . A is singular with 

Ker( ) Im( )A CP . However, one can prove that for small deviations among the ME-PDFs of orders j 

and p, the matrix /j pA is still PSD. For that one can use the same perturbation approach of [26]. 

2.2.2. A Theorem about the MinMI Covariance Matrix 

The matrix 1
*cr cr
P C P in (8) has inverse in the cross-expectation subspace, i.e. 

1 1 1
* *( ) ( )cr cr cr cr cr
   P C P P C P P . Taking the identity as the sum of complementary projector operators 

cr ind I P P , both diagonal and self-adjoint, we have 

1 1 1
* * * * *

' ' ' ' ' ' 1 ' ' ' '
* * * * *

( ) ( ) ( )( ) ( )

[ ] [ ] [ ] [ ] [ ]

cr cr cr cr cr ind ind ind ind cr

T T T T ind ind T
cr cr cr ind ind ind ind cr cr crE E E E E

  



 

  

P C P P C P P C P P C P P C P

T T T T T T T T T T
 (10)

which is the covariance matrix between the residuals 'ind
crT of the best linear fit (in the sense of mean 

squares error) of crT using the X and Y functions in indT as predictors, i.e., ' ' '
,

ind T
cr cr ind cr ind T T α T where 

the matrix of coefficients is ' ' 1 ' '
, * *[ ] [ ]T T

ind cr ind ind ind crE Eα T T T T . The identity (10) is simply an 

application to the ME covariance matrix of a generic algebraic result on PSD matrices *C and 

projection operators ,cr ind cr P P I P .  

Therefore, the variances in 1 1
*( )cr cr
 P C P  are smaller than those in *( )cr crP C P . Moreover, the more 

marginal constraints are imposed (with increasing j), the smaller the variances from 1 1
*( )cr cr
 P C P  will 

be, due to the increasing number of predictors and closer will be the full knowledge of the marginal 
PDFs. Then, asymptotically the residuals '

,
ind

cr jT  at step j must converge to the residuals 
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*
,

* ( | , )
X Y

cr X YE


  T T T  with respect to the mean (5) entering in the covariance (4) regarding 

MinMI. Therefore, that leads us to the Theorem: 

Theorem 1: Let *
,X Y be the MinMI-PDF issued from { , }, ,cr cr X Y T θ , being the same as the ME-PDF 

issued from {( , ), ( , )}ind cr ind crT T θ θ for some set { , }ind indT θ . Then we have: 

*
,

1 1
, , *; ( ) [( * * | ( | ), ( | )]

X Y X Y

T
cr cr cr cr cr cr crE E X E Y  

   λ P λ C P C P T T T T  (41)

which states that the Lagrange multipliers of the MinMI-PDF are those of the ME-PDF for the cross 

constraints and the MinMI covariance matrix (4), say that of the residuals of the best fit of the cross 

constraints using their condtional means as predictors. The proof, as well of (3–5) is added in Appendix 1. 

An illustrative example of the Theorem 1 is given for the bivariate Gaussian 
* 1 1/2 2 21

2( , ) (2 ) exp[ ( 2 )]XY g g gX Y d d X c XY Y       of correlation gc with 2 1(1 )g gd c   . The marginals 

,X Y  are standard Gaussians. * ( , )XY X Y  is the MinMI-PDF constrained by correlation as well as the 

ME-PDF constrained by moments of order one and two: 2 2{ ( , , , ), (0,1,0,1)}ind indX X Y Y T θ  and 

{ ( ), ( )}cr cr gXY c T θ . The vector of Lagrange multipliers is 1 1
2 2[0, ,0, , ]T

g g g gd d c d λ  while the 

diagonal covariance matrix and its inverse (lower triangle parts) are:  
2 2

*

1 2 2 2 21 1
* 2 2

2 2 2 21
2

[(1,0, ,0,0) , (*, 2,0, 2 , 2 ) , (**,1,0,0) , (***, 2, 2 ) , (****, 1) ]

[( ,0, , 0,0) , (*, , 0, , ) , (**, ,0,0) ,

(***, , ) , (****, (1 ) ) ]

T T T T T
g g g

T T T
g g g g g g g g g

T T
g g g g g

c c c c c

d c d d c d c d d

d c d c d



 

  

 

C

C  (15)

The redundant upper triangle part is given by stars. The MinMI is 21
2( ) log(1 )g g gI c c   with its 

derivatives entering in the Taylor development (3) given by g

g

I

g g crc c d P

   λ  which is the fifth 

component of λ  and 
2

2

2 2 1 1
, , *(1 ) ( )g

X Yg

I

g g cr cr crc
d c  

  


   C P C P , i.e., the entry at 5th line, 5th column of 

1
*
C  as guessed from the Theorem 1. By expressing 1/2

g g XY c X d W   and 1/2
g g YX c Y d W   with 

standard Gaussian noises , ~ (0,1)X YW W N , and ( , ) ( , ) 0X Ycor X W cor Y W  , one easily gets the 

conditional means crT  as * *
, ,

2 2( | ) ; ( | )
X Y X Y

g gE XY X c X E XY Y c Y
 

  , leading to the best linear fit 

with mean square error 2 2 1
, , (1 )

X Ycr g gd c 
  C , confirming the second part of (11).  

2.3. Gaussian and Non-Gaussian MI 

There is a particular MI decomposition of the type (6,7), already studied in PP12 [12], in which 

both RVs X and Y are set to standard Gaussians (0,1)N  over the real support set X YS S   by 

Gaussian morphism [31]. The isotropic bivariate standard Gaussian is constrained by the moment set 
2 2

0 ( , , , )T
ind X X Y Y T T with the expectations vector 0 0( ) (0,1,0,1)T

ind E  θ θ T . The sequence of 

MinMIs is obtained by considering the indexed moment set (Equation 14 of PP12 [12], changing the 

index p there into j here):  

 2
0: 1 , ( , ) ,r s

j X Y r s j r s j     T    (16)
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Comprising bivariate polynomials of total order j. Only natural j even numbers provide integrable 

ME-PDFs over , thus excluding odd j values from the sequence 0 0 2 2 4 4{ , },{ , },{ , }...{ , } T θ T θ T θ T θ  

of set pairs {moments, expectations}. The independent parts of all sets are ME-congruent with 0 0{ , }T θ , 

i.e., they include high-order univariate moment expectations of the standard Gaussian. The number of 

independent and cross moments of jT  (13) is 2j and ( 1) / 2j j   respectively (e.g. (4,1), (8,6), (12,15) 

and (16,28), for j=2,4,6,8). Other more efficient basis cross functions could be used as for example 

orthogonal polynomials. Using the notation of Section 2.2, the maximum entropy limit ( )H θ  of the 

sequence limit coincides to the true (X,Y) Shannon entropy. As presented in PP12, we define the 

positive Gaussian MI gI , the non-Gaussian MI ngI and the non-Gaussian MI ,ng jI of even order j, 

respectively as: 

2
2/0 0 2

/2 2 , / 2 2

( ) ( ) (1/ 2)log(1 ) ( ) ;

( ) ( ) ; ( ) ( )

g g g g

ng ng j j p j

I I H H c I c

I I H H I I H H  

      

     

θ θ

θ θ θ θ
 (17)

with the MI decomposed as ,( , ) g ng g ng jI X Y I I I I    . The Gaussian MI depends on the Gaussian 

correlation gc , i.e., the Pearson correlation between the Gaussianized variables ( , )X Y . The non-

Gaussian MI vanishes iff the joint PDF is Gaussian.  

2.4. Estimators of the Minimum MI from Data and Their Errors  

This section is devoted to the study of estimators (and their errors) of the incremental MI 

/ ( )j pI j p , (7) between a priori RVs ˆ ˆ,X Y  or, equivalently, between their transformed RVs X,Y.  

In practice, the incremental MI / ,j pI j p  is estimated by a two-step algorithm: first, the 

computation of expectations; then, the MEs and the partial MIs. The vector of expectations, ,N jθ , is 

estimated from the N-sized bivariate series ( , ), 1,...,l lX Y l N , obtained by morphism from the original 

N iid realizations of the a-priori RVs ˆ ˆ( , ), 1,...,l lX Y l N  (e.g. time-series, spatially distributed data), as 

the arithmetic average:  

1
, ,1

( ) ( , )
N

N j N j j l l j N jl
E N X Y


    T θ T θ θ

 (15)

where NE  stands for expectation over the N realizations and the vector of moment estimation errors is 

,N jθ  . The first-step error comes from the difference ,( ) ( )N j jH Hθ θ , due to marginal morphisms 

and finite bivariate sampling, i.e., the cross combinations of variable realizations. We will see that MI 

errors depend crucially from moment estimation errors and their statistics. 
Secondly, the true ME ,( )N jH θ  is estimated as the minimum ,

ˆ ( )N jH θ  of a functional that is 

reached by nonlinear minimization techniques (e.g., gradient-descent), taking as inputs ,N jθ  and a set 

of calibrated parameters. The second-step error comes from the difference Ĥ H H  .  
The estimator of /j pI along with its error, decomposed into the first-step ( , / ,N j pI θ ) and second-step  

( , / ,N j p HI ) contributions, is written as 
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, / , , / , / , / , / , , / ,

, / , , , , ,

, / , , , , , , ,

ˆ ˆ( ) ( ) ;

( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

N j p N p N j j p N j p N j p N j p N j p H

N j p j N j p N p N j N p

N j p H N p N p N j N j N p N j

I H H I I I I I

I H H H H H H

I H H H H H H 

         

              
            

θ

θ

θ θ

θ θ θ θ

θ θ θ θ

 
(16)

where , / ,N j pI θ is the difference between entropy anomalies H due to input errors. The second-step 

error comes from the numerical implementation and round-off errors of the entropy functional due to: 

(a) a coarse graining representation of the continuous PDF; (b) the numerical approximation of the ME 

functional and its gradient; (c) the stopping criteria of the iterative gradient-descent technique. In this 

article we will neglect the effect of the second-step error, thus approximating the MinMI error by 

, / , / ,N j p N j pI I  θ  depending uniquely on the sampling error of the cross expectations , ,cr N cr j θ θ . 

3. Errors of the Expectation’s Estimators 

3.1. Generic Properties  

The distribution of the MinMI error and its statistics (bias, variance, quantiles) depends on the 
distribution of the vector of error moments , ,N cr jθ  entering in (9). Here, we present a generic 

statistical modeling of those errors giving the emphasis in the influence of variable morphisms and  

bivariate sampling. 
Let us assume the reasonable hypothesis that the discrete estimator ,N jθ (15) is a consistent 

estimator of the mean jθ , i.e., the error , ,N j N  θ 0  in probability, with both the bias and 

covariance matrix converging to zero as data size grows: 

, , ,, , , , ,( ) 0 ; ( ')( ') 0, ; '
N j N j N j

T
N j N j N j N j N j

N N
E E   

            θ θ θb θ M θ θ θ θ b

 
(17)

where the prime stands for perturbation with respect to the mean. The exact form of the components of 

,N jθb  and 
,N jθM  is rather difficult to establish as a consequence of imposing marginal distributions 

thus reducing the randomness to the covariate sampling. Estimator variances are scaled as (1/ )O N , 

though smaller than in the case of N iid outcomes. Moreover, we assume that the convergence rate is 
higher (faster convergence) for the squared bias than for variances, which is supported in a few 
examples in next section. 

3.2. The Effects of Morphisms and Bivariate Sampling 

Let us start with the effect of morphisms transforming original variables ˆ ˆ( , )X Y  into their 

transformed ( , )X Y . That depends on the rank of variables within the available sample. Without loss of 

generality, let us sort X̂  by ascending order in the sample, i.e., the l-th value equaling the ordered l-th 
value ( )

ˆ ˆ
l lX X , l=1,…,N. The bivariate l-th realization is ( '( ))

ˆ ˆ ˆ( , )l l l lX Y Y , where 

'( ) :{1,..., } {1,..., }l l N N is the random bivariate rank permutation depending upon the particular 

sample (e.g. the first of X̂  coming with the third of Ŷ , then l’(l=1)=3 and so on). In particular '( )l l l
when correlation equals one. The inverse of the function '( )l l is written ( ')l l . The probability p-values 
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of ( ) ( ')
ˆ ˆ,l lX Y

 
i.e., their marginal cumulated probability functions (CDFs) are respectively , , ',X l Y lp p , 

growing as function of , 'l l . Those p-values can only be inferred from the sample or prescribed from 

a-priori hypotheses. The sorted transformed RVs given by ME-morphisms are: 
1 1

( ) , , ( ') , , '( ) ; ( ) ; , ' 1,...l ME X X l l ME X Y lX p Y p l l N      (18) 

where , ,,ME X ME Y  are the ME prescribed CDFs (e.g. CDFs of Gaussians) of X and Y respectively. 

Then the morphisms relies upon invertible transformations ( ) ( ) ( ') ( ')
ˆ ˆ;l l l lX X Y Y  . The bivariate 

transformed realizations ( '( ))( , ), 1,...,l l l lX Y Y l N  are then used to compute expectations (Equation 15). 

Since the exact marginal distributions are not known, their cumulated probabilities must be prescribed, 
for example with regular steps , ,, 1/X l Y lp p N   in which , ,, / ( 1), 1,..,X l Y lp p l N l N   .  

In order to obtain moments of ,N jθ we need rewriting it in a convenient form: 

   

 

, ,

1 11 1 1 1 1
, , , , ' '( ), ' , ,, ' 1 0 0

1
'( ), '

( ) ( ') , , ' , , ', ' 1
, , '

( ), ( ) ( ), ( ) [ , ]

, [ , ]

N j N j j

N

j ME X X l ME Y Y l l l l j ME X ME Yl l

N l l l
j l l X l Y l X l Y ll l

X l Y l

p p N u v c u v du dv

N
X Y c p p p p

p p





    






   

     

 
    

   

  



θ θ θ

T T

T

 (19) 

where  '( ), ' ( '), , , ' 1,...,l l l l l l l l N     is the Kronecker delta, * *( ) ; ( )
X Y

X X Y Yu t dt v t dt 
 

  T ,θ T ,θ are 

the marginal cumulated probabilities, corresponding respectively to probabilities ,X lp  and , 'Y lp  in the 

sum (19) and [ , ]c u v  is the copula function [23] (ratio between the joint PDF and the product of 

marginal PDFs). By looking at (19), one sees that 1
'( ), ' , , '/ ( )l l l X l Y lN p p   is an estimator of the copula 

, , '[ , ]X l Y lc p p . In particular, if X,Y are independent, then l and l’(l) are independent, , , '[ , ] 1X l Y lc p p   and 
1

'( ), '( | , ')l l lE l l N   i.e. there is an average equipartition of the bivariate ranks. 

Equation (19) shows that moments of ,N jθ  depend on statistics of the error of the copula 

estimator, which can be very tricky due to the imposition of marginal PDFs by morphisms, presenting 

unusual effects with respect to classical results from samples of iid realizations [32].  
For that, let us denote the random perturbation , ' '( ), ' '( ), ' ',[ ] , , 'l l l l l l l l l lE l l       , then , '[ ] 0l lE   , 

also satisfying to the constraints '( ), ' ( '),1 ' 1
1

N N

l l l l l ll l
 

 
    

or , ' , '1 ' 1
0

N N

l l l ll l
 

 
    as a 

consequence of the fact that '( )l l and ( ')l l  are index permutations of N values. Therefore, taking into 

account those constraints, ,N jθ can be written in different forms in terms of perturbations: 

1 1 1
, , , ' , ' , , ' '( ), ' , , ' '( ), ', ' 1 , ' 1 , ' 1

1 1 1 1
, , ' '( ), ' , , '( ) , , '( ) , , '( ), ' 1 1 1 1

' ' '

' ' ' '

N N N X
N j j l l l l j l l l l l j l l l l ll l l l l l

N N N NY X Y
j l l l l l j l l l j l l l j l l ll l l l l

N N N

N N N N

  



  
  

   
   

    

  

  
   

θ T T T

T T T T
 (20) 

where  , , ' ( ) ( '),j l l j l lX YT T and its perturbation with respect to the global mean is 

, , ' , , ' ,' ( )j l l j l l N jE T T θ . The perturbation with respect to X-conditional mean is 

, , ' , , ' ( )' ( | )X
j l l j l l j lE T X X  T T  where ( ) '( ), '' 1

( | ) [ ]
N

j l j l l ll
E T X X E 


   T . A similar definition is 

written for the Y- perturbation , , ' , , ' ( ')' ( | )Y
j l l j l l j lE T Y Y  T T . 
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The estimator (15) of independent constraints (components of jT uniquely dependent on X or Y) have 

a bias but vanishing variances (null components of , 'N jθ ), since perturbations 'XjT  or 'YjT vanish 

because the local values of jT coincide to one of the (X or Y)-conditional means. That bias reduces to a 

numerical integration error. For example for X-depending functions expectations, the error reduces to 

bias    11 1
, , , ( ) , ,1 0

( )
N

X N j X j l X j ME Xl
X N u du 


    θ T T , of order 2( )O N  as given by the trapezoidal 

integration rule for bounded ,X jT functions. The estimators of cross expectations have bias and non-

vanishing variances.  
Now, our goal is to get the estimation of the covariance matrix 

,N jθM (17). As a consequence of the 

non-replacement of quantiles or rankins, the deviations 
1 1, , '( ) 'j l l lT  and 

2 2, , '( ) 'j l l lT  in (20) are not 

necessarily independent for 1 2l l , which will not occur if different realizations would be independent, 

leading to 1
,var( ) var( )N j jN θ T . The statistics without replacement generally lead to a deflation of 

estimator variances as compared to those satisfying the hypothesis of independence of realizations [33] 
or, in other words, 1

,var( ) var( )N j jN θ T . Therefore, in order to get a N−1-scaled expression for

,var( )N jθ , we will consider another type of deviations of jT  consistent with (20).  

We propose new deviations, denoted by 'lms
jT  , that are given by the linear combination both of the 

global deviation 'jT and of the marginal deviations ' , 'X Y
j jT T with the respective coefficients summing 

1 and having the least mean square (lms). Those deviations are consistently given by: 

, ,

' (1 ) ' ' '

[ ( | ) ( )] [ ( | ) ( )]

lms X Y
j X Y j X j Y j

j X j N j Y j N jE T X E E T Y E

   

 

     

   

T T T T

T θ θ
  (21) 

which are the residuals of the best linear fit of jT using the conditional means ( | )jE T X  and ( | )jE T Y  

as predictors and where the coefficients are those of the linear regression: 

1
var[ ( | )] cov[ ( | ), ( | )] cov[ ( | ), ]

cov[ ( | ), ( | )] var[ ( | )] cov[ ( | ), ]

j j j j jX

Y j j j j j

E T X E T X E T Y E T X T

E T X E T Y E T Y E T Y T





    

     
        

 (22) 

Those deviations take into account the maximum implicit knowledge of marginal PDFs through 

their conditional means. Now we will use them for expressing the error moments. 
The expression of the error covariances in 

,N jθM  relies upon the expansion (20) with perturbations 

written as function of mean values of products of deltas '( ), 'l l l . These means depend on the true copula 

and are written as: 

 
 

 
1 1 2 2 1 1

1 2 1 2 1 2 1 2

1
'( ), ' '( ), ' '( ), ' 1 2 1 2

1 1
1 2 1 2

0, if , ' ' or ' '

( ) ( ), (*) if , ' '

( 1) (*) if , ' '

l l l l l l l l l

l l l l l l l l

E E N l l l l

N N l l l l

   

 

    
  


  

  (23) 

where we have considered the fact that l’(l) and its inverse l(l’) are permutations of ranks (no 

duplication allowed). The values indicated with asterisk in (23) correspond to X,Y independent (l’(l) 

independent of l). Those moments are difficult to obtain in practice unless variables are independent or 
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the bivariate PDF is known a priori. From these moments, a large ensemble of N-sized surrogate 

samples is generated from which empirical estimator covariances are computed. 
Then, by plugging (23) into the generic (-th row, -th column) of 

,N jθM , and denoting the -th 

and -th components of jT by ,j T  and ,j T  with estimation errors , , ,,N j N j  θ θ , we get 

   
     

, 1 1 2 2 1 1 2 21 1 2 2

1 1 1 2 2 21 2

2
, , , , , ( ) ( ') , ( ) ( ') '( ), ' '( ), ', ', , '

1 2
, , , ( ) ( '( )) , ( ) ( '( ))

( ) ( ' ') ' , ' , ( )

( ' ') ' , ' ,

N j N j N j j l l j l l l l l l l ll l l l

N j j j l l l j l l ll l

E X Y X Y N E

N E E N E X Y X Y

     

   

 


 


      
    




θM θ θ T T

T T T T

 (24) 

The first term of the rhs of (24) is given by 1
, ,[cov ( , )]N j jN E  

 T T  i.e. 1/N times the expectation of 

the covariance among N realizations. That term converges asymptotically to 1
, ,cov( , )j jN  

 T T , i.e., 

the estimator’s covariance in the hypothesis of N iid realizations. However, when marginals are 

imposed or the morphism of variables is performed, that hypothesis no longer holds because the 

covariance estimator is a statistic without replacement [33], since quantiles of X and Y are not repeated 

in the sample. Therefore, the additional term of (24) reduces the estimator’s variances with respect to 

the case of iid trials.  

Looking for a correct representation of the cross estimator’s variances when marginals are imposed, 
we represent the jT  perturbations by 'lms

jT  (21) (residuals of the best linear regression). There, we will 

benefit from a generic property of lse (least squares error) regression residuals which is the fact that 
they are uncorrelated with the predictors (here the conditional means of ( | ), ( , )j jE X E YT T ). This 

means that 'lms
jT  is represented in terms of noises which are uncorrelated, both with X and Y. 

Consequently, different realizations of 'lms
jT  are uncorrelated, which will simplify the expression of 

the covariance matrix. Therefore, using those lms perturbations, the generic matrix entry 
, ,( )

N j  θM

(24) is rewritten as 

 
, 1 1 1 11

1 1 21 2 1

2
, , ( ) ( '( )) , ( ) ( '( ))

2 1 2
, ( ) ( '( )) , ( ) ( '( 2)) , ,,

( ) [ ' ( , ) ' ( , )]

[ ' ( , ) ' ( , )] ( ' ' ) ( )

N j

lms lms
j l l l j l l ll

lms lms lms lms
j l l l j l l l N j jl l l

N E X Y X Y

N E X Y X Y N E E O N

   

   




  


   

    



θM T T

T T T T

   

(25) 

The 1N  -scaled term of (25) converges asymptotically (as N   ) to 1
, ,( ' ' )lms lms

j jN E  
 T T , i.e., 

1/N times the covariances between residuals of the linear regression relying upon conditional 

variances. This let us to formulate the Theorem: 

Theorem 2: Let us suppose imposed X and Y marginal PDFs by variable morphisms. Then, the 
covariance between the N-sized based estimators ,N   and ,N  of the means of cross functions of 

( , )T X Y and ( , )T X Y is given by 

 1 1
, ,cov( , ) ( ' ' ) ( ' ' )lms lms lms lms

N N N
N

N E E N E        


 T T T T  (26) 

where ' ' [ ( | ) ] [ ( | ) ]lms
X YE X E Y            T T T T  is the residual of the best linear fit taking 

conditional means as predictors, and ,X Y   are the corresponding coefficients (idem for 'lms
T ). The 

expectation is computed with the true PDF of the population. The proof was given before in the text. 
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An immediate corollary of this Theorem applies in the case data are governed by a certain  
MinMI-PDF issued from { , }, ,cr cr X Y T θ . In that conditions T and T are themselves cross functions 

from the constraining set crT and , ,cov( , )N N   are entries of 
NθM (17). Then, if the true joint PDF 

is the MinMI-PDF issued from { , }, ,cr cr X Y T θ , we get: 

1
, ,N X Ycr cr crN  


 θP M P C

  (27)
 

where we use the covariance matrix introduced in (4). Under those conditions one has the identity for 
the matricial product 1 1

, ,( )
N X Ycr cr cr crN P 

 
 θP M P C , which will be crucial for the evaluation of 

asymptotic MinMI estimation bias. 

3.3. Errors of the Estimators of Polynomial Moments under Gaussian Distributions 

In this section we assess the bias, the covariance of estimators and its expression (25) when 

constraints are bivariate monomials (13) and Gaussian morphisms are performed as described  

in Section 2.3. For the purpose of discussing statistical tests of non-Gaussianity presented in a next 

section, we will restrict our study by considering the case of N-sized samples of iid realizations of 

independent variables ˆ ˆ,X Y (taken without loss of generality standard Gaussians). There, an empiric 

Monte-Carlo strategy is used by taking the standard Gaussian morphisms ,X Y of the N outcomes, 

from which one estimates the expectation of a vector of generic functions 0( , ) , ,r sX Y X Y r s T  (13). 

The bias is , ,( ( )) ( )N N r N s r sE E E       b T T , which is determined by the fixed Gaussian 

centered moments ( )r
r E X  and , ( )r

N r NE X  , 0r . The sample is centered and standardized 

such that ,1 ,20; 1N N   . The variance var( ( ))NE T  of ( )NE T  can be rigorously computed from the 

quadruple sum (25) using the N quantiles from the standard Gaussian and the delta expectations (23) 

for the case of X, Y independent from each other. However, the computation of that sum is very time-

consuming for high N values. For that reason, we approximate it by a Monte-Carlo mean obtained with 
5000reaN   independent realizations of the N-sized samples. The finite and asymptotic values of 

1 (var ( ))NN E T , valid for the case of N iid trials, are given by:  

     2 21 1 1 1
,2 ,2 , , 2 2(var ( )) var( )N N r N s N r N s r s r s

N
N E N N N          


    T T   (28) 

whereas those (smaller than those of (28)) obtained from least mean squares (25) are: 

 
 

1 1

1 2 2 2
,2 ,2 ,2 , ,2 , , ,

1 1 2 2 2
2 2 2 2

var( ( )) (var ( | )) var ( | )

( ) ( ) ( )

var( | ) ( ) ( ) ( )

N N N

N r N s N r N s N s N r N s N r

r s r s s r s r
N

E N E lms N lms

N

N lms N

       

       

 



 



  

   

    

T T T

T

 (29) 

Figure 1 compares the variance var( ( ))NE T  with the squared bias 
2

b  of the estimator, both 

relevant in the bias of the MinMI estimation. In the same figure, one compares the empirical variance
var( ( ))NE T , with its approximation 1 var( | )N lms T  and with the variance for the case of iid trials: 

1 var( )N T . We use 
4 2 6 2 8 2, ,X Y X Y X YT ,respectively in panels a), b), c), sorted by growing total 
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variance var( )T , specially concentrated at the distribution queues. In all  figures, N=25*2k,k=0,..,11. 

We have verified that the empirical variance var( ( ))NE T  agrees very well to the theoretical value 
1 var ( | )NN lms T  for all Ns. (not shown).  

At this point, some generic conclusions can be drawn. The estimator’s variance var( ( ))NE T  grows 

with var( )T  dominating over the squared bias, except for small N values and higher values of var( )T . 

This will lead us to neglect the bias of covariance estimator’s in the MinMI asymptotic statistics. 

Figure 1. Squared empirical bias: 
2

b  (black lines) of N-based T - expectations as 

function of N, empirical variances: var( ( ))NE T  (red lines), approximated variances: 
1 var( | )N lms T (blue lines) and variance for the case of N iid trials: 1 var( )N T (green 

lines). T stands for different bivariate monomials: 4 2X Y (a), 6 2X Y (b) and 8 2X Y (c).  

 

From Figure 1, we also note that the variance reduction coming from morphisms of variables, tends 

to decrease for higher N values, where the effect of sampling prevails with a 1N   scaling on the 

estimator variance where it is closely approximated by the asymptotic lms variance 
1 var( | )N lms T . 

That can lead to a slight increase of var( ( ))NE T  for small Ns, followed by a decrease (e.g., 6 2X Y ), 

due to the effect that var ( | )N lmsT  is small for lower values of N.  

Moreover, thanks to the Central Limit Theorem (CLT), the distribution of estimator errors tends 

towards Gaussianity with increasing N, with a slower convergence rate for higher T  variances. 

However, the Gaussian PDF limit has an infinite support which must be truncated since the estimated 

moments ( )NE T must be within a kind of polytope with edges determined by Schwartz-like 

inequalities as shown by PP12 [12] (e.g., | ( ) | 1NE XY   and 2 2 1/2| ( ) | /[2(1 )] 1)gE X Y c  , working as 

bounds for nonlinear correlations. Since estimators have bounds, the estimation errors do so as well. 

This can be solved by using the Fisher Z-transform arctanh(c) of a generic linear or nonlinear 

correlation c and projecting it over the real support (not done here). 
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Now we illustrate in Figure 2, the Theorem 2 under different values of correlation [0,1]gc  .  

We consider the variables ,X Y with a joint Gaussian PDF of correlation [0,1]gc   with marginal 

standard Gaussians. In Figure 2 we compare the empirical Monte-Carlo value of var( ( ))NN E T  (MC in 

the Figure), within an ensemble of 5000 N-sized samples with the theoretical one var( | )T lms  (case 

where morphism is performed, AN in the Figure) and var( )T  (case of iid realizations, ANiid in the 

Figure). We have used a sample of N=200, which is supposed to be near the beginning of the 

asymptotic regime and two cross functions: ( , )T X Y XY and 2( , )T X Y X Y . The aforementioned 

variances are 2 2 2var( | ) (1 ) / (1 ) ; var( ) 1g g gXY lms c c XY c      while 2 2var( ) 12 3gX Y c  and 
2var( | )X Y lms  is the mean squared residual of the best linear fit using the predictors 

2 3( | ) gE X Y X c X and 2 2 3 2( | ) (1 )g gE X Y Y c Y c Y   . For both functions, a very good agreement is 

verified between Monte-Carlo values and the theoretical ones within 1–5% relative error. A generic 

result of Figure 2 is the fact that, under the fixation (presetting) of marginals, the sampling variability 

of cross estimators falls to zero as far the absolute value of correlation tends to one.  

Figure 2. N times Monte-Carlo variances: var( ( ))NN E T  (thick solid lines) and its 

theoretical analytical value var( | )lmsT (thick dashed lines), both under imposed marginals 

(morphisms) and analytical value of var( ( )) var( )NN E T T  for iid data (thin solid lines). 

T means different bivariate monomials: XY (black curves), 2X Y  (red curves). N = 200. 

 

3.4. Statistical Modeling of Moment Estimation Errors  

The above qualitative results gave empirical support to Theorem 2 about the covariance of 
estimation errors and the neglecting of estimation biases. Therefore, the part of matrix 

,N jθM (17) 

regarding cross components is modeled as:  

, ,

1 1
, , , , |( ( ' ' ))

N cr j

lms lms
N cr j cr j N cr j lmsN E E N 

  θM T T C

 

(30) 
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with the approximation being valid within terms 1( )o N . In practice, the matrix , ,( ' ' )lms lms
cr j cr jE T T

requires the estimation of conditional means for each value of X and Y. 

Now, we will formulate the distribution of moment’s estimation errors in the asymptotic regime of 

high enough N. Then, thanks to the multivariate Central Limit Theorem [34] one can suppose that the 

unbiased estimation error vector follows a multivariate Gaussian distribution, which is written as 

, ,

1/ 2 1/ 2 1/2
, , , , | , ,( ) ( ) ; ~ ( , )

N cr jN cr j j N cr j lms j j cr j cr jN 
  θθ M U C U U 0 P


N   (31) 

where 1/2
, , |( )N cr j lmsC  is the square root matrix of , , |N cr j lmsC and jU  is a multivariate standard normal RV 

of dimension equal to ,dim( )cr jθ  with zero mean ,cr j0


 and covariance matrix ,cr jP .  

4. Modeling of MinMI Estimation Errors, Their Bias, Variance and Distribution 

Taking into account the Gaussian approximations (31) for estimation errors, their neglected bias, 

the 1N   scaled covariance (30), and the second-order Taylor development of MinMI (9), one can 

determine approximated bias, variance and distribution of MinMI estimators (15). 

Two problems are then addressed: 

I The estimation of bias, variance, quantiles and distribution of estimators of the incremental 

MinMI /j pI issued from finite samples of N (iid) realizations of bivariate original variables 
ˆ ˆ( , )X Y and then transformed into RVs ( , )X Y  

II The distribution of estimators of /j pI under the null hypothesis H0 that ( , )X Y  follows the ME 

distribution constrained by a weaker constraint set ( , )p pT θ  (j>p). These estimators work as a 

significance test for determining whether there is statistically significant MI beyond that 

explained by cross moments in ( , )p pT θ .  

4.1. Bias, Variance, Quantiles and Distribution of MI Estimation Error 

Considering the moment error distribution (31) and plugging it into the development (9), the error 
of the MI estimator , /N j pI is then distributed as: 

1/2 1/2 1 1/2 1/2
, / , / , , | , , | / , , |[ ( ) ] 1/ 2 [( ) ( ) ]T T

N j p j p N cr j lms j j N cr j lms j p N cr j lms jI N N   θ v C U U C A C U
 

(32) 

where neglected terms are of order 3/2( )O N . That is a second-order polynomial form of a multivariate 

standard Gaussian RV ,~ ( , )j j cr jU 0 P


N . There is no general analytical expression for the PDF 

inferred from (32), except in certain cases where , /N j pI  is a governed by a non-central Chi-squared 

distribution [36]. The quantiles determining the confidence intervals of , /N j pI  can easily be obtained by 

sorting of Monte-Carlo surrogates (proxies) of (32) from a pseudo-random generator of a standard 

Gaussian. Analytical expressions of the distribution of MI estimates are given from a MI Taylor 

expansion in terms of the anomalies of the estimated probabilities [27,37]. Here, we adopt a different 

approach by considering anomalies of the estimated expectations.
 The bias of , /N j pI or the expectation of , / ,N j pI θ  is derived from the mean of the quadratic form term 

in (32). Therefore, taking the invariance of the trace for the circular permutation of a matrix product, 

that bias is approximated by the asymptotic value: 
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1
, / , , | /

1 1 1
, , | , * , , , | , * ,

( ) (1/ 2) ( )

(1/ 2) ( ) ( )

N j p N cr j lms j p

N cr j lms cr j j cr j N cr p lms cr p p cr p

E I N Tr

N Tr C Tr C



  

 

   

C A

C P P C P P
 (33) 

This is the difference between maximum entropy 1N  -scaled biases of orders j and p, subjected to 
the imposition of marginal PDFs. We must remember that if p = 0, ,cr pP  is zero. For this case the 

MinMI bias is simply minus the negative bias of the ME ,( )N jH θ , which is treated without the effect of 

variable morphism by [26]. When data is governed by the MinMI-PDF of order j, the matrices 

, , |N cr j lmsC and 1
, * ,cr j j cr jC P P  are the inverse of each-other, according to Theorems 1 and 2 (11,27), 

leading to 1 1 1
, /0 , , | , * , ,( ) (1/ 2) ( ) (1/ 2) ( )N j N cr j lms cr j j cr j cr jE I N Tr C N Tr    C P P P , i.e., 1 / (2 )N  times the 

number of cross constraints. However, as argued by [26], when the true data distribution is more 
leptokurtic than the MinMI-PDF, then the bias can be larger than 1

,(1/ 2) ( )cr jN Tr P .  

By assuming the limit case of Gaussianity, the variance of , /N j pI comes as: 

1 2 2
, / , , | / / , , | /var( ) ( ) (1 / 2) ( )T

N j p N cr j lms j p j p N cr j lms j pI N Tr N Tr         C v v C A  (34) 

The leading variance term is N−1-scaled as generally deduced in [15]. Keeping the leading term of (34), 
and dealing with the trace, we get a given relative error , /I N j jr I I   of the MinMI /0jI  (p=0) when 

     2 2' 2
, , /0 , /0( ) / ( ) /T

cr j cr j j I cr j j IN E T I r O m I r  . The term ,( )cr jO m  increases with a larger rate 

than /0jI  as far as the bound of the polytope of allowed expectations is closer.  

4.2. Significance Tests of MinMI Thresholds  

The estimators , /N j pI allow for the elaboration of statistical significance tests in order to verify 

whether the empirical PDF differs considerably from a threshold ME-PDF or in the contrary if the 

difference can be justified by sampling errors.  

Let us suppose the null hypothesis H0 considering that the true PDF coincides to the ME-PDF 
constrained by ( , )p pT θ . In particular for 0 0( , ) ( , ) ( , )p p p p ind ind  T θ T θ T θ , the null hypothesis states 

that ( , )X Y  are statistically independent. Therefore under H0, the moment sets ( , ),( , )p p j jT θ T θ  are  

ME-congruent and the moments of order j p  remain well determined by expectations over the less 
restricted p-th ME-PDF i.e., *

,
( )

p p
j j j pE

  
T θ

θ T θ  where the subscript arrow j p  means that  

j-order statistics are obtained by the p-order ME-PDF. The same holds for the ME covariance matrices, 
i.e., *p pC C and * * ;j j p j j p  C C C . In these conditions, the matrix pC  is simply a sub-matrix 

of jC .The Lagrange multipliers are restricted to the p-order i.e. /( , 0 ) ;j j p p j p j p  λ λ λ


, where 

entries of higher order than p are set to zero leading to /j p v 0  in (9). Therefore, the incremental 

MinMI vanishes, i.e. /( ) ( ) 0j p j pH H I  θ θ , but the estimator of , /N j pI  is positive due to artificial 

MI generation stemming from the presence of sampling errors. Then, under H0, and using (9), the MI 

estimation is provided by the following approximation: 
1 1/2 1/2

, , 0 , / , , | , , |

1 1
, , , , ,

( ) ( ) | (1/ 2) [( ) ( ) ]

~ ( , ) ; ( ) ( )

T
N p N j N j p j N cr j lms j p N cr j lms j

j j cr j j p cr j j cr j cr p p cr p

H H H I N

C

 


 


  

 

θ θ U C A C U

U 0 P A P P P C P


N
 (35)
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where j pA  is a positive semi-definite matrix. That works as a significance test for the non-verification 

of H0; in other words, if , /N j pI  is larger than an upper 1- quantile (e.g., 1−=95%) of , /N j pI , then H0 

is rejected with a significance level . Those quantiles determine the significant MI thresholds and can 

be computed empirically as for the MinMI error (32) by a Monte-Carlo strategy. Another possibility is 
the fitting of the , /N j pI  distribution to a Gamma PDF with prescribed mean and variance (not done 

here). The bias and variance of , /N j pI are straightforward, coming as: 

1 2 2
, / , , | , / , , |[ ] (1/ 2) [ ] ; var[ ] (1/ 2) [( ) ]N j p N cr j lms j p N j p N cr j lms j pE I N Tr I N Tr  

  C A C A  (36) 

The N−2-scale for variance is also present in other MI estimate errors under the hypothesis of 

variable independency [27]. Under the Theorems 1 [11] and 2 [27], along with the null hypothesis, one 
gets , , | , ,N cr j lms j p cr j cr p  C A P P , thus leading to a Chi-Squared distribution for , /N j pI : 

1 2
, / , ,~ (1/ 2) ; ( )N j p nd cr j cr pI N nd Tr   P P  (37)

with nd degrees of freedom, i.e., the difference between the number of cross moments of order j and p. 

From that, the upper quantiles necessary for statistical significance are easily obtained from  

2 probability lookup tables. The bias and variance are, respectively: 
1 2

, / , , , / , ,(1 / 2) ( ) ; var (1 / 2) ( )N j p cr j cr p N j p cr j cr pE I N Tr I N Tr                   P P P P
 (38)

By analyzing (38), and in order to get a test with a relative error min min( / )Ir I I  , one must choose 

 1/2

2 1 min( ) / 2 / ( )cr cr IN m m I r  . 

4.3. Significance Tests of the Gaussian and Non-Gaussian MI  

In this section we particularize the theory presented in Section 4.1 and 4.2 (Equations 35–38) for the 

case of Gaussian and non-Gaussian MIs as defined in Section 2.3. For this purpose, let us consider the 
moment sets (13) and the MI components gI  and ,ng jI  (11). Their finite estimators are:  

, 0 ,2 , , 2/ 0 , , ,2

, , ,2 , , , , , / 2 , , ,2 ,

( ) ( ) ; ( ) ( ) ( ) ;

( ) ( ) ; ( ) ( )

N g N g N g N j p N g g g g N g g N

N ng j N N j ng j N ng j N j p N ng j N N j

I H H I I I I I c c I c H

I H H I I I I H H

 



            

          

θ θ θ

θ θ θ θ
(39) 

where , , ,,N g N ng jI I  are MinMI errors, ,g Nc  is the Gaussian correlation estimation error, 

0( ) 2 gH Hθ with 1
2 log(2 )gH e being the entropy of the univariate standard Gaussian; 

, , ; 1N j j N j j  θ θ θ are the expectations obtained from the N-sized Gaussianized standardized sample.  

The numerical implementation of the maximum entropy estimator Ĥ  (16), approximating H is 

computed over a number Nb bins of an extended enough finite interval [-Li,Li]. In the corresponding 

experiments (and as in PP12), we have used the calibrated values Li=6 and Nb=80. The used algorithm 

is explained in detail in the appendix 2 of PP12 [12], following an adapted bivariate version of that of [35]. 

The error ˆH H H    is of the order of round-off errors, only becoming comparable to the sampling 

ME errors at very high values of N. 
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4.3.1. Error and Significance Tests of the Gaussian MI  

The Gaussian MI error ,N gI  depends on the Gaussian correlation estimation’s error
 

, ,g N g N gc c c   where , ( )g N Nc E XY  is inferred from the sample. Let us write (9) for ,N gI .  

The Gaussian bivariate ME-PDF, constrained by 2 2
2 2( ( , , , , ) , (0,1,0,1, ) )T T

gX X Y Y XY c T θ  is 
* 2 2 1/2 2 1 2 2

2, 2 ( , ) [4 (1 )] exp[ (1/ 2)(1 ) ( 2 )]g g gX Y c c X c XY Y        T θ , leading to the vector of 

Lagrange multipliers 2 1 2 1 2 1
2 [0, (1/ 2)(1 ) ,0, (1/ 2)(1 ) , (1 ) ]T

g g g gc c c c       λ . The projector operator 

,2crP  onto cross moments is the 5x5 matrix that extracts the 5th entry (row and column) of 2T , 

corresponding to the unique cross moment XY. The necessary 5x5 covariance matrix is 

*
2, 2

*,2 2 2 2 2[ ]T TE


 
T θ

C T T θ θ  , where the E operator is the expectation over the bivariate Gaussian *
2, 2T θ . 

Then, we apply (9) for j=2, p=0 where , ,(0,0,0,0, )T
N j g Nc  θ . The Gaussian MI error is written in 

different forms as: 
2

1 2 2
, ,2 2 , ,2 *2 ,2 , , ,2 2 2

2
2

, ,2

11
( ) ( ) ( )( ) ( ) ( )

2 1 2(1 )

1
( )

2

g gT
N g cr g N cr cr g N g N g N

g g

g g
g N g N

g g

c c
I P c P P c c c

c c

I I
c c

c c

 
         

 

 
   
 

λ C

 (40) 

There, the term ,2 2crP λ is the fifth component of 2λ , corresponding to the first derivative of gI with 

respect to gc  whereas the term 1
,2 *2 ,2cr crP PC is the entry of 1

*2
C at row 5, column 5, corresponding to the 

second derivative of gI . The bias and variance of ,N gI depend on the distribution of the Gaussian 

correlation error ,g Nc . According to the proposed modeling of moment estimation errors (Theorem 2 

of section 3.4), ,g Nc is asymptotically Gaussian with a negligible bias ,( ) 0g NE c  and a variance 

(under imposed marginals) given by: 
1 2 2 2

,var( ) var( | ( | ), ( | )) (1 ) / (1 )g N g gc N XY E XY X E XY X c c    
 

(41) 

However, in order to keep the simulated , ,g g N g Nc c c  within the interval [-1,1], one can use the 

more precise Fisher Z-transform [38] such that  1
, tanh tanh ( )g N g N gc c Z c     , where NZ

has a mean and variance of order 
1( )O N

.  

In order to test the null hypothesis that the variable pair ( , )X Y has a joint bivariate isotropic 

Gaussian distribution, we must compare the estimated ,N gI with upper quantiles of the significance test 

,N gI , given by ,N gI (40) with 0gc   and 1
, ~ (0, )g Nc N  N . This is a Gaussian correlation 

significance test that is Chi-squared distributed, with:  

2 1 2 1 2
, , 1

1 2
, ,

(1 / 2)( ) (1/ 2) ~ (1/ 2) ; ~ (0,1)

( ) (1/ 2) ; var( ) (1/ 2)

N g g N

N g N g

I c N U N U

E I N I N

 

 

 

 

  

 

N
  (42) 
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4.3.2. Error and Significance Tests of the Non-Gaussian MI 

The estimation error , ,N ng jI  of the non-Gaussian MI as defined in (39) can be written as a particular 

form of (9) for an even order 4j  and p=2 as function of the vector ,N jθ  of moment errors of the 

moment vector jT  (13) with a certain chosen component indexation. Therefore, the matrix 
1 1

/ / 2 , * , ,2 *2 ,2( ) ( )j p j p cr j j cr j cr crC  
  A A P P P C P  of (9) comprises the inverses of covariance matrices 

* jC and *2C , respectively of the j-th and 2nd order ME solutions.  

Algebraic consistency sets the matrix 1
2 *2 2( )P C P  to the embedding of 1

*2( )C  onto the j-th moment 

subspace. Then we will perform a range of experiments for the validation of approximations in Section 4.2. 
The vector / 2 , ,2 2j p cr j j cr  v P λ P λ comprises Lagrange multiplier vectors of the ME solutions of  

orders j and 2. 
In order to compute the bias, variance, quantiles and confidence intervals of , ,N ng jI , from N-sized 

samples, there are two possible strategies: either pure Monte-Carlo simulations or the analytical and 

the semi-analytical (analytical with moment’s error surrogates) approaches as explained in section 1. 

In the pure Monte-Carlo approach, either a known bivariate PDF is assumed or surrogates of the joint 

PDF are generated through multivariate bootstrapping techniques [39] preserving the copula structure. 

For each generated sample from an extended ensemble of Nrea (e.g., 5000) realizations, we compute 

moments and solve the ME problem gathering statistics afterwards. Alternatively, ME errors can be 

computed from the Taylor expansion (9) from moment deviations over the ensemble.  
In the analytical and semi-analytical approaches, moment errors ,N jθ are assumed to follow a 

certain parametric distribution that can be multivariate Gaussian as in (31), based on a given  

bias-covariance matrix modeling or a more sophisticated approach taking into account the natural 
bounds of the simulated moments , , , , ,cr j N cr j N cr j θ θ θ . Then, MinMI statistics are computed from 

statistics (bias, variance, quantiles) on ensembles of error surrogates. 
The non-Gaussian MIs , , (even 4)N ng jI j  work as tests measuring significant statistical deviations 

from the null hypotheses of joint Gaussianity. These statistical tests are given by Kullback-Leibler 

distances (7) and constitute an alternative to the use of algebraic deviations of moments from those 

given by the bivariate Gaussian (e.g., bivariate cumulants) [40]. 
The non-Gaussianity test of order j is given by , , ,2 , 0( ) ( ) |N ng j N N jI H H H  θ θ under the null 

hypothesis H0 that the true PDF is bivariate Gaussian and is written as a particular case of (35). 

However, a simplification of the statistical test formula can be achieved by considering a null Gaussian 

correlation. This holds thanks the non-Gaussian MI invariance under variable rotations (see PP12), in 

particular for uncorrelated standardized variables ( , ) ( , )T T
r rX Y A X Y , where A is the rotation matrix 

(e.g.
 

2 1/2, ( )(1 )r r g gX X Y Y c X c     , i.e., the residual of the linear prediction). Under H0, the rotated 

variables are still bivariate Gaussian and therefore the non-Gaussianity significance test , ,N ng jI has the 

same distribution as that for 0gc  . The matrices , , |N cr j lmsC and 2jA  entering in Equation (35) are 

now evaluated for Gaussian isotropic conditions. For the sake of clarity, we represent them 
respectively by , , , |g N cr j lmsC , 1 1

, 2 , 2 ,2 2( ) ( )g j j g j j gC  
  A P P P C P , where the subscript g stands for 
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evaluation at ( , ) ~ ( , )TX Y 0 I


N . For high N, , , , | ,g N cr j lms g jCC , i.e., the covariance matrix of cross j-th 

order moments for the isotropic Gaussian. Then we write: 

1 1/2 1/2
, , , , , | , 2 , , , |(1/ 2) ( ) ( )T

N ng j j g N cr j lms g j g N cr j lms jI N 
   U C A C U     (43) 

Let us specify generic entries at row , column  of those matrices, corresponding to monomials 
r sX Y  and r sX Y  of jT , i.e. with ,r s r s j      . Then, using the notation introduced in Section 3.3 

for Gaussian standard moments , 0( ); ( ),r r
r N r NE X E X r    , the components of ,g jC  become:

 

, ,( )g j r r s s r r s sC
                

 (44) 

whereas the components of the lms covariances are: 

, , , | , , , , , , , , , , , ,( )g N cr j lms N r r N s s N s s N r N r N r r N s N s N r N r N s Ns                                  C
 (45) 

The bias of the non-Gaussian MinMI and its asymptotic approximation (36) are given by: 

 1 1 1
, , , , , | , , ,[ ] (1 / 2) [ ( ) 1] (1 / 2) ( ) 1N ng j g N cr j lms cr j g j cr jE I N Tr P C N Tr P      C  (46) 

Similarly and following (36), the variance becomes: 

 2 2 2
, , , , , | , 2 ,var[ ] (1 / 2) [( ) ] (1 / 2) ( ) 1N ng j g N cr j lms g j cr jI N Tr N Tr P  

  C A  (47) 

and the reasonable distribution approximation following (37): 
1 2

, , ,~ (1/ 2) ; ( ) 1 ( 1) / 2 1N ng j nd cr jI N nd Tr P j j        (48) 

from which bounds of significance levels of non-Gaussianity can be computed through quantiles of the 
Chi-squared distribution. 

4.4. Validation of Significance Tests by Monte-Carlo Experiments 

We have presented the theoretical expressions for the bias, variance and distribution, both for the 

Gaussian correlation test (42) and for the ME non-Gaussianity test of order j (46–48). Now we validate 

those expressions by comparing their results with statistics from large Monte-Carlo ensembles of ME 

computations. For that purpose, we have generated 5000reaN   independent synthetic datasets of N iid 

uncorrelated ( , )X Y from a Gaussian random generator. We have set N from a duplication sequence: 

N=25, 21*25,…,211*25 = 51200. Then, we have computed the 5,000 realizations for the independency 
test ,N gI as well as for the non-Gaussianity tests , ,N ng jI for j = 4, 6, 8. In order to minimize errors of 

type H (8), from the ME functional, we have retained only those Monte-Carlo realizations whose 

ME-PDF moments are within a relative square error of 10−5. 

In the sequel, we have collected and compared the estimates of bias, standard deviation and the 

95%-quantile, all provided by the three approaches: the Monte-Carlo (extended ensemble of ME 

computations), the semi-analytical (generation of Gaussian surrogates in the Taylor expansion of ME) 

and the analytical (analytical formulas based on the Theorems 1 and 2). The Figure 3a, b, c and d 
depict the above statistics of significance tests, respectively for ,N gI  and , ,N ng jI (j = 4, 6, 8). The truth 

is assumed to be provided by the Monte-Carlo estimate.  
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As previously expected, significance tests are all scaled by 1 (1)N O , and consequently their bias, 

standard deviation and quantiles are 1 (1)N O  as shown in Figures 3a-d by estimates coming from the 

different approaches. MinMI biases and significance thresholds (the 95% quantiles) grow for higher 
number of constraints as in the sequence ,N gI , , , 4N ng jI  , , , 6N ng jI  , , , 8N ng jI  .  

These results mean that those estimators are progressively better (stronger) evaluations of MI (or 

the MI beyond that explained by Gaussianity), though they call for progressively higher significance 

thresholds. Therefore, especially in cases of under-sampled data (small N) or very low MI  

(or Non-Gaussian MI) values (weakly dependent variables or weak joint non-Gaussianity), there must 

be a tradeoff between N and the number of parameters of the MinMI estimator (here the number of  

cross constraints). 

At this point, we discuss how the analytical and semi-analytical estimates of MinMI error statistics 

fit the Monte-Carlo (true) statistics. There are three crucial factors in our approximations:  

(1) The accuracy of the ME Taylor expansion, valid for small enough sampling errors (N large); (2) 

The convergence rate towards Gaussian statistics (from the CLT) for high N.  

Figure 3.Test statistics: bias (black lines), standard deviation (red lines) and 95%-quantiles 

(green lines), provided by the Monte-Carlo approach (tick full lines), the semi-analytical 

approach (thin dashed lines) and the analytical approach (tick full lines). The tests are 

,N gI (a); , , 4N ng jI  (b); , , 6N ng jI  (c) and , , 8N ng jI  (d).  

 

The analytical bias depends on factors 1 and 3, while formulas for variance, distribution and 

quantiles depend on all above factors, being only valid for N high enough. From Figure 3a–d, we see 

that the agreement between analytical and Monte-Carlo statistics is quite good for all tests (with a 
slight analytical underestimation), though only for large enough testN N  values where testN  depends 

on how later (in N) the factors 1-3 hold together. We have 50, 400,1600,3200testN  , respectively for

,N gI , , , 4N ng jI  , , , 6N ng jI  , , , 8N ng jI  , growing with the number of constraints. The exception is when N 
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is so large that errors H of the operational ME (typically, round-off errors) are of the same order of 

the small value tests I , starting to influence the Monte-Carlo statistics.  

In order to validate the analytical Chi-Squared distributions for the tests, we present in Figure 4, the 
empirical cumulative histograms, respectively of ,2 N gN I , , ,2 N ng jN I , , ,62 N ngN I , , ,82 N ngN I for 

testN N and the corresponding theoretical cumulative Chi-Squared PDF fits, respectively 2
1 , 2

5 , 2
14

and 2
27 . The agreement is shown to be quite good, with a slight deficit in the theoretical number of 

degrees of freedom, possibly due to uncontrolled aspects (e.g., the numerical implementation of the 

ME algorithm and bound effects) leading to extra randomness. In fact, the theoretical prediction of 

MinMI bias results from two matrices, theoretically equal, which are issued from extraordinary 

complicated outputs (the MinMI covariance matrix and the covariance matrix of estimators under fixed 

marginals). The theoretical result depends on the matching of a huge number of algorithmic details. 

The results provide good support to the presented Theorems, the hypotheses on the basis of the 

analytical and semi-analytical approaches. The slightly higher MinMI bias than the theoretical one is 

due to a small difference between the data PDF and the ME-PDF. 

Figure 4. Monte-Carlo empirical cumulative histogram (solid lines) and theoretical 

cumulative Chi-Squared fit (dashed lines) normalized by N: ,2 N gN I ( 2
1 ) for 50N   

(black curves); , , 42 N ng jN I  ( 2
5 ) for 400N  (red curves); , ,62 N ngN I ( 2

14 ) for 1600N 

(green curves) and , ,82 N ngN I  ( 2
27 ) for 3200N   (blue curves). 

 

5. MI Estimation from Under-Sampled Data  

In this section, we present a case of MinMI estimation from under-sampled data (N small), 

emphasizing the effect of MI bias and its relation to PDF over-fitting. For this purpose, we consider an 

example from meteorology, already introduced by authors [8] in which X,Y are the standard Gaussian 
morphism ( , ~ (0,1) )X Y N  of monthly means in winter (December to February), respectively of the 

North Atlantic Index (X) (a quite useful planetary-scale atmospheric index [41]), and the amount of 

rainfall in Greenland (Y) The paper [8] has shown the existence of statistically significant nonlinear 

correlations between X and Y, i.e., non-Gaussian MI. The data used in the study comes from the 
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NCEP/NCAR meteorological reanalysis for the period 1951–2003, leading to temporal series with 

length equal to 159, from which we have estimated the number N~100 of iid data (temporal degrees of 

freedom), after discarding the effect of temporal auto-correlation [42].  
Figure 5a–d present the scatter-plot of the ( , )X Y  pairs along with the contours of the ME-PDF 

fitting constrained by bivariate monomial expectations jT  (13) of total order j = 2,4,6 and 8 

respectively. There is pictorial evidence of PDF over-fitting for cases of a high number of cross 

constraints (14 and 27 for j = 6, 8 respectively) in Figures 5c and d. In those cases, the dataset bivariate 

outliers, which lie at very poorly probable regions of the PDF, tend to give a polygonal character to the 

PDF extreme contours.  

The MinMI values in nats are ,N gI  = 0.053 (0.048), , ,4N ngI  = 0.071 (0.041), , ,6N ngI  = 0.086(~0) and 

, ,8N ngI  = 0.196 (~0) with unbiased values in parenthesis and figures marked bold where the null 

hypothesis H0 is rejected at the 5% significance level (values above the 95% error quantile). That 
means that variables are significantly correlated with the unbiased Gaussian correlation gc  = −0.30 and 

a statistically significant, though small, non-Gaussian unbiased MI of order j = 4 of 0.041 nats, which 

has been shown to be of the same order of the Gaussian MI. None of the remaining incremental 
MinMIs are significant, which corroborates the fact that the values of , ,6N ngI and , ,8N ngI are  

purely artificial. 

Figure 5. Scatter-plot of the Gaussianized variables X (in abscissas) Y (in ordinates) (see 

text for details) along with ME-PDF fitting constrained by monomial bivariate moments up 

to order j = 2 (a), j = 4 (b), j = 6 (c) and j = 8 (d). Contour levels are set to 0.0005, 0.005, 

0.05, 0.5, and 5. 
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6. Discussion and Conclusions 

This paper presents theoretical formulas for statistics (bias, variance, distribution) of estimation 

errors of information theoretical measures. This is quite relevant because finite samples can apparently 

exhibit artificial statistical structures leading to negatively biased estimations of Entropy or positively 

biased estimations of Mutual Information. By using Monte-Carlo experiments, we empirically validate 

certain results about the asymptotic distribution of estimation errors of the minimum Mutual 

Information (MinMI) between two random variables X,Y. 

That MinMI is the least committed MI compatible with prescribed marginal X and Y distributions 
and a set crT of a number mcr of expectations of cross X,Y joint functions ( , )cr X YT , filling up a vector 

( )cr crEθ T where MinMI is written in terms of Shannon entropies (H) as: 

min max( , ) ( ) ( ) ( , )I X Y H X H Y H X Y   . There, Hmax is the maximum entropy (ME) constrained by 

marginals and cross mean constraints. The MinMI is a lower MI bound, converging to the total MI 
when the set crT  converges to the sufficient joint statistics. Sampling crθ  errors from N-sized samples, 

say , ,N cr N cr cr  θ θ θ  lead to MinMI errors. In order to compute MinMI, the marginal PDFs of finite 

samples must be preset by morphisms, setting the X and Y single values to fixed quantiles. This 

reduces the sampling randomness to the covariate sampling in the form of random permutations in the 
bivariate trials (X,Y). Then, the estimator variance ,var( )N crθ is scaled by N−1, being lower than the 

value 1 var( )crN T , valid in the case of random iid marginal trials. In order to get a given MinMI 

relative error min min( / )Ir I I  , one must choose      2 22
min min( ') / ( ) /T

cr cr I cr IN E T I r O m I r   

where one uses the Lagrange multipliers associated to cross moments and also the perturbations 'crT .  

The detailed analysis of ,N crθ  has shown that ,var( )N crθ  under variable morphisms is given by 

 1 var | ( | ), ( | )cr cr crN E X E Y T T T , which is the mean squared residual of the best linear fit of crT  

using the conditional means ( | )crE XT  and ( | )crE YT  as predictors. This is supported by a few 

examples using a Monte-Carlo methodology. We have shown that ,var( )N crθ  is closely related to the 

Maximum Entropy solution constrained by T and marginal distributions, i.e., the MinMI solution 
constrained by the cross constraints ( )cr crEθ T .  

The MinMI errors are readily obtained from MinMI second-order Taylor development in terms  
of ,N crθ . Asymptotically, ,N crθ is multivariate Gaussian thanks to the Central Limit Theorem. The 

MinMI bias is positive, given by the mean of a positive quadratic form of Gaussians. When data 

samples come from the same distribution as the one generated from MinMI, the MinMI bias is simply 

1/(2N) mcr . However, the bias can increase/decrease when data comes from a more 

leptokurtic/platykurtic distribution. That expression of bias comes from the fact that the Hessian matrix 

of MinMI in terms of the vector of cross constraints  is the inverse of the covariance matrix of the cross 

functions T, conditioned to the knowledge of marginal PDFs. That matrix is the matrix of mean squared 
residuals of best linear fit of T using predictors ( | )crE XT , ( | )crE YT  evaluated at the MinMI-PDF.  

We have further introduced the incremental MinMI given by the difference max1 max2H H between 

two MEs, forced by cross constraint sets 1 2cr crT T . Under the null hypothesis max1 max2H H , the 

incremental MinMI stands for a statistical test evaluating the existence of statistically significant MI 
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explained by cross expectations in the set difference 2 1/cr crT T . This test is distributed as 
2 1

21
( )2 cr crm mN  

where 2 1,cr crm m are the numbers of cross constraints respectively in 2 1,cr crT T . In order to get a test with 

a relative error min min( / )Ir I I  , one must choose  1/ 2

2 1 min( ) / 2 / ( )cr cr IN m m I r  . 

By setting X,Y to single standard Gaussians by Gaussian morphisms and the single constraint 

product cr XYT , we have evaluated the MI parcel that is explained by joint Gaussianity – the 

Gaussian MI. By adding further monomial bivariate as constraints, we can define the non-Gaussian 

MI, attributed to joint non-Gaussianity. Under the null hypothesis of null non-Gaussian MI tests the 

existence of statistically significant MI explained by nonlinear correlations, beyond the scope of 

Pearson correlation. This is an Information-Theoretic-based significance test of non-Gaussianity, 

beyond others based on multivariate cumulants. 

Finally, we have evaluated the Gaussian and non-Gaussian MIs for real under-sampled data 

allowing illustrating the relationship between MI bias, probability density over-fitting and data 

outliers. Some questions do remain for future work, namely the implementation of fast algorithms for 

computing non-Gaussian MI and its generalization to more than two random variables. 
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Appendix 1 

Proof of Equations 1 and 2 

We are looking for a PDF ( , )XY X Y satisfying: (1) the discrete constraints
*( , ) ( , )cr XY crS

X Y X Y dX dY  T θ , corresponding to the vector crη of Lagrange multipliers and (2) the 

continuum of constraints ( ) ( , ) ( )XY XS
X u X Y dX dY u    and ( ) ( , ) ( )XY YS

Y v X Y dX dY v    , 

corresponding to the continuum of Lagrange multipliers ( ), ( ), ,X Y X Yu v u S v S     , where the integrals 

of X , Y are both equal to one. The Lagrangian functional of Entropy is therefore  

( , , ) log ( , ) ( ) ( ) ( , ) ( , )

( ) ( ) ( ) ( )
X Y

T
cr X Y XY X Y cr cr XYS

T
X X Y Y cr crS S

X Y X Y X Y X Y dX dY

X X dX Y Y dY

     

   

      

  


 

η η T

η θ

L

 (A1)

 



Entropy 2013, 15 751 

 

 

The maximum Entropy is obtained by taking the differential  L of L in terms of 
( ), ( ),X Y crX Y  η and setting vanishing gradient components, leading to the PDF 

( , ) exp[ 1 ( , ) ( ) ( )]T
XY cr cr X YX Y X Y X Y      η T . Now, considering the partition functions

( , ) exp[ ( )]X cr XZ X X η and ( , ) exp[ ( )]Y cr YZ Y Y η and imposing the marginal PDF constraints 

leads directly to the expressions (2) where the continnum of Lagrange multipliers depend implicitly 

from the discrete ones crη . Plugging that into L leads to the definition of the concave function ( )crL η

in (1) with its global minimum at cr crη λ . The MinMI-PDF (2) is *( , ) ( , )XY XYX Y X Y  at  

that minimum. 

Proof of Equations 3, 4, 5 and Theorem 1 

At the ME-PDF solution, the L  functional of the MinMI solution is an implicit function of the 
constraining means crθ and the differential satisfies H I   L = . By expanding it in terms of 

( ), ( ), ,X Y cr crX Y   λ θ and using * *( , ) ( ); ( , ) ( )
X Y

XY X XY YS S
X Y dY X X Y dX Y      , and 

*( , ) ( , )cr XY crS
X Y X Y dX dY  T θ , one gets ( ) T

cr cr crI   θ λ θL = , thus showing that the gradient 

of ( )crI θ with respect to crθ is crλ .  

Regarding the Hessian of ( )crI θ , we must differentiate crθ  using the same technique for the ME 

problems with a finite number of constraints.  
Therefore, as postulated in Section 2.2, let us consider a finite sequence of constraint sets { , }j jT θ  

whose ME-PDF converge to MinMI solution as ( )j    The the differentials of expectations jθ and 

the differential jλ of Lagrange multipliers are related through *j j j θ C λ ,where * jC is the covariance 

matrix of the constraining functions jT  at the ME-PDF solution (denoted with *), i.e., * *( ' ' )T
j j jEC T T

where the perturbations are 'j j j T T θ . Inverting that relationship we have 1
*j j j λ C θ . In the case 

of MinMI, the constraining functions have a discrete part ( crT ) and a continuous part (the Dirac deltas), 

being merged together into a whole vector , ( ( , ), ( ), ( ))T
cr cr X Y X u Y v    T T  corresponding to the 

whole vector of expectations , ( ( , ), ( ), ( ))T
cr cr X YX Y u v  θ θ  and to the whole vector of Lagrange 

multipliers , ( , ( ), ( ))T
cr cr X Yu v  λ λ . Therefore, as for the discrete case, the differentials are related by 

, * , , , ,( ' ' )T
cr cr cr cr cr crE       θ T T λ C λ , where the covariance matrix is now replaced by an operator 

(continuous matrix) along the u, v, and the discrete index of crθ . The multiplication of the continuous 

matrix by the continuous vector ,cr λ is the sum of an integral in u, an integral in v and a discrete sum. 

The inverse relationship comes as 1
, , ,[ ]cr cr cr   λ C θ  where 1

,[ ]cr 
C is the inverse operator of ,cr C , 

i.e., the product 1 1
, , , ,[ ] [ ] ( , ( ), ( ))cr cr cr cr cr X u Y v         C C C C I  equals the identity operator. 

Therefore, the fixation of marginal PDFs in the MinMI problem leads to variations on cross expectations 
alone , ,cr cr cr crP    θ θ θ , where crP is the projection operator over the discrete part. Therefore, since 

T
cr crI  θ λ , the second MI variation is 2 11 1

,2 2 [ ]T T T T
cr cr cr cr cr cr crI P P        θ λ θ C θ  and the 

matrix identity 1 1
, , ,[ ]

X Y

T
cr cr cr crP P  

 C C  appearing in (3). The discrete matrix , ,X Ycr  C  is positively 
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defined, being different from ,[ ]T
cr cr crP PC , which is the single covariance matrix of functions crT  at the 

MinMI-PDF. Its computation is quite difficult in practice, involving the convolution (continuous product) 
of operators 1

,[ ]cr 
C  and crP .  

Since the ME-PDF for { , }j jT θ  converges to the MinMI PDF, the same holds for the covariance 

matrix conditioned to the marginal PDFs. Therefore, one has the Equation 10 at step j 
1 1 1 ' '

* * * * * * , , , ,( ) ( ) ( )( ) ( ) [ ]
X Y

ind ind T
cr j cr cr j cr cr j ind ind j ind ind j cr cr j cr j cr

j
E  

  


   P C P P C P P C P P C P P C P T T C  (A2) 

The matrix , ,X Ycr  C can be obtained from the limit of ME covariance matrices where one adds 

progressively independent moments of the marginal variables X and Y as constraints. In the limit, the 
perturbations ' ' '

, , ,
ind T

cr j cr j j ind j T T α T must converge to the perturbations *
,

* ( | , )
X Y

cr cr X YE


  T T T

appearing in (4). They are residuals of the best fit on marginal functions on X and Y as 
'*( , ) ( , ) [ ( ) ( )]cr X YX Y X Y X Y  T T β β where ( ) ( )X YX Yβ β is a sum of marginal functions. The 

minimum of the total mean squares of residuals * 2 2
*( , ) || * || (|| * || )XYS

X Y dX dY E  T T  is obtained 

through variational analysis by taking small variations ( ), ( )X YX Y β β  and vanishing the gradients. 

We get the solution  

' ' '*( , ) ( , ) [ ( | ) ( | )]cr X cr Y crX Y X Y E X E Y   T T T T  (A3) 

where fitting is done on conditional means and ,X Y  are the best linear fit coefficients for each 

function in ' ( , )cr X YT . This completes the proof of (5) and Theorem 1. The Taylor expansion (3) comes 

by taking 2 3( , , ) (|| || )cr X Y crI I I O       θ θ . 
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