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Abstract: In this paper, we investigate the model of wiretap channel with action-dependent
channel state information. Given the message to be communicated, the transmitter chooses
an action sequence that affects the formation of the channel states, and then generates the
channel input sequence based on the state sequence and the message. The main channel and
the wiretap channel are two discrete memoryless channels (DMCs), and they are connected
with the legitimate receiver and the wiretapper, respectively. Moreover, the transition
probability distribution of the main channel depends on the channel state. Measuring
wiretapper’s uncertainty about the message by equivocation, inner and outer bounds on the
capacity-equivocation region are provided both for the case where the channel inputs are
allowed to depend non-causally on the state sequence and the case where they are restricted
to causal dependence. Furthermore, the secrecy capacities for both cases are bounded, which
provide the best transmission rate with perfect secrecy. The result is further explained via a
binary example.
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1. Introduction

Communication through state-dependent channels, with states known at the transmitter, was first
investigated by Shannon [1] in 1958. In [1], the capacity of the discrete memoryless channel with causal
(past and current) channel state information at the encoder was totally determined. After that, in order to
solve the problem of coding for a computer memory with defective cells, Kuznetsov and Tsybakov [2]
considered a channel in the presence of non-causal channel state information at the transmitter. They
provided some coding techniques without determination of the capacity. The capacity was found in
1980 by Gel’fand and Pinsker [3]. Furthermore, Costa [4] investigated a power constrained additive
noise channel, where part of the noise is known at the transmitter as side information. This channel
is also called dirty paper channel. The assumption in these seminar papers, as well as in the work on
communication with state dependent channels that followed, is that the channel states are generated by
nature, and can not be affected or controlled by the communication system.

In 2009, Weissman [5] revisited the above problem setting for the case where the transmitter can
take actions that affect the formation of the states, see Figure 1. Specifically, Weissman considered
a communication system where encoding is in two parts: given the message, an action sequence is
created. The actions affect the formation of the channel states, which are accessible to the transmitter
when producing the channel input sequence. The capacity of this model is totally determined both for
the case where the channel inputs are allowed to depend non-causally on the state sequence and the case
where they are restricted to causal dependence. This framework captures various new channel coding
scenarios that may arise naturally in recording for magnetic storage devices or coding for computer
memories with defects.

Figure 1. Channel with action-dependent states.

Transmission of confidential messages has been studied in the literature of several classes of channels.
Wyner, in his well-known paper on the wiretap channel [6], studied the problem how to transmit the
confidential messages to the legitimate receiver via a degraded broadcast channel, while keeping the
wiretapper as ignorant of the messages as possible, see Figure 2. Measuring the uncertainty of the
wiretapper by equivocation, the capacity-equivocation region was established. Furthermore, the secrecy
capacity was also established, which provided the maximum transmission rate with perfect secrecy.
After the publication of Wyner’s work, Csiszár and Körner [7] investigated a more general situation:
the broadcast channels with confidential messages (BCC). In this model, a common message and a
confidential message were sent through a general broadcast channel. The common message was assumed
to be decoded correctly by the legitimate receiver and the wiretapper, while the confidential message was
only allowed to be obtained by the legitimate receiver. This model is also a generalization of [8], where
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no confidentiality condition is imposed. The capacity-equivocation region and the secrecy capacity
region of BCC [7] were totally determined, and the results were also a generalization of those in [6].
Based on Wyner’s work, Leung-Yan-Cheong and Hellman studied the Gaussian wiretap channel(GWC)
[9], and showed that its secrecy capacity was the difference between the main channel capacity and the
overall wiretap channel capacity (the cascade of main channel and wiretap channel).

Figure 2. Wiretap channel.

Inspired by the above works, Mitrpant et al. [10] studied transmission of confidential messages in the
channels with channel state information (CSI). In [10], an inner bound on the capacity-equivocation
region was provided for the Gaussian wiretap channel with CSI. Furthermore, Chen et al. [11]
investigated the discrete memoryless wiretap channel with noncausal CSI (see Figure 3), and also
provided an inner bound on the capacity-equivocation region. Note that the coding scheme of [11] is
a combination of those in [3,6] Based on the work of [11], Dai [12] provided an outer bound on the
wiretap channel with noncausal CSI, and determined the capacity-equivocation region for the model of
wiretap channel with memoryless CSI, where the memoryless means that at the i-th time, the output of
the channel encoder depends only on the i-th time CSI.

Figure 3. Wiretap channel with noncausal channel state information.

In this paper, we study the wiretap channel with action-dependent channel state information, see
Figure 4. Concretely, the transmitted message W is firstly encoded as an action sequence AN , and
AN is the input of a discrete memoryless channel (DMC). The output of this DMC is the channel state
sequence SN . Then, the transmitted message W and the state sequence SN are encoded as XN . The
main channel is a DMC with inputsXN and SN , and output Y N . The wiretap channel is also a DMC with
input Y N and output ZN . Since the action-dependent state captures various new coding scenarios for
channels with a rewrite option that may arise naturally in storage for computer memories with defects or
in magnetic recoding, it is natural to ask: how about the security of these channel models in the presence
of a wiretapper? Measuring wiretapper’s uncertainty about the transmitted message by equivocation, the
inner and outer bounds on the capacity-equivocation region of the model of Figure 4 are provided both
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for the case where the channel input is allowed to depend non-causally on the state sequence and the
case where it is restricted to causal dependence.

Figure 4. Wiretap channel with action-dependent channel state information.

In this paper, random variables, sample values and alphabets are denoted by capital letters, lower case
letters and calligraphic letters, respectively. A similar convention is applied to the random vectors and
their sample values. For example, UN denotes a randomN -vector (U1, ..., UN), and uN = (u1, ..., uN) is
a specific vector value in UN that is theN th Cartesian power of U . UN

i denotes a randomN−i+1-vector
(Ui, ..., UN), and uNi = (ui, ..., uN) is a specific vector value in UNi . Let pV (v) denote the probability
mass function Pr{V = v}. Throughout the paper, the logarithmic function is to the base 2.

The remainder of this paper is organized as follows. In Section 2, we present the basic definitions and
the main result on the capacity-equivocation region of wiretap channel with action-dependent channel
state information. In Section 3, we provide a binary example of the model of Figure 4. Final conclusions
are presented in Section 4.

2. Notations, Definitions and the Main Results

In this section, the model of Figure 4 is considered into two parts. The model of Figure 4 with
noncausal channel state information is described in Subsection 2.1, and the causal case is described in
Subsection 2.2, see the followings.

2.1. The Model of Figure 4 with Noncausal Channel State Information

In this subsection, a description of the wiretap channel with noncausal action-dependent channel
state information is given by Definition 1 to Definition 6. The inner and outer bounds on the
capacity-equivocation region Cn composed of all achievable (R,Re) pairs are given in Theorem 1 and
Theorem 2, respectively, where the achievable (R,Re) pair is defined in Definition 6.

Definition 1 (Action encoder) The message W take values inW , and it is uniformly distributed over its
range. The action encoder is a deterministic mapping:

fN1 :W → AN (1)

The input of the action encoder is W , while the output is AN .
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The channel state sequence SN is generated by a DMC with input AN and output SN . The transition
probability distribution is given by

pSN |AN (sN |aN) =
N∏
i=1

pSi|Ai
(si|ai) (2)

Note that the components of the state sequence SN may not be i.i.d. random variables, and this is due to
the fact that AN is not i.i.d. generated.

The transmission rate of the message is log‖W‖
N

.

Definition 2 (Channel encoder) The inputs of the channel encoder are W and SN , while the output is
XN . The channel encoder fN2 is a matrix of conditional probabilities fN2 (xN |w, sN), where xN ∈ XN ,
w ∈ W , sN ∈ SN ,

∑
xN f

N
2 (xN |w, sN) = 1, and fN2 (xN |w, sN) is the probability that the message w

and the channel state sequence sN are encoded as the channel input xN .
Since the channel encoder knows the state sequence sN in a noncausal manner, at the i-th time

(1 ≤ i ≤ N ), the channel encoder fN2,i is a matrix of conditional probabilities fN2,i(xi|w, sN), where
xi ∈ X , w ∈ W , sN ∈ SN ,

∑
xi
fN2,i(xi|w, sN) = 1, and fN2,i(xi|w, sN) is the probability that the

message w and the channel state sequence sN are encoded as the i-th time channel input xi.
The transmission rate of the message is log‖W‖

N
.

Definition 3 (Main channel) The main channel is a DMC with finite input alphabet X ×S, finite output
alphabet Y , and transition probability QM(y|x, s), where x ∈ X , s ∈ S, y ∈ Y . QM(yN |xN , sN) =∏N

n=1QM(yn|xn, sn). The inputs of the main channel are XN and SN , while the output is Y N .

Definition 4 (Wiretap channel) The wiretap channel is also a DMC with finite input alphabet Y , finite
output alphabet Z , and transition probability QW (z|y), where y ∈ Y , z ∈ Z . The input and output of
the wiretap channel are Y N and ZN , respectively. The equivocation to the wiretapper is defined as

∆ =
H(W |ZN)

N
(3)

The cascade of the main channel and the wiretap channel is another DMC with transition probability

QMW (z|x, s) =
∑
y∈Y

QW (z|y)QM(y|x, s) (4)

Note that, (XN , SN) → Y N → ZN and W → AN → SN are two Markov chains in the model
of Figure 4.

Definition 5 (Decoder) The decoder for the legitimate receiver is a mapping fD1 : YN →W , with input
Y N and output Ŵ . Let Pe be the error probability of the receiver , and it is defined as Pr{W 6= Ŵ}.

Definition 6 (Achievable (R,Re) pair in the model of Figure 4) A pair (R,Re) (where R,Re > 0) is
called achievable if, for any ε > 0 (where ε is an arbitrary small positive real number and ε→ 0), there
exists channel encoders-decoders (N,Pe) such that

lim
N→∞

log ‖ W ‖
N

= R, lim
N→∞

∆ ≥ RePe ≤ ε (5)
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The capacity-equivocation region Rn is a set composed of all achievable (R,Re) pairs. Inner and
outer bounds on Rn are respectively provided in the following Theorem 1 and Theorem 2. Theorem 1
and Theorem 2 are respectively proved in Section A and Section B.

Theorem 1 (Inner bound) A single-letter characterization of the regionRni is as follows,

R(ni) = {(R,Re) : 0 ≤ Re ≤ R

R ≤ I(U ;Y )− I(U ;S|A)

Re ≤ I(U ;Y )− I(U ;Z)

Re ≤ H(A|Z)}

where pUASXY Z(u, a, s, x, y, z) = pZ|Y (z|y)pY |X,S(y|x, s)pUAXS(u, a, x, s), which implies that
(A,U)→ (X,S)→ Y → Z.

The regionR(ni) satisfiesR(ni) ⊆ R(n).

Remark 1 There are some notes on Theorem 1, see the following.

• The formula Re ≤ H(A|Z) in Theorem 1 implies that the wiretapper obtains the information
about the message not only from the codeword transmitted in the channels, but also from the
action sequence aN . If the wiretapper knows aN , he knows the corresponding message.
• The regionR(ni) is convex, and the proof is directly obtained by introducing a time sharing random

variable into Theorem 1, and therefore, we omit the proof here.
• The range of the random variable U satisfies

‖U‖ ≤ ‖X‖‖A‖‖S‖+ 2

The proof is in Section C.
• Without the equivocation parameter, the capacity of the main channel is given by

CM = max
pX|U,S(x|u,s)pU|A,S(u|a,s)pA(a)

(I(U ;Y )− I(U ;S|A)) (6)

The formula (6) is proved by Weissman [5], and it is omitted here.
• Secrecy capacity

The points inR(ni) for which Re = R are of considerable interest, which imply the perfect secrecy
H(W ) = H(W |ZN). Clearly, we can easily bound the secrecy capacity Cn

s of the model of Figure
4 with noncausal channel state information by

Cn
s ≥ max

pUAXS(u,a,x,s)
min{I(U ;Y )− I(U ;Z), I(U ;Y )− I(U ;S|A), H(A|Z)} (7)

Proof 1 (Proof of (7)) Substituting Re = R into the regionR(ni) in Theorem 1, we have

R ≤ I(U ;Y )− I(U ;Z) (8)

R ≤ I(U ;Y )− I(U ;S|A) (9)

R ≤ H(A|Z) (10)
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Note that the pair (R = max min{I(U ;Y ) − I(U ;Z), I(U ;Y ) − I(U ;S|A), H(A|Z)},
Re = R) is achievable, and therefore, the secrecy capacity C(n)

s ≥ max min{I(U ;Y )− I(U ;Z),

I(U ;Y )− I(U ;S|A), H(A|Z)}. Thus the proof is completed.

Theorem 2 (Outer bound) A single-letter characterization of the regionRno is as follows,

R(no) = {(R,Re) : 0 ≤ Re ≤ R

R ≤ I(U ;Y )− I(U ;S|A)

Re ≤ I(U ;Y )− I(K;Z|V )}

where pUKV ASXY Z(u, k, v, a, s, x, y, z) = pZ|Y (z|y)pY |X,S(y|x, s)pX|U,S(x|u, s)pV |K(v|k)

pK|U(k|u)pU,A,S(u, a, s), which implies that (A,U,K, V ) → (X,S) → Y → Z and
V → K → U → Y → Z are two Markov chains.

The regionR(no) satisfiesR(n) ⊆ R(no).

Remark 2 There are some notes on Theorem 2, see the following.

• The region R(no) is convex, and the proof is similar to that of Theorem 1. Therefore, we omit the
proof here.
• The ranges of the random variables U , V and K satisfy

‖U‖ ≤ ‖X‖‖A‖‖S‖+ 1

‖V‖ ≤ ‖X‖‖A‖‖S‖

‖K‖ ≤ ‖X‖2‖A‖2‖S‖2

The proof is in Section D.
• Observing the formula Re ≤ I(U ;Y )− I(K;Z|V ) in Theorem 2, we have

I(U ;Y )− I(K;Z|V ) =(a) I(U ;Y )−H(Z|V ) +H(Z|K)

≥ I(U ;Y )−H(Z) +H(Z|K)

≥ I(U ;Y )−H(Z) +H(Z|K,U)

=(b) I(U ;Y )−H(Z) +H(Z|U) = I(U ;Y )− I(U ;Z) (11)

where (a) is from the fact that V → K → Z, and (b) is from the Markov chainK → U → Y → Z.
Then it is easy to see thatR(ni) ⊆ R(no).
• The secrecy capacity Cn

s of the model of Figure 4 with noncausal channel state information is
upper bounded by

Cn
s ≤ max

pX,U,K,V,A,S(x,u,k,v,a,s)
min{I(U ;Y )− I(K;Z|V ), I(U ;Y )− I(U ;S|A)} (12)

The upper bound is easily obtained by substituting Re = R into the region R(no) in Theorem 2,
and therefore, we omit the proof here.
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2.2. The Model of Figure 4 with Causal Channel State Information

The model of Figure 4 with causal channel state information is similar to the model with noncausal
channel state information in Subsection 2.1, except that the state sequence SN in Definition 1 is known
to the channel encoder in a causal manner, i.e., at the i-th time (1 ≤ i ≤ N ), the output of the encoder
xi = f2,i(w, s

i), where si = (s1, s2, ..., si) and f2,i is the probability that the message w and the state si

are encoded as the channel input xi at time i. Define

fN(xN |w, sN) =
N∏
i=1

fi(xi|w, si) (13)

Inner and outer bounds on the capacity-equivocation regionRc for the model of Figure 4 with causal
channel state information are respectively provided in the following Theorem 3 and Theorem 4, and they
are proved in Section E and Section F.

Theorem 3 (Inner bound) A single-letter characterization of the regionRci is as follows,

R(ci) = {(R,Re) : 0 ≤ Re ≤ R

R ≤ I(U ;Y )

Re ≤ I(U ;Y )− I(U ;Z)

Re ≤ H(A|Z)}

where pUASXY Z(u, a, s, x, y, z) = pZ|Y (z|y)pY |X,S(y|x, s)pX|U,S(x|u, s)pS|A(s|a)pUA(u, a), which
implies that (A,U)→ (X,S)→ Y → Z and U → A→ S.

The regionR(ci) satisfiesR(ci) ⊆ R(c).

Remark 3 There are some notes on Theorem 3, see the following.

• The regionR(ci) is convex.
• The range of the random variable U satisfies

‖U‖ ≤ ‖X‖‖A‖‖S‖+ 1

The proof is similar to that in Theorem 1, and it is omitted here.
• Without the equivocation parameter, the capacity of the main channel is given by

C∗M = max
pX|U,S(x|u,s)pU,A(u,a)

I(U ;Y ) (14)

The formula (14) is proved by Weissman [5], and it is omitted here.
• Secrecy capacity

The points inR(ci) for which Re = R are of considerable interest, which imply the perfect secrecy
H(W ) = H(W |ZN). Clearly, we can easily bound the secrecy capacity C(c)

s of the model of
Figure 4 with causal channel state information by

C(c)
s ≥ max

pX|U,S(x|u,s)pUA(u,a)
min{I(U ;Y )− I(U ;Z), H(A|Z)} (15)
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Proof 2 (Proof of (15)) Substituting Re = R into the regionR(ci) in Theorem 3, we have

R ≤ I(U ;Y )− I(U ;Z) (16)

R ≤ I(U ;Y ) (17)

R ≤ H(A|Z) (18)

Note that the pair (R = max min{I(U ;Y ) − I(U ;Z), H(A|Z)}, Re = R) is achievable, and
therefore, the secrecy capacity C(c)

s ≥ max min{I(U ;Y ) − I(U ;Z), H(A|Z)}. Thus the proof
is completed.

Theorem 4 (Outer bound) A single-letter characterization of the regionRco is as follows,

R(co) = {(R,Re) : 0 ≤ Re ≤ R

R ≤ I(U ;Y )

Re ≤ I(U ;Y )− I(K;Z|V )}

where pUKV ASXY Z(u, k, v, a, s, x, y, z) = pZ|Y (z|y)pY |X,S(y|x, s)pX|U,S(x|u, s)pV |K(v|k)pK|U(k|u)

pU,A,S(u, a, s), which implies that (A,U,K, V )→ (X,S)→ Y → Z and V → K → U → Y → Z are
two Markov chains.

The regionR(co) satisfiesR(c) ⊆ R(co).

Remark 4 There are some notes on Theorem 4, see the following.

• The regionR(co) is convex.
• The ranges of the random variables U , V and K satisfy

‖U‖ ≤ ‖X‖‖A‖‖S‖

‖V‖ ≤ ‖X‖‖A‖‖S‖

‖K‖ ≤ ‖X‖2‖A‖2‖S‖2

The proof is similar to that in Section D, and it is omitted here.
• The secrecy capacity C(c)

s of the model of Figure 4 with causal channel state information is upper
bounded by

C(c)
s ≤ max

pX|U,S(x|u,s)pU,K,V,A,S(u,k,v,a,s)
I(U ;Y )− I(K;Z|V ) (19)

The upper bound is easily obtained by substituting Re = R into the region R(co) in Theorem 4,
and therefore, we omit the proof here.

3. A Binary Example for the Model of Figure 4 with Causal Channel State Information

In this section, we calculate the bound on secrecy capacity of a special case of the model of Figure 4
with causal channel state information.

Suppose that the channel state information SN is available at the channel encoder in a casual manner.
Meanwhile, the random variables X , Y and Z take values in {0, 1}, and the transition probability of the
main channel is defined as follows:
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When s = 0,

pY |X,S(y|x, s = 0) =

{
1− p, if y = x,

p, otherwise.
(20)

When s = 1,

pY |X,S(y|x, s = 1) =

{
p, if y = x,

1− p, otherwise.
(21)

The wiretap channel is a BSC (binary symmetric channel) with crossover probability q, i.e.,

pZ|Y (z|y) =

{
1− q, if y = x,

q, otherwise.
(22)

The channel for generating the state sequence SN is a BSC with crossover probability r, i.e.,

pS|A(s|a) =

{
1− r, if y = x,

r, otherwise.
(23)

From Remark 3 and Remark 4 we know that the secrecy capacity for the causal case is bounded by

max min{I(U ;Y )−I(U ;Z), H(A|Z)} ≤ Cc
s ≤ max(I(U ;Y )−I(K;Z|V )) ≤(a) max I(U ;Y ). (24)

Note that in (a), “=” is achieved if V = K. Moreover, max I(U ;Y ), maxH(A|Z) and max(I(U ;Y )−
I(U ;Z)) are achieved if A is a function of U and X is a function of U and S, and this is similar to the
argument in [5]. Define a = g(u) and x = f(u, s), then (24) can be written as

max
f,g,pU (u)

min{I(U ;Y )− I(U ;Z), H(A|Z)} ≤ Cc
s ≤ max

f,g,pU (u)
I(U ;Y ) (25)

and this is because the joint probability distribution pAUSXY Z(a, u, s, x, y, z) can be calculated by

pAUSXY Z(a, u, s, x, y, z) = pZ|Y (z|y)pY |X,S(y|x, s)1x=f(u,s)pS|A(s|a)1a=g(u)pU(u) (26)

Now it remains to calculate the characters maxf,g,pU (u)(I(U ;Y )−I(U ;Z)), maxf,g,pU (u)H(A|Z) and
maxf,g,pU (u) I(U ;Y ), see the remaining of this section.

Let U take values in {0, 1}. The probability of U is defined as follows. pU(0) = α and pU(1) = 1−α.
In addition, there are 16 kinds of f and 4 kinds of g. Define

f (1)(u, s) :

{
00→ 0, 01→ 0,

10→ 0, 11→ 0.
f (2)(u, s) :

{
00→ 0, 01→ 0,

10→ 0, 11→ 1.
(27)

f (3)(u, s) :

{
00→ 0, 01→ 0,

10→ 1, 11→ 0.
f (4)(u, s) :

{
00→ 0, 01→ 0,

10→ 1, 11→ 1.
(28)

f (5)(u, s) :

{
00→ 0, 01→ 1,

10→ 0, 11→ 0.
f (6)(u, s) :

{
00→ 0, 01→ 1,

10→ 0, 11→ 1.
(29)

f (7)(u, s) :

{
00→ 0, 01→ 1,

10→ 1, 11→ 0.
f (8)(u, s) :

{
00→ 0, 01→ 1,

10→ 1, 11→ 1.
(30)
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f (9)(u, s) :

{
00→ 1, 01→ 0,

10→ 0, 11→ 0.
f (10)(u, s) :

{
00→ 1, 01→ 0,

10→ 0, 11→ 1.
(31)

f (11)(u, s) :

{
00→ 1, 01→ 0,

10→ 1, 11→ 0.
f (12)(u, s) :

{
00→ 1, 01→ 0,

10→ 1, 11→ 1.
(32)

f (13)(u, s) :

{
00→ 1, 01→ 1,

10→ 0, 11→ 0.
f (14)(u, s) :

{
00→ 1, 01→ 1,

10→ 0, 11→ 1.
(33)

f (15)(u, s) :

{
00→ 1, 01→ 1,

10→ 1, 11→ 0.
f (16)(u, s) :

{
00→ 1, 01→ 1,

10→ 1, 11→ 1.
(34)

g(1)(u) :

{
0→ 0,

1→ 0.
g(2)(u) :

{
0→ 0,

1→ 1.
(35)

g(3)(u) :

{
0→ 1,

1→ 0.
g(4)(u) :

{
0→ 1,

1→ 1.
(36)

The character I(U ;Y ) depends on the joint probability mass functions pUY (u, y), and we have

pUY (u, y) =
∑
x,s,a

pUY XSA(u, y, x, s, a)

=
∑
x,s,a

pY |XS(y|x, s)pX|U,S(x|u, s)pU(u)pA|U(a|u)pS|A(s|a) (37)

The character I(U ;Z) depends on the joint probability mass functions pUZ(u, z), and we have

pUZ(u, z) =
∑
y

pUY Z(u, y, z)

=
∑
y

pZ|Y (z|y)pU,Y (u, y) (38)

By choosing the above f , g and α, we find that

max
f,g,pU (u)

(I(U ;Y )−I(U ;Z)) = max{h(p?q)−h(p),
h(q ? (r ? p))− h(p ? r)

2r
−(

1

2r
−1)(h(p?q)−h(p))}

(39)
where p ? q = p + q − 2pq. Moreover, h(p ? q)− h(p) is achieved when f = f (7), g = g(2) and α = 1

2
,

and h(q?(r?p))−h(p?r)
2r

− ( 1
2r
− 1)(h(p ? q)− h(p)) is achieved when f = f (2), g = g(2) and α = 1

2
.

Moreover,
max

f,g,pU (u)
H(A|Z) = h(p ? q) (40)

where p ? q = p+ q − 2pq. Moreover, h(p ? q) is achieved when f = f (7), g = g(2) and α = 1
2
.

In addition,
max

f,g,pU (u)
I(U ;Y ) = 1− h(p) (41)

and “=” is achieved if f = f (7), g = g(2) and α = 1
2
.
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It is easy to see that maxf,g,pU (u)H(A|Z) = h(p?q) ≥ maxf,g,pU (u)(I(U ;Y )−I(U ;Z)) and therefore,
the secrecy capacity for the causal case is bounded by

max{h(p ? q)− h(p),
h(q ? (r ? p))− h(p ? r)

2r
− (

1

2r
− 1)(h(p ? q)− h(p))} ≤ Cc

s ≤ 1− h(p) (42)

The following Figure 5 gives lower and upper bounds on the secrecy capacity of the model of
Figure 4 with causal channel state information. It is easy to see that when q = 0.5, the lower bound
meets with the upper bound, i.e., the secrecy capacity Cc

s satisfies Cc
s = 1− h(p). This is because when

q = 0.5, zero leakage is always satisfied and the problem reduces to the problem of coding for channel
with causal states. Moreover, when r is fixed, the bounds on secrecy capacity are getting better while p
is decreasing.

Figure 5. When r=0.2, lower and upper bounds on the secrecy capacity of the model of
Figure 4 with causal channel state information.

4. Conclusions

In this paper, we study the model of the wiretap channel with action-dependent channel state
information. Inner and outer bounds on the capacity-equivocation region are provided both for the
case where the channel inputs are allowed to depend non-causally on the state sequence and the case
where they are restricted to causal dependence. Furthermore, the secrecy capacities for both cases are
bounded, which provide the best transmission rate with perfect secrecy. The result is further explained
via a binary‘example.
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A. Proof of Theorem 1

In this section, we will show that any pair (R,Re) ∈ Rni is achievable. Gel’fand-Pinsker’s binning
and Wyner’s random binning technique are used in the construction of the code-books.

Now the remainder of this section is organized as follows. The code construction is in
Subsection A.1. The proof of achievability is given in Subsection A.2.

A.1. Code Construction

Since Re ≤ I(U ;Y )− I(U ;Z), Re ≤ H(A|Z) and Re ≤ R ≤ I(U ;Y )− I(U ;S|A), it is sufficient
to show that the pair (R,Re = min{I(U ;Y )−max(I(U ;Z), I(U ;S|A))), H(A|Z)} is achievable, and
note that this implies that R ≥ Re = min{I(U ;Y )−max(I(U ;Z), I(U ;S|A))), H(A|Z)}.
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The construction of the code and the proof of achievability are considered into two cases:

• (Case 1) If H(A|Z) ≥ I(U ;Y ) − max(I(U ;Z), I(U ;S|A))), double binning technique [11] is
used in the construction of the code-book.
• (Case 2) If H(A|Z) ≤ I(U ;Y ) − max(I(U ;Z), I(U ;S|A))), Gel’fand-Pinsker’s binning

technique [3] is used in the construction of the code-book.

• (Code construction for Case 1)
Given a pair (R,Re), choose a joint probability mass function pU,A,S,X,Y,Z(u, a, s, x, y, z) such that

0 ≤ Re ≤ R

R ≤ I(U ;Y )− I(U ;S|A)

Re = I(U ;Y )−max(I(U ;Z), I(U ;S|A)))

The message setW satisfies the following condition:

lim
N→∞

1

N
log ‖ W ‖= R = I(U ;Y )− I(U ;S|A)− γ (A1)

where γ is a fixed positive real numbers and

0 ≤ γ ≤(a) max(I(U ;Z), I(U ;S|A)))− I(U ;S|A) (A2)

Note that (a) is from R ≥ Re = I(U ;Y ) − max(I(U ;Z), I(U ;S|A))) and (A1). Let
W = {1, 2, ..., 2NR}.
Code-book generation:

– (Construction of AN )
Generate 2NR i.i.d. sequences aN , according to the probability mass function pA(a). Index
each sequence by i ∈ {1, 2, ..., 2NR}. For a given message w (w ∈ W), choose a
corresponding aN(w) as the output of the action encoder.

– (Construction of UN )
For the transmitted action sequence aN(w), generate 2N(I(U ;Y )−ε2,N ) (ε2,N → 0 as N →∞)
i.i.d. sequences uN , according to the probability mass function pU |A(ui|ai(w)). Distribute
these sequences at random into 2NR = 2N(I(U ;Y )−I(U ;S|A)−γ) bins such that each bin contains
2N(I(U ;S|A)+γ−ε2,N ) sequences. Index each bin by i ∈ {1, 2, ..., 2NR}. Then place the
2N(I(U ;S|A)+γ−ε2,N ) sequences in every bin randomly into 2N(max(I(U ;S|A),I(U ;Z))−I(U ;Z)+ε3,N )

(ε3,N → 0 as N →∞) subbins such that every subbin contains
2N(I(U ;S|A)+γ−ε2,N−max(I(U ;S|A),I(U ;Z))+I(U ;Z)−ε3,N ) sequences. Let J be the random variable
to represent the index of the subbin. Index each subbin by
j ∈ {1, 2, ..., 2N(max(I(U ;S|A),I(U ;Z))−I(U ;Z)+ε3,N )}, i.e.,

log ‖J ‖ = N(max(I(U ;S|A), I(U ;Z))− I(U ;Z) + ε3,N). (A3)

Here note that the number of the sequences in every subbin is upper bounded as follows.

I(U ;S|A) + γ − ε2,N −max(I(U ;S|A), I(U ;Z)) + I(U ;Z)− ε3,N
≤(a) I(U ;Z)− ε2,N − ε3,N (A4)
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where (a) is from (A2). This implies that

lim
N→∞

H(UN |W,J, ZN) = 0. (A5)

Note that (A5) can be proved by using Fano’s inequality and (A4).
Let sN be the state sequence generated in response to the action sequence aN(w). For a
given message w (w ∈ W) and channel state sN , try to find a sequence uN(w, i∗) in bin
w such that (uN(w, i∗), aN(w), sN) ∈ TNUAS(ε2). If multiple such sequences in bin w exist,
choose the one with the smallest index in the bin. If no such sequence exists, declare an
encoding error.
Figure A1 shows the construction of UN for case 1, see the following.

Figure A1. Code-book construction for UN in Theorem 1 for case 1.

– (Construction of XN ) The xN is generated according to a new discrete memoryless
channel (DMC) with inputs uN , sN , and output xN . The transition probability of this
new DMC is pX|U,S(x|u, s), which is obtained from the joint probability mass function
pU,A,S,X,Y,Z(u, a, s, x, y, z). The probability
pXN |UN ,SN (xN |uN , sN) is calculated as follows.

pXN |UN ,SN (xN |uN , sN) =
N∏
i=1

pX|U,S(xi|ui, si) (A6)

Decoding:
Given a vector yN ∈ YN , try to find a sequence uN(ŵ, î) such that (uN(ŵ, î), aN(ŵ),

yN) ∈ TNUAY (ε3). If there exist sequences with the same ŵ, put out the corresponding ŵ.
Otherwise, i.e., if no such sequence exists or multiple sequences have different message indices,
declare a decoding error.
• (Code construction for Case 2)

Given a pair (R,Re), choose a joint probability mass function pU,A,S,X,Y,Z(u, a, s, x, y, z) such that

0 ≤ Re ≤ R

R ≤ I(U ;Y )− I(U ;S|A)

Re = H(A|Z)
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The message setW satisfies the following condition:

lim
N→∞

1

N
log ‖ W ‖= R = I(U ;Y )− I(U ;S|A)− γ1, (A7)

where γ1 is a fixed positive real numbers and

0 ≤ γ1 ≤(b) I(U ;Y )− I(U ;S|A)−H(A|Z). (A8)

Note that (b) is from R ≥ Re = H(A|Z) and (A7). LetW = {1, 2, ..., 2NR}.
Code-book generation:

– (Construction of AN )
Generate 2NR i.i.d. sequences aN , according to the probability mass function pA(a). Index
each sequence by i ∈ {1, 2, ..., 2NR}. For a given message w (w ∈ W), choose a
corresponding aN(w) as the output of the action encoder.

– (Construction of UN )
For the transmitted action sequence aN(w), generate 2N(I(U ;Y )−ε2,N ) (ε2,N → 0 as N →∞)
i.i.d. sequences uN , according to the probability mass function pU |A(ui|ai(w)). Distribute
these sequences at random into 2NR = 2N(I(U ;Y )−I(U ;S|A)−γ1) bins such that each bin contains
2N(I(U ;S|A)+γ1−ε2,N ) sequences. Index each bin by i ∈ {1, 2, ..., 2NR}.
Let sN be the state sequence generated in response to the action sequence aN(w). For a
given message w (w ∈ W) and channel state sN , try to find a sequence uN(w, i∗) in bin
w such that (uN(w, i∗), aN(w), sN) ∈ TNUAS(ε2). If multiple such sequences in bin w exist,
choose the one with the smallest index in the bin. If no such sequence exists, declare an
encoding error.
Figure A2 shows the construction of UN for case 2, see the following.

Figure A2. Code-book construction for UN in Theorem 1 for case 2.

– (Construction of XN ) The xN is generated the same as that for the case 1, and it is
omitted here.

Decoding:
Given a vector yN ∈ YN , try to find a sequence uN(ŵ, î) such that (uN(ŵ, î), aN(ŵ),

yN) ∈ TNUAY (ε3). If there exist sequences with the same ŵ, put out the corresponding ŵ.
Otherwise, i.e., if no such sequence exists or multiple sequences have different message indices,
declare a decoding error.
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A.2. Proof of Achievability

By using the above definitions, it is easy to verify that limN→∞
log‖W‖
N

= R.
Then, for the two cases, note that the above encoding and decoding schemes are similar to the one

used in [5]. Hence, by similar arguments as in [5], it is easy to show that Pe ≤ ε for both cases, and the
proof is omitted here. It remains to show that limN→∞∆ ≥ Re for the two cases, see the following.

Proof of limN→∞∆ ≥ Re for case 1

lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN)

= lim
N→∞

1

N
(H(W,ZN)−H(ZN))

= lim
N→∞

1

N
(H(W,ZN , UN , J)−H(J, UN |ZN ,W )−H(ZN))

(a)
= lim

N→∞

1

N
(H(ZN |UN) +H(UN , J,W )−H(J, UN |ZN ,W )−H(ZN))

(b)
= lim

N→∞

1

N
(H(ZN |UN) +H(UN)−H(J, UN |ZN ,W )−H(ZN))

= lim
N→∞

1

N
(H(UN)−H(J, UN |ZN ,W )− I(ZN ;UN))

= lim
N→∞

1

N
(H(UN)−H(J |ZN ,W )−H(UN |ZN ,W, J)− I(ZN ;UN))

(c)

≥ lim
N→∞

1

N
(H(UN)− log ‖J ‖ −H(UN |ZN ,W, J)− I(ZN ;UN))

≥ lim
N→∞

1

N
(H(UN)−H(UN |Y N)− log ‖J ‖ −H(UN |ZN ,W, J)− I(ZN ;UN))

= lim
N→∞

1

N
(I(Y N ;UN)− log ‖J ‖ −H(UN |ZN ,W, J)− I(ZN ;UN))

(d)
= lim

N→∞

1

N
(NI(Y ;U)− log ‖J ‖ −H(UN |ZN ,W, J)−NI(Z;U))

(e)
= lim

N→∞

1

N
(NI(Y ;U)−N max(I(U ;S|A), I(U ;Z)) +NI(U ;Z)−Nε3,N −NI(Z;U))

(f)
= I(Y ;U)−max(I(U ;S|A), I(U ;Z)) = Re (A9)

where (a) is from (W,J) → UN → ZN , (b) is from H(J,W |UN) = 0, (c) is from H(J |ZN ,W ) ≤
H(J) ≤ log ‖J ‖, (d) is from that SN , UN and XN are i.i.d. generated random vectors, and the channels
are discrete memoryless, (e) is from (A3) and (A5), and (f) is from ε3,N → 0 as N →∞.

Thus, limN→∞∆ ≥ Re for case 1 is proved.
Proof of limN→∞∆ ≥ Re for case 2

lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN)

=(1) lim
N→∞

1

N
H(AN |ZN)

=(2) lim
N→∞

1

N
(NH(A|Z))

= H(A|Z) = Re (A10)
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where (1) is fromAN is a function ofW , and (2) is fromAN andXN are i.i.d. generated random vectors,
and the channels are discrete memoryless.

Thus, limN→∞∆ ≥ Re for case 2 is proved.
The proof of Theorem 1 is completed.

B. Proof of Theorem 2

In this section, we prove Theorem 2: all the achievable (R,Re) pairs are contained in the set
R(no). Suppose (R,Re) is achievable, i.e., for any given ε > 0, there exists a channel encoder-decoder
(N,∆, Pe) such that

lim
N→∞

log ‖ W ‖
N

= R, lim
N→∞

∆ ≥ Re, Pe ≤ ε

Then we will show the existence of random variables (A,U,K, V )→ (X,S)→ Y → Z such that

0 ≤ Re ≤R (A11)

R ≤ I(U ;Y )− I(U ;S|A) (A12)

Re ≤ I(U ;Y )− I(K;Z|V ) (A13)

Since W is uniformly distributed over W , we have H(W ) = log ‖ W ‖. The formulas (A12) and
(A13) are proved by Lemma 1, see the following.

Lemma 1 The random vectors Y N , ZN and the random variables W , V , U , K, A, Y , Z of Theorem 2,
satisfy:

1

N
H(W ) ≤ I(U ;Y )− I(U ;S|A) +

1

N
δ(Pe) (A14)

1

N
H(W |ZN) ≤ I(U ;Y )− I(K;Z|V ) +

1

N
δ(Pe) (A15)

where δ(Pe) = h(Pe) + Pe log(|W| − 1). Note that h(Pe) = −Pe logPe − (1− Pe) log(1− Pe)

Substituting H(W ) = log ‖ W ‖ and (5) into (A14) and (A15), and using the fact that ε → 0, the
formulas (A12) and (A13) are obtained. The formula (A11) is from

Re ≤ lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN) ≤ lim

N→∞

1

N
H(W ) = R

It remains to prove Lemma 1, see the following.

Proof 3 (Proof of Lemma 1) The formula (A14) follows from (A16), (A18) and (A28). The
formula (A15) is from (A16), (A17), (A18), (A22), (A28) and (A29).
<Part i> We begin with the left parts of the inequalities (A14) and (A15), see the following.
Since W → Y N → ZN is a Markov chain, for the message W , we have

1

N
H(W ) =

1

N
H(W |Y N) +

1

N
I(Y N ;W )

≤(a) 1

N
δ(Pe) +

1

N
I(Y N ;W ) (A16)
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For the equivocation to the wiretapper, we have

1

N
H(W |ZN) =

1

N
(H(W )− I(W ;ZN))

=
1

N
(H(W ) +H(W |Y N)−H(W |Y N)− I(W ;ZN))

=
1

N
(I(W ;Y N) +H(W |Y N)− I(W ;ZN))

≤(b) 1

N
(I(W ;Y N)− I(W ;ZN) + δ(Pe)) (A17)

Note that (a) and (b) follow from Fano’s inequality.
<Part ii> By using chain rule, the character I(Y N ;W ) in formulas (A16) and (A17) can be bounded

as follows,

1

N
I(Y N ;W ) =

1

N

N∑
i=1

I(Yi;W |Y i−1)

=(1) 1

N

N∑
i=1

(I(Yi;W |Y i−1)− I(Si;W |SNi+1, A
N))

=
1

N

N∑
i=1

(I(Yi;W,S
N
i+1, A

N |Y i−1)− I(Yi;S
N
i+1, A

N |W,Y i−1)

−I(Si;W,Y
i−1|SNi+1, A

N) + I(Si;Y
i−1|W,SNi+1, A

N))

=(2) 1

N

N∑
i=1

(I(Yi;W,S
N
i+1, A

N |Y i−1)− I(Si;W,Y
i−1|SNi+1, A

N))

=
1

N

N∑
i=1

(H(Yi|Y i−1)−H(Yi|Y i−1,W, SNi+1, A
N)−H(Si|SNi+1, A

N)

+H(Si|SNi+1, A
N ,W, Y i−1))

≤(3) 1

N

N∑
i=1

(H(Yi)−H(Yi|Y i−1,W, SNi+1, A
N)−H(Si|Ai)

+H(Si|SNi+1, A
N ,W, Y i−1)) (A18)

where formula (1) follows from that W → AN → SN , formula (2) follows from that

N∑
i=1

I(Yi;S
N
i+1, A

N |W,Y i−1) =
N∑
i=1

I(Si;Y
i−1|W,SNi+1, A

N) (A19)

and formula (3) follows from that Si → Ai → (SNi+1, A
i−1, ANi+1).
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Proof 4 (Proof of (A19)) The left part of (A19) can be rewritten as
N∑
i=1

I(Yi;S
N
i+1, A

N |W,Y i−1) =(1)

N∑
i=1

I(Yi;S
N
i+1, A

N |W,Y i−1, AN)

=
N∑
i=1

I(Yi;S
N
i+1|W,Y i−1, AN)

=
N∑
i=1

N∑
j=i+1

I(Yi;Sj|AN , Y i−1,W, SNj+1)

=
N∑
j=1

N∑
i=j+1

I(Yj;Si|AN , Y j−1, SNi+1,W )

=
N∑
i=1

i−1∑
j=1

I(Yj;Si|AN , Y j−1, SNi+1,W ) (A20)

where (1) is from the fact that AN is a deterministic function of W .
The right part of (A19) can be rewritten as

N∑
i=1

I(Si;Y
i−1|W,SNi+1, A

N) =
N∑
i=1

i−1∑
j=1

I(Yj;Si|AN ,W, Y j−1, SNi+1) (A21)

The formula (A19) is proved by (A20) and (A21). The proof is completed.

<Part iii> Similar to (A18), the character I(W ;ZN) in formula (A17) can be rewritten as follows,

1

N
I(ZN ;W ) =

1

N

N∑
i=1

I(Zi;W |Zi−1)

=(a) 1

N

N∑
i=1

(I(Zi;W |Zi−1)− I(Si;W |SNi+1, A
N))

=
1

N

N∑
i=1

(I(Zi;W,S
N
i+1, A

N |Zi−1)− I(Zi;S
N
i+1, A

N |W,Zi−1)

−I(Si;W,Z
i−1|SNi+1, A

N) + I(Si;Z
i−1|W,SNi+1, A

N))

=(b) 1

N

N∑
i=1

(I(Zi;W,S
N
i+1, A

N |Zi−1)− I(Si;W,Z
i−1|SNi+1, A

N))

=
1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W, SNi+1, A
N)−H(Si|SNi+1, A

N)

+H(Si|SNi+1, A
N ,W, Zi−1))

≥ 1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W, SNi+1, A
N)−H(Si|Ai)

+H(Si|SNi+1, A
N ,W, Zi−1, Y i−1))

=(c) 1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W, SNi+1, A
N)−H(Si|Ai)

+H(Si|SNi+1, A
N ,W, Y i−1)) (A22)
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where formula (a) follows from that W → AN → SN , formula (b) follows from that
N∑
i=1

I(Zi;S
N
i+1, A

N |W,Zi−1) =
N∑
i=1

I(Si;Z
i−1|W,SNi+1, A

N) (A23)

and formula (c) follows from that Zi−1 → (SNi+1, A
N ,W, Y i−1) → Si. Note that the proof of (A23) is

similar to the proof of (A19), and therefore, it is omitted here.
<Part iv> (single letter) To complete the proof, we introduce a random variable J , which is

independent of W , AN , XN , SN , Y N and ZN . Furthermore, J is uniformly distributed over
{1, 2, ..., N}. Define

U = (W,Y J−1, SNJ+1, A
N , J) (A24)

K = (W,ZJ−1, SNJ+1, A
N , J) (A25)

V = (ZJ−1, J) (A26)

X = XJ , Y = YJ , Z = ZJ , S = SJ , A = (AJ , J) (A27)

<Part v> Then (A18) can be rewritten as

1

N
I(W ;Y N) ≤ 1

N

N∑
i=1

(H(Yi)−H(Yi|Y i−1,W, SNi+1, A
N)−H(Si|Ai) +

H(Si|SNi+1, A
N ,W, Y i−1))

=
1

N

N∑
i=1

(H(Yi|J = i)−H(Yi|Y i−1,W, SNi+1, A
N , J = i)−H(Si|Ai, J = i) +

H(Si|SNi+1, A
N ,W, Y i−1, Ai, J = i))

= H(YJ |J)−H(YJ |Y J−1,W, SNJ+1, A
N , J)−H(SJ |AJ , J) +

H(SJ |SNJ+1, A
N ,W, Y J−1, AJ , J)

≤ H(YJ)−H(YJ |Y J−1,W, SNJ+1, A
N , J)−H(SJ |AJ , J) +

H(SJ |SNJ+1, A
N ,W, Y J−1, AJ , J)

= H(Y )−H(Y |U)−H(S|A) +H(S|U,A)

= I(U ;Y )− I(U ;S|A) (A28)

Analogously, (A22) is rewritten as follows,

1

N
I(ZN ;W ) ≥ 1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W, SNi+1, A
N)−H(Si|Ai) +

H(Si|SNi+1, A
N ,W, Y i−1))

=
1

N

N∑
i=1

(H(Zi|Zi−1, J = i)−H(Zi|Zi−1,W, SNi+1, A
N , J = i)−H(Si|Ai, J = i) +

H(Si|SNi+1, A
N ,W, Y i−1, Ai, J = i))

= H(ZJ |ZJ−1, J)−H(ZJ |ZJ−1,W, SNJ+1, A
N , J)−H(SJ |AJ , J) +

H(SJ |SNJ+1, A
N ,W, Y J−1, AJ , J)

= H(Z|V )−H(Z|K,V )−H(S|A) +H(S|U,A)

= I(Z;K|V )− I(U ;S|A) (A29)
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Substituting (A28), (A29) into (A16) and (A17), Lemma 1 is proved.

In addition, by using the definitions of U , K, V , Y and Z (see (A24), (A25), (A26) and (A27),
note that V is a part of K), and observing that ZJ−1 → (Y J−1,W, SNJ+1, A

N , J) → YJ → ZJ is a
Markov chain, it is easy to check that the Markov chain V → K → U → Y → Z holds.

The proof of Theorem 2 is completed.

C. Size Constraint of The Random Variables in Theorem 1

By using the support lemma (see [13], p.310), it suffices to show that the random variable U can be
replaced by new one, preserving the Markovity (U,A)→ (X,S)→ Y → Z and the mutual information
I(U ;Z), I(U ;Y ), I(U ;S|A), and furthermore, the range of the new U satisfies: ‖U‖‖ ≤ ‖X‖‖S‖‖A‖+
2. The proof is in the reminder of this section.

Let
p̄ = pXSA(x, s, a) (A30)

Define the following continuous scalar functions of p̄ :

fXSA(p̄) = pXSA(x, s, a), fY (p̄) = H(Y ), fZ(p̄) = H(Z), fS|A(p̄) = H(S|A)

Since there are ‖X‖‖S‖‖A‖−1 functions of fXSA(p̄), the total number of the continuous scalar functions
of p̄ is ‖X‖‖S‖‖A‖+2.

Let p̄XSA|U = Pr{X = x, S = s, A = a|U = u}. With these distributions p̄XSA|U = Pr

{X = x, S = s, A = a|U = u}, we have

pXSA(x, s, a) =
∑
u∈U

p(U = u)fXSA(p̄XSA|U) (A31)

I(U ;Z) = fZ(p̄)−
∑
u∈U

p(U = u)fZ(p̄XSA|U) (A32)

I(U ;S|A) = fS|A(p̄)−
∑
u∈U

p(U = u)fS|A(p̄XSA|U) (A33)

H(Y |U) =
∑
u∈U

p(U = u)fY (p̄XSA|U) (A34)

According to the support lemma ([13], p.310), the random variable U can be replaced by new ones
such that the new U takes at most ‖X‖‖S‖‖A‖ + 2 different values and the expressions (A31), (A32),
(A33) and (A34) are preserved.

D. Size Constraint of The Random Variables in Theorem 2

By using the support lemma (see [13], p.310), it suffices to show that the random variables U , V
and K can be replaced by new ones, preserving the Markovities (U,K,A, V ) → (X,S) → Y → Z,
V → K → Y → Z and the mutual information I(U ;Y ), I(K;Z|V ), I(U ;S|A), and furthermore,
the ranges of the new U , V and K satisfy: ‖U‖‖ ≤ ‖X‖‖S‖‖A‖ + 1, ‖V‖‖ ≤ ‖X‖‖S‖‖A‖, ‖K‖ ≤
‖X‖2‖S‖2‖A‖2. The proof is in the reminder of this section.
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• (Proof of ‖U‖‖ ≤ ‖X‖‖S‖‖A‖+ 1)
Let

p̄ = pXSA(x, s, a) (A35)

Define the following continuous scalar functions of p̄ :

fXSA(p̄) = pXSA(x, s, a), fY (p̄) = H(Y ), fS|A(p̄) = H(S|A)

Since there are ‖X‖‖S‖‖A‖ − 1 functions of fXSA(p̄), the total number of the continuous scalar
functions of p̄ is ‖X‖‖S‖‖A‖+1.
Let p̄XSA|U = Pr{X = x, S = s, A = a|U = u}. With these distributions p̄XSA|U = Pr

{X = x, S = s, A = a|U = u}, we have

pXSA(x, s, a) =
∑
u∈U

p(U = u)fXSA(p̄XSA|U) (A36)

I(U ;S|A) = fS|A(p̄)−
∑
u∈U

p(U = u)fS|A(p̄XSA|U) (A37)

H(Y |U) =
∑
u∈U

p(U = u)fY (p̄XSA|U) (A38)

According to the support lemma ([13], p.310), the random variable U can be replaced by new ones
such that the new U takes at most ‖X‖‖S‖‖A‖ + 1 different values and the expressions (A36),
(A37) and (A38) are preserved.
• (Proof of ‖V‖‖ ≤ ‖X‖‖S‖‖A‖)

Let
p̄ = pXSA(x, s, a) (A39)

Define the following continuous scalar functions of p̄ :

fXSA(p̄) = pXSA(x, s, a), fZ(p̄) = H(Z)

Since there are ‖X‖‖S‖‖A‖ − 1 functions of fXSA(p̄), the total number of the continuous scalar
functions of p̄ is ‖X‖‖S‖‖A‖.
Let p̄XSA|V = Pr{X = x, S = s, A = a|V = v}. With these distributions p̄XSA|V = Pr

{X = x, S = s, A = a|V = v}, we have

pXSA(x, s, a) =
∑
v∈V

p(V = v)fXSA(p̄XSA|V ) (A40)

H(Z|V ) =
∑
v∈V

p(V = v)fZ(p̄XSA|V ) (A41)

According to the support lemma ([13], p.310), the random variable V can be replaced by new ones
such that the new V takes at most ‖X‖‖S‖‖A‖ different values and the expressions (A40) and
(A41) are preserved.
• (Proof of ‖K‖ ≤ ‖X‖2‖S‖2‖A‖2)

Once the alphabet of V is fixed, we apply similar arguments to bound the alphabet of K, see the
following. Define ‖X‖‖S‖‖A‖ continuous scalar functions of p̄XSA :

fXSA(p̄XSA) = pXSA(x, s, a), fZ(p̄XSA) = H(Z)
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where of the functions fXSA(p̄XSA), only ‖X‖‖S‖‖A‖ − 1 are to be considered.
For every fixed v, let p̄XSA|K,V = Pr{X = x, S = s, A = a|K = k, V = v}. With these
distributions p̄XSA|K,V , we have

Pr{X = x, S = s, A = a|V = v} =
∑
k∈K

Pr{K = k|V = v}fXSA(p̄XSA|K,V ) (A42)

I(K;Z|V = v) = H(Z|V = v)−
∑
k∈K

fZ(p̄XSA|K,V )Pr{K = k|V = v} (A43)

By the support lemma ([13], p.310), for every fixed v, the size of the alphabet of the random
variable K can not be larger than ‖X‖‖S‖‖A‖, and therefore, ‖K‖ ≤ ‖X‖2‖S‖2‖A‖2 is proved.

E. Proof of Theorem 3

In this section, we will show that any pair (R,Re) ∈ Rci is achievable. Wyner’s random binning
technique is used in the construction of the code-book.

Now the remainder of this section is organized as follows. The code construction is in
Subsection E.1. The proof of achievability is given in Subsection E.2.

E.1. Code Construction

Since Re ≤ I(U ;Y ) − I(U ;Z), Re ≤ H(A|Z) and Re ≤ R ≤ I(U ;Y ), it is sufficient to show
that the pair (R,Re = min{I(U ;Y ) − I(U ;Z), H(A|Z)} is achievable, and note that this implies that
R ≥ Re = min{I(U ;Y )− I(U ;Z), H(A|Z)}.

The construction of the code and the proof of achievability are considered into two cases:

• (Case 1) If H(A|Z) ≥ I(U ;Y ) − I(U ;Z), Wyner’s random binning technique [6] is used in the
construction of the code-book.
• (Case 2) If H(A|Z) ≤ I(U ;Y ) − I(U ;Z), Shannon’s strategy [1] is used in the construction of

the code-book.

• (Code construction for case 1)
Given a pair (R,Re), choose a joint probability mass function pU,A,S,X,Y,Z(u, a, s, x, y, z) such that

0 ≤ Re ≤ R

R ≤ I(U ;Y )

Re = I(U ;Y )− I(U ;Z)

The message setW satisfies the following condition:

lim
N→∞

1

N
log ‖ W ‖= R = I(U ;Y )− γ (A44)

where γ is a fixed positive real numbers and

0 ≤ γ ≤(a) I(U ;Z) (A45)

Note that (a) is from R ≥ Re = I(U ;Y )− I(U ;Z) and (A44). LetW = {1, 2, ..., 2NR}.
Code-book generation:
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– (Construction of AN )
Generate 2NR i.i.d. sequences aN , according to the probability mass function pA(a). Index
each sequence by i ∈ {1, 2, ..., 2NR}. For a given message w (w ∈ W), choose a
corresponding aN(w) as the output of the action encoder.

– (Construction of UN )
For the transmitted action sequence aN(w), generate 2N(I(U ;Y )−ε2,N ) (ε2,N → 0 as N →∞)
i.i.d. sequences uN , according to the probability mass function pU |A(ui|ai(w)). Distribute
these sequences at random into 2NR = 2N(I(U ;Y )−γ) bins such that each bin contains
2N(γ−ε2,N ) sequences. Index each bin by i ∈ {1, 2, ..., 2NR}.
Here note that the number of the sequences in every bin is upper bounded as follows.

γ − ε2,N ≤(a) I(U ;Z)− ε2,N (A46)

where (a) is from (A45). This implies that

lim
N→∞

H(UN |W,ZN) = 0 (A47)

Note that (A47) can be proved by using Fano’s inequality and (A46).
For a given message w (w ∈ W), randomly choose a sequence uN(w, i∗) in bin w as the
realization of UN .
Let sN be the state sequence generated in response to the action sequence aN(w).

– (Construction of XN ) The xN is generated according to a new discrete memoryless
channel (DMC) with inputs uN , sN , and output xN . The transition probability of this
new DMC is pX|U,S(x|u, s), which is obtained from the joint probability mass function
pU,A,S,X,Y,Z(u, a, s, x, y, z). The probability
pXN |UN ,SN (xN |uN , sN) is calculated as follows.

pXN |UN ,SN (xN |uN , sN) =
N∏
i=1

pX|U,S(xi|ui, si) (A48)

Decoding:
Given a vector yN ∈ YN , try to find a sequence uN(ŵ, î) such that (uN(ŵ, î), aN(ŵ),

yN) ∈ TNUAY (ε3). If there exist sequences with the same ŵ, put out the corresponding ŵ.
Otherwise, i.e., if no such sequence exists or multiple sequences have different message indices,
declare a decoding error.
• (Code construction for case 2)

Given a pair (R,Re), choose a joint probability mass function pU,A,S,X,Y,Z(u, a, s, x, y, z) such that

0 ≤ Re ≤ R

R ≤ I(U ;Y )

Re = H(A|Z)

The message setW satisfies the following condition:

lim
N→∞

1

N
log ‖ W ‖= R = I(U ;Y )− γ1 (A49)
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where γ1 is a fixed positive real numbers and

0 ≤ γ1 ≤(b) I(U ;Y )−H(A|Z) (A50)

Note that (b) is from R ≥ Re = H(A|Z) and (A49). LetW = {1, 2, ..., 2NR}.
Code-book generation:

– (Construction of AN )
Generate 2NR i.i.d. sequences aN , according to the probability mass function pA(a). Index
each sequence by i ∈ {1, 2, ..., 2NR}. For a given message w (w ∈ W), choose a
corresponding aN(w) as the output of the action encoder.

– (Construction of UN )
For the transmitted action sequence aN(w), generate 2NR i.i.d. sequences uN , according to
the probability mass function pU |A(ui|ai(w)). Index each uN by i ∈ {1, 2, ..., 2NR}.
For a given message w (w ∈ W), choose a sequence uN(w) as the realization of UN .
Let sN be the state sequence generated in response to the action sequence aN(w).

– (Construction of XN ) The xN is generated the same as that for the case 1, and it is
omitted here.

Decoding:
Given a vector yN ∈ YN , try to find a sequence uN(ŵ) such that (uN(ŵ), aN(ŵ), yN) ∈ TNUAY (ε3).
If there exist sequences with the same ŵ, put out the corresponding ŵ. Otherwise, i.e., if no such
sequence exists or multiple sequences have different message indices, declare a decoding error.

E.2. Proof of Achievability

By using the above definitions, it is easy to verify that limN→∞
log‖W‖
N

= R.
Then, for the two cases, note that the above encoding and decoding schemes are similar to the one

used in [5]. Hence, by similar arguments as in [5], it is easy to show that Pe ≤ ε for both cases, and the
proof is omitted here. It remains to show that limN→∞∆ ≥ Re for the two cases, see the following.

Proof of limN→∞∆ ≥ Re for case 1
lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN) = lim

N→∞

1

N
(H(W,ZN)−H(ZN))

= lim
N→∞

1

N
(H(W,ZN , UN)−H(UN |ZN ,W )−H(ZN))

(a)
= lim

N→∞

1

N
(H(ZN |UN) +H(UN ,W )−H(UN |ZN ,W )−H(ZN))

(b)
= lim

N→∞

1

N
(H(ZN |UN) +H(UN)−H(UN |ZN ,W )−H(ZN))

= lim
N→∞

1

N
(H(UN)−H(UN |ZN ,W )− I(ZN ;UN))

≥ lim
N→∞

1

N
(H(UN)−H(UN |Y N)−H(UN |ZN ,W )− I(ZN ;UN))

= lim
N→∞

1

N
(I(UN ;Y N)−H(UN |ZN ,W )− I(ZN ;UN))

=(c) lim
N→∞

1

N
(NI(U ;Y )−NI(U ;Z))

= I(U ;Y )− I(U ;Z) = Re, (A51)
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where (a) is from W → UN → ZN , (b) is from H(W |UN) = 0, (c) is from that SN , UN and XN are
i.i.d. generated random vectors, the channels are discrete memoryless and (A47).

Thus, limN→∞∆ ≥ Re for case 1 is proved.
Proof of limN→∞∆ ≥ Re for case 2

lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN)

=(1) lim
N→∞

1

N
H(AN |ZN)

=(2) lim
N→∞

1

N
(NH(A|Z))

= H(A|Z) = Re, (A52)

where (1) is fromAN is a function ofW , and (2) is fromAN andXN are i.i.d. generated random vectors,
and the channels are discrete memoryless.

Thus, limN→∞∆ ≥ Re for case 2 is proved.
The proof of Theorem 3 is completed.

F. Proof of Theorem 4

In this section, we prove Theorem 4: all the achievable (R,Re) pairs are contained in the set
R(co). Suppose (R,Re) is achievable, i.e., for any given ε > 0, there exists a channel encoder-decoder
(N,∆, Pe) such that

lim
N→∞

log ‖ W ‖
N

= R, lim
N→∞

∆ ≥ Re, Pe ≤ ε.

Then we will show the existence of random variables (A,U,K, V )→ (X,S)→ Y → Z such that

0 ≤Re ≤ R (A53)

R ≤I(U ;Y ) (A54)

Re ≤I(U ;Y )− I(K;Z|V ) (A55)

Since W is uniformly distributed over W , we have H(W ) = log ‖ W ‖. The formulas (A54)
and (A55) are proved by Lemma 2, see the following.

Lemma 2 The random vectors Y N , ZN and the random variables W , V , U , K, A, Y , Z of Theorem 4,
satisfy:

1

N
H(W ) ≤ I(U ;Y ) +

1

N
δ(Pe), (A56)

1

N
H(W |ZN) ≤ I(U ;Y )− I(K;Z|V ) +

1

N
δ(Pe), (A57)

where δ(Pe) = h(Pe) + Pe log(|W| − 1). Note that h(Pe) = −Pe logPe − (1− Pe) log(1− Pe).

Substituting H(W ) = log ‖ W ‖ and (5) into (A56) and (A57), and using the fact that ε → 0, the
formulas (A54) and (A55) are obtained. The formula (A53) is from

Re ≤ lim
N→∞

∆ = lim
N→∞

1

N
H(W |ZN) ≤ lim

N→∞

1

N
H(W ) = R.

It remains to prove Lemma 2, see the following.
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Proof 5 (Proof of Lemma 2) The formula (A56) follows from (A58), (A60) and (A66). The formula
(A57) is from (A58), (A59), (A60), (A61), (A66) and (A67).
<Part i> We begin with the left parts of the inequalities (A56) and (A57), see the following.
Since W → Y N → ZN is a Markov chain, for the message W , we have

1

N
H(W ) =

1

N
H(W |Y N) +

1

N
I(Y N ;W )

≤(a) 1

N
δ(Pe) +

1

N
I(Y N ;W ). (A58)

For the equivocation to the wiretapper, we have

1

N
H(W |ZN) =

1

N
(H(W )− I(W ;ZN))

=
1

N
(H(W ) +H(W |Y N)−H(W |Y N)− I(W ;ZN))

=
1

N
(I(W ;Y N) +H(W |Y N)− I(W ;ZN))

≤(b) 1

N
(I(W ;Y N)− I(W ;ZN) + δ(Pe)). (A59)

Note that (a) and (b) follow from Fano’s inequality.
<Part ii> By using chain rule, the character I(Y N ;W ) in formulas (A58) and (A59) can be bounded

as follows,

1

N
I(Y N ;W ) =

1

N

N∑
i=1

I(Yi;W |Y i−1)

≤ 1

N

N∑
i=1

I(Yi;W,Y
i−1)

≤ 1

N

N∑
i=1

I(Yi;W,Y
i−1, Si−1). (A60)

<Part iii> Similar to (A60), the character I(W ;ZN) in formula (A59) can be rewritten as follows,

1

N
I(ZN ;W ) =

1

N

N∑
i=1

I(Zi;W |Zi−1)

=
1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W )). (A61)

<Part iv> (single letter) To complete the proof, we introduce a random variable J , which is
independent of W , AN , XN , SN , Y N and ZN . Furthermore, J is uniformly distributed over
{1, 2, ..., N}. Define

U = (W,Y J−1, SJ−1, J) (A62)

K = (W,ZJ−1, J) (A63)

V = (ZJ−1, J) (A64)

X = XJ , Y = YJ , Z = ZJ , S = SJ , A = AJ (A65)
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<Part v> Then (A60) can be rewritten as

1

N
I(W ;Y N) ≤ 1

N

N∑
i=1

I(Yi;W,Y
i−1, Si−1)

=
1

N

N∑
i=1

I(Yi;W,Y
i−1, Si−1|J = i)

= I(YJ ;W,Y J−1, SJ−1|J)

≤ I(YJ ;W,Y J−1, SJ−1, J)

= I(U ;Y ) (A66)

Analogously, (A61) is rewritten as follows,

1

N
I(ZN ;W ) =

1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1,W ))

=
1

N

N∑
i=1

(H(Zi|Zi−1, J = i)−H(Zi|Zi−1,W, J = i))

= H(ZJ |ZJ−1, J)−H(ZJ |ZJ−1,W, J)

= H(Z|V )−H(Z|K,V )

= I(Z;K|V ) (A67)

Substituting (A66), (A67) into (A58) and (A59), Lemma 2 is proved.

In addition, by using the definitions of U , K, V , Y and Z (see (A62), (A63), (A64) and (A65),
note that V is a part of K), and observing that ZJ−1 → (Y J−1,W, SJ−1, J) → YJ → ZJ and
(W,Y J−1, SJ−1, J)→ AJ → SJ are two Markov chains, it is easy to check that the Markov chains
V → K → U → Y → Z and U → A→ S hold.

The proof of Theorem 4 is completed.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
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