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Abstract: The majority of studies on high-entropy alloys are focused on their phase, 
microstructure, and mechanical properties. However, the physical properties of these materials 
are also encouraging. This paper provides a brief overview of the physical properties of  
high-entropy alloys. Emphasis is laid on magnetic, electrical, and thermal properties. 
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1. Introduction 

High entropy alloys (HEAs) are a novel class of metallic material with a distinct design strategy [1,2]. 
Different from conventional alloys that are typically designed based on one or two principal 
elements, HEAs are composed of more than five principal elements. It has been reported that 
HEAs possess many attractive properties, such as high hardness [3–7], outstanding wear resistance [8,9], 
good fatigue resistance characteristics [10], excellent high-temperature strength [11,12], good 
thermal stability [13] and, in general, good oxidation [8] and corrosion resistance [14,15]. These 
properties suggest great potential in a wide variety of applications. Thus, HEAs have received 
significant attention in recent years. Up till now, more than 300 HEAs have been developed, 
forming a new frontier of metallic materials. Most studies on HEAs are focused on the 
relationships between phase, microstructure, and mechanical properties. Although less attention 
was paid to the physical properties of HEAs, they are actually also quite encouraging. This paper 
briefly reviews current understanding of the physical properties of HEAs, with emphasis on the 
magnetic, electrical, and thermal properties. 
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2. Magnetic Properties 

Studies regarding the magnetic properties of HEAs are mainly focused in alloys derived from 
Al−Co−Cr−Cu−Fe−Ni−Ti [16–24]. These alloys usually contain more than 50 at.% of magnetic 
elements (Fe, Co, and Ni). They are either paramagnetic [18–19,21] or ferromagnetic with a saturation 
magnetization (Ms) typically around 10–50 emu/g (if converted by weighted average density, roughly 
in the range of 70–350 emu/cc). The phase, Ms, and coercivity (Hc) of some representative HEAs are 
listed in Table 1. Ms of the alloy depends mainly on the composition and crystal structure. In general, 
more magnetic elements lead to higher magnetization [24]. However, alloying elements can have 
considerable impact. For example, the addition of Cr significantly reduces the magnetization [24]. 
Such effect can be seen in Table 1. CoFeNi and CoCrFeNi alloys both have FCC structures. The 
former has a high Ms of 1,047 emu/cc, but addition of 25% Cr renders the alloy (CoCrFeNi) 
paramagnetic. Zhang et al. have argued that this is because the magnetic moment of Cr is anti-parallel to 
that of Fe/Co/Ni (i.e., anti-parallel magnetic coupling), leading to the cancellation of magnetization [24]. 
Tian et al. performed ab initio investigations on the CoCrFeNi alloy [25]. They employed the exact 
muffin-tin orbitals method in combination with the coherent potential approximation to calculate the 
local magnetic moments of each element in paramagnetic FCC CoCrFeNi. Fe was found to be the only 
element with magnetic moment. Additionally, paramagnetic and nonmagnetic total density of state 
(DOS) and partial density of state (pDOS) of the alloy were also calculated and compared [25]. 

Addition of different elements to the CoCrFeNi alloy leads to different structure and phase—and 
accordingly, different magnetic behaviors. Addition of Cu only leads to the formation of Cu-rich 
interdendrite phase and does not affect the CoCrFeNi FCC solid solution much. Thus, the 
CoCrFeNiCu alloy remains paramagnetic [16]. Addition of Al to CoCrFeNi transforms its single FCC 
structure to BCC+B2 phases [18,26]. The two phases have almost identical lattice parameters, but very 
different compositions. The BCC phase is (Co, Cr, Fe)-rich, while the B2 phase is (Al, Ni)-rich. The 
BCC phase further decomposes into Cr-rich and (Fe, Co)-rich nano-clusters through spinodal 
decomposition [20]. This BCC phase is found to be the source of ferromagnetism in the alloy. 
Furthermore, the degree of the spindodal decomposition affects the ferromagnetic behavior. A higher 
degree of decomposition leads to higher saturation magnetisation, coercivity and remanance [20]. The 
fact that separation of Cr from Fe and Co leads to higher magnetization seems to agree with the 
conclusion drawn by Zhang et al., i.e., that existence of Cr leads to cancellation of magnetization [24]. 
Addition of Pd to CoCrFeNi does not change the crystal structure and phase of the alloys, but the alloy 
becomes ferromagnetic [19]. The addition of Ti appears to reduce the Ms (Table 1), but the reason is 
unclear. Most of these alloys are soft magnetic materials with coercivities less than 100 Oe, yet some 
have higher coercivities around 250 Oe [17,23,24]. The higher coercivities are related with finer 
microstructures, similar to the case in conventional magnetic materials.  

Among reported HEAs, FeCoNiAl0.2Si0.2 alloy has a good combination of properties including high 
Ms (1.151 T), high resistivity (69.5 μΩ-cm), and good malleability, making it a potential soft magnetic 
material [24]. With the increase of Al and Si content, however, the Ms decreases significantly. This 
trend is shown in Figure 1 [24]. For example, the Ms of FeCoNiAl0.8Si0.8 is 0.46 T.  

The magnetic properties of another series of alloy, FeNiCuMnTiSnx, were also studied [21]. When 
x = 0, the alloy is composed of various intermetallic phases such as Fe2Ti, NiTi, FeTi, and Fe3Mn7, 
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and is paramagnetic. When x = 1, the alloy contains two phases which have Cu3Sn and TiNi2Sn 
structure, respectively (both belong to zinc blende structure). Density functional theory technique was 
used to calculate the atomic magnetic moment of possible zinc blende structures [21]. Among the 
possible structures, Ti4(Ni4Fe4)Sn4 is magnetic and the ratio between the elements also agrees with the 
results of EDS analysis. 

Table 1. Phase, saturation magnetization (Ms), and coercivity (Hc) for some representative 
HEA. Ms provided in emu/g are converted to emu/cc using weight averaged density. 

Alloy Phase Ms (emu/g) Ms (emu/cc) Hc (Oe) 

FeCoNi [24] FCC  1047 13 

FeCoNiCr [18–19] FCC  Paramag. Paramag. 

FeCoNiCrCu [16] FCC1+FCC(Cu-rich)  Paramag. Paramag. 

FeCoNiCrAl [18,22] BCC+B2 65 462 52 

FeCoNiCrAlCu [17,19–20] BCC+B2+FCC(Cu-rich) 38–46 281–340 45 

FeCoNiCrAlTi [23] BCC+FCC+FeTi+Co2Ti 15 100 226 

FeCoNiCrPd [19] FCC 33 296 N/A 

FeCoNiCrTi [23] FCC+BCC+Co2Ti 5 37 20 

FeCoNiAl0.2Si0.2 [24] BCC+unknown phase  915 18 

Figure 1. Magnetic properties of FeCoNi(AlSi)x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.8) 
alloys (Hc and Ms represent the coercivity and saturation magnetization, respectively) [24]. 

 

3. Electrical Properties 

As-cast high entropy alloy typically have electrical resistivities between 100 and 220 μΩ-cm [27,28]. 
These values are 1–2 orders of magnitude higher than that of many conventional metals, and are 
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similar to that of bulk metallic glasses (BMG). This can be seen in Table 2, in which the electrical 
resistivities of some representative pure metals, conventional alloys, BMG, and HEA are compared 
with each other. The higher electrical resistivity of HEA originates from its highly distorted lattice that 
scatters electron waves [2,28]. 

Table 2. Electrical resistivity and thermal conductivity of some HEA and representative 
conventional metals. 

Category Composition/Alloy 
Electrical 
Resistivity 
(μΩ-cm) 

Reference 
Thermal 

conductivity 
(W/m K) 

Reference 

High Entropy 
Alloy 

CoCrFeNi 142 

[18] 

12 

[28] AlCoCrFeNi 221 11 

Al2CoCrFeNi 211 16 

Pure Element 

Al 3 

[29,30] 

237 

[31] 

Fe 10 80 

Ni 7 91 

Ti 42 22 

Cu 2 398 

Conventional 
Alloy 

7075 Al alloy 6 

[30] 

121 

[30,31] 

Low Carbon Steel 17 52 

304 Stainless Steel 69 15 

Inconel 718 125 11 

Ti-6Al-4V 168 6 

Bulk Metallic 
Glass 

Zr41Ti14Cu12.5Ni10Be22.5 171 [32] N/A N/A 

Fe78Si9B13 137 [33] N/A N/A 

Co63Fe9Zr8B20 188 [33] N/A N/A 

The change of resistivity as a function of temperature was studied in AlxCoCrFeNi alloys [18,28]. 
Like conventional alloys, the resistivity of AlxCoCrFeNi increases with temperature. However, the slope 
of the temperature-resistivity curve—the temperature coefficient of resistivity (TCR)—is generally one 
order of magnitude smaller than that of conventional alloys [18,28]. Kondo-like behavior was also 
observed in some alloys at low temperatures [18]. Some alloys, such as Al2.08CoCrFeNi, have extremely 
small TCR. The average TCR of Al2.08CoCrFeNi from 4.2 to 360 K is only 72 ppm/K [27], compared 
with several thousand ppm/K for most pure metals. The low TCR value spanning such wide temperature 
range enables it to be used as precision resistors in special applications.  

The Hall coefficients in AlxCoCrFeNi alloys at 5 K and 300 K have been reported [18]. Because 
these alloys become ferromagnetic at 5 K, anomalous Hall effect is detected in all of them. Similar to 
conventional alloys, anomalous Hall coefficient is significantly larger than the ordinary Hall 
coefficient. In all these alloys, the carriers are hole-like. Meanwhile, the carrier density in these HEA 
(1022–1023 cm2V−1s−1) is similar to that in conventional alloys [18]. In contrast, the carrier mobility is 
lower than that in conventional ones [18]. The origins of these behaviors are still unknown. 
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4. Thermal Properties 

Thermal conductivity/diffusivity has been measured in AlxCoCrFeNi and AlxCrFe1.5MnNi0.5Moy 
alloys [28,34]. Table 2 compares the thermal conductivities of some AlxCoCrFeNi alloys and some 
representative conventional metals. Thermal conductivity of AlxCoCrFeNi alloys falls in the range 
of 10–27 W/m∙K. These values are lower than those of most pure metals, but are similar to those of heavily 
alloyed conventional metals such as high-alloy steel or Ni-based superalloys [29,31]. The lower 
thermal conductivity in HEA should be a result of its distorted lattice, which scatters the phonons 
more significantly. 

Between 27 °C and 300 °C, thermal conductivity/diffusivity of these HEAs increases with 
increasing temperature [28,34] (see Figure 2). This tendency is opposite to that seen in most pure 
metals, but is similar to that observed in stainless steel and Inconel alloy [29,31]. The enhanced heat 
transfer at higher temperatures in the AlxCoCrFeNi alloys was explained by the increased phonon 
mean free path at higher temperature, owing to thermal expansion of the lattice [34]. Note that the 
electrical conductivity in the AlxCoCrFeNi alloys decreases with increasing temperature, which means 
that the electrical and thermal conductivities in the AlxCoCrFeNi alloys show opposite trends with 
respect to temperature. Therefore, the Wiedemann-Franz law is not obeyed in these HEAs. 

Figure 2. Thermal diffusivity as function of temperature for Al and some HEA [33]. 
Compositions of HEA-a, HEA-b, HEA-c, and HEA-d are Al0.3CrFe1.5MnNi0.5, 
Al0.5CrFe1.5MnNi0.5, Al0.3CrFe1.5MnNi0.5Mo0.1, and Al0.3CrFe1.5MnNi0.5Mo0.1, respectively. 

 

Thermal expansion coefficients (TEC) of the AlxCoCrFeNi alloys have been reported. The TEC of 
these alloys ranges from 8.84 × 10−6 to 11.25 × 10−6 K−1, and decreases monotonically with increasing 
Al content. Because Al promotes the formation of BCC phase, this also means that TEC decreases 
when the structure of the alloy transits from FCC to BCC. 
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The magnetocaloric properties of some HEA have been tested for possible magnetic 
refrigeration applications [35]. The magnetic entropy change (ΔSm) for cold-rolled CoCrFeNi  
is −0.35 J/kg∙K (the change in applied field is 2T). This value is apparently smaller than that of 
Fe0.7Ni0.3 (−0.6 J/kg∙K). Unfortunately, the cost of Cr and Co is much higher than that of Fe and Ni. 
Therefore, if the refrigeration capabilities are compared in J/$, the capability of CoCrFeNi is only 8% that 
of Fe0.7Ni0.3. 

5. Conclusions and Remarks 

Our knowledge about the physical properties of HEAs is still very preliminary. Although some 
fundamental physical parameters such as saturation magnetization, resistivity, and thermal 
conductivity have been reported, the data are limited only a few alloy systems. The mechanism behind 
the composition-property relationship also remains largely unclear, which makes it difficult to control 
the physical properties. Some important physical characteristics, for example the electronic band 
structure and phonon behavior, are still completely unknown. Clearly, a lot more work is needed in 
this regard. Despite our limited knowledge about the physical properties of HEAs, interesting 
features such as extremely low TCR and favorable soft magnetic properties have been observed. It is 
expected that further exploration will lead to more excitement about the physical properties of these 
novel materials. 
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