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Abstract: Stirling approximation of the factorials and multinominal coefficients are

generalized based on the κ-generalized functions introduced by Kaniadakis. We have related

the κ-generalized multinominal coefficients to the κ-entropy by introducing a new κ-product

operation, which exists only when κ 6= 0.
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1. Introduction

As is well-known in the fields of statistical mechanics, Ludwig Boltzmann clarified the concept of

entropy. He considered that a macroscopic system consists of a large number of particles. Each particle

is assumed to be in one of the energy levels, Ei (i = 1, . . . , k), and the number of particles in the energy

level, Ei, is denoted by ni. The total number of particles is then n =
∑k

i=1
ni, and the total energy of the

macrostate is E =
∑

i niEi. The number of ways of arranging n particles in k energy levels, such that

each level, Ei, has ni, (i = 1, 2, . . . , k) particles, are given by the multinominal coefficients:

[

n

n1 · · ·nk

]

≡ n!

n1! · · ·nk!
(1)
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which is proportional to the probability of the macrostates if all microscopic configurations are assumed

to be equally likely. In the thermodynamic limit, in which n increases to infinity, we consider the relative

number, pi ≡ ni/n, as the probability of the particle occupation of a certain energy level, Ei. In order

to find the most probable macrostate, Equation (1) is maximized under a certain constraint. The Stirling

approximation of the factorials leads to:

ln

[

n

n1 · · ·nk

]

≈ n SBGS

(n1

n
, . . . ,

nk

n

)

(2)

where

SBGS

(n1

n
, . . . ,

nk

n

)

≡ −
k
∑

i=1

pi ln(pi) (3)

is the Boltzmann–Gibbs–Shannon (BGS) entropy.

Recently, one of the authors (H.S.) has shown one-parameter (q) generalizations of Gauss’ law of

error [1], Stirling approximation [2] and multinominal coefficients [3] based on the Tsallis q-deformed

functions and associated multiplication operation (q-product) [4,5]. These mathematical structures are

quite fundamental for the basis of any generalization of statistical physics as in the standard statistical

physics. In particular, [3] has shown the one-to-one correspondence between the q-multinominal

coefficient and Tsallis q-entropy [6–8], i.e., the one-parameter (q) generalization of Equation (2).

A combinatorial form of Tsallis entropy was derived in [9].

On the other hand, Kaniadakis [10–12] has proposed the κ-generalized statistical mechanics based on

the κ-deformed functions, which are the different type of one-parameter deformations for the exponential

and logarithmic functions. Based on the κ-deformed functions and the associated product operation

(κ-product), we have already shown the κ-generalization of Gauss’ law of error [13].

In this work, we show the κ-generalizations of the Stirling approximation and the relation between

the κ-multinominal coefficient and κ-entropy. In the next section, the κ-factorial is introduced based on

the κ-product. Then, the κ-generalization of the Stirling approximation is obtained. We see the failure of

the naive approach relating the κ-multinominal coefficients with the κ-entropy. In order to overcome this

difficulty, we introduce a new kind of κ-product in Section 3 and show the explicit relation between the

κ-multinominal coefficients and the κ-entropy. As a complemental generalization, we explain another

type of the κ-factorial, which is based on the κ-generalization of gamma function in Section 4. The final

section is devoted to our conclusions.

2. κ-Stirling Approximation

Let us begin with the brief review of the κ-factorial and its Stirling approximation. The κ-generalized

statistics [10–12] is based on the κ-entropy:

Sκ ≡ −
∑

i

pi ln{κ}(pi) (4)
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where κ is a real parameter in the range (−1, 1), and the κ-logarithmic function is defined by:

ln{κ}(x) ≡
xκ − x−κ

2κ
(5)

Its inverse function is the κ-exponential function defined by:

exp{κ}(x) ≡
[√

1 + κ2x2 + κx
]

1

κ

(6)

In the limit of κ → 0, both the κ-logarithmic and κ-exponential functions reduce to the standard

logarithmic and exponential functions, respectively. We thus see that Sκ reduces to the BGS entropy

of Equation (3) in the limit of κ → 0.

Based on the above κ-deformed functions, the κ-product is defined by:

x⊗
κ
y ≡ exp{κ}

[

ln{κ}(x) + ln{κ}(y)
]

=





(

xκ − x−κ

2

)

+

(

yκ − y−κ

2

)

+

√

1 +

{(

xκ − x−κ

2

)

+

(

yκ − y−κ

2

)}2





1

κ

(7)

which reduces to the standard product, x · y, in the limit of κ → 0. From the definition, we readily see

that this κ-product satisfies the associative and commutative laws [10–12].

Similarly, the κ-division is defined by:

x⊘
κ
y ≡ exp{κ}

[

ln{κ}(x)− ln{κ}(y)
]

=





(

xκ − x−κ

2

)

−
(

yκ − y−κ

2

)

+

√

1 +

{(

xκ − x−κ

2

)

−
(

yκ − y−κ

2

)}2





1

κ

(8)

which reduces to the standard division, x/y, in the limit of κ → 0. By utilizing this κ-product, the

κ-factorial, n!κ, with n ∈ N is defined by:

n!κ ≡ 1⊗
κ
2⊗

κ
· · ·⊗

κ
n

=







n
∑

k=1

(

kκ − k−κ

2

)

+

√

√

√

√

{

n
∑

k=1

(

kκ − k−κ

2

)

}2

+ 1







1

κ

= exp{κ}

[

n
∑

k=1

ln{κ}(k)

]

(9)

Now, we come to the Stirling approximation of the κ-factorials. For sufficiently large n, the

summation is well approximated with the integral as follows:

ln{κ}(n!κ) =
n
∑

k=1

ln{κ}(k) ≈
∫ n

0

dx ln{κ}(x) =
n1+κ

2κ(1 + κ)
− n1−κ

2κ(1− κ)
(10)

Clearly, Equation (10) reduces to the standard Stirling approximation in the limit of κ → 0 as:

lim
κ→0

ln{κ}(n!κ) ≈ lim
κ→0

n

1− κ2

{

ln{κ}(n)−
nκ + n−κ

2

}

= n (lnn− 1) (11)
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Next, the κ-multinominal coefficient is defined by utilizing the κ-product and κ-division as follows:

[

n

n1 · · ·nk

]

κ

≡ n!κ ⊘
κ

(

n1!κ ⊗
κ
· · ·⊗

κ
nk!κ

)

(12)

where we assume:

n =
k
∑

i=1

ni (13)

In the limit of κ → 0, Equation (12) reduces to the standard multinominal coefficient of Equation (1).

Now, let us try to relate the κ-multinominal coefficients with the κ-entropy. Taking the κ-logarithm

of Equation (12) and applying the κ-Stirling approximation leads to:

ln{κ}

[

n

n1 · · ·nk

]

κ

= ln{κ} (n!κ)−
k
∑

i=1

ln{κ} (ni!κ) (14)

we then obtain:

ln{κ}

[

n

n1 · · ·nk

]

κ

≈ n1+κ

2κ(1 + κ)

{

1−
k
∑

i=1

(ni

n

)1+κ

}

+
n1−κ

2κ(1− κ)

{

k
∑

i=1

(ni

n

)1−κ

− 1

}

(15)

From this relation, we see that the above naive approach fails. Since the right hand side of Equation (15)

consists of the two terms with different factors (one is proportional to n1+κ/(1 + κ) and the other is

proportional to n1−κ/(1− κ)), this cannot be proportional to the κ-entropy, which can be written by:

Sκ

(n1

n
, . . . ,

nk

n

)

≡ −
k
∑

i=1

(ni

n

)

ln{κ}

(ni

n

)

=
1

2κ

{

1−
k
∑

i=1

(ni

n

)1+κ

}

+
1

2κ

{

k
∑

i=1

(ni

n

)1−κ

− 1

}

(16)

3. Introducing a New κ-Product

In order to overcome the above difficulty, we introduce another kind of κ-product based on the

following function defined by:

u{κ}(x) ≡
xκ + x−κ

2
= cosh

(

κ ln(x)
)

(17)

We here call it the κ-generalized unit function, since in the limit of κ → 0, it reduces to the constant

function u{κ}(x) = 1. The basic properties of u{κ}(x) are as follows.

u{κ}(x) = u{κ}

(

1

x

)

(18)

u{κ}(x) ≥ 1, because u{κ}(x)− 1 =
(x

κ

2 − x−κ

2 )2

2
≥ 0 (19)

When κ 6= 0, the inverse function of u{κ}(x) can be defined by:
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u−1

{κ}(x) ≡
[√

x2 − 1 + x
]

1

κ

, (x ≥ 1) (20)

In [14], the canonical partition function associated with the κ-entropy is obtained in terms of this u{κ}

function. Note that:

ln{κ}(x) =
xκ − x−κ

2κ
=

1

κ
sinh

(

κ ln(x)
)

(21)

the two kinds of the κ-deformed functions (ln{κ}(x) and exp{κ}(x); u{κ}(x) and u−1

{κ}(x)) are thus

associated with each other. This can be seen from the following relations:

√

1 + κ2 ln2

{κ}(x) = u{κ}(x) (22)

u−1

{κ}

(√
1 + κ2x2

)

= exp{κ}(x), for x ≥ 0 (23)

Now, by utilizing these functions, a new κ-product is defined by:

x⊙
κ
y ≡ u−1

{κ}

[

u{κ}(x) + u{κ}(y)
]

=





(

xκ + x−κ

2

)

+

(

yκ + y−κ

2

)

+

√

(

xκ + x−κ

2
+

yκ + y−κ

2

)2

− 1





1

κ

(24)

Similarly, the corresponding κ-division is defined by:

x⊖÷
κ
y ≡ u−1

{κ}

[

u{κ}(x)− u{κ}(y)
]

=





(

xκ + x−κ

2

)

−
(

yκ + y−κ

2

)

+

√

(

xκ + x−κ

2
− yκ + y−κ

2

)2

− 1





1

κ

(25)

for any pair of the real numbers, x and y, such that
(

xκ+x−κ

2

)

−
(

yκ+y−κ

2

)

≥ 1, and κ 6= 0.

It is worth noting that the new κ-product operator, ⊙κ (the κ-division operator, ⊖÷ κ), has no

corresponding product (division) operator in the standard case of κ = 0. In other words, neither the

product operator, ⊙κ, nor the division operator, ⊖÷ κ, is a deformed (or generalized) one, and it has

meaning only when κ 6= 0. In addition, unless κ = 0, this new product satisfies:

x⊙
κ
y = y⊙

κ
x, commutativity (26)

(x⊙
κ
y)⊙

κ
z = x⊙

κ
(y⊙

κ
z), associativity (27)

There exists no real unit element on ⊙κ. Therefore, real numbers and this product constitute a

semi-group. Note also that x⊖÷ κ x 6= 1, because u−1

{κ}(0) does not exist by the definition of Equation (20).

However, we see that the following identity holds.

x⊙
κ
y⊖÷

κ
x = y, (x, y > 1, and κ 6= 0) (28)
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Using the new κ-product, the associated κ-factorial can be introduced as:

n!κ ≡ 1⊙
κ
2⊙

κ
· · ·⊙

κ
n

=







n
∑

k=1

(

kκ + k−κ

2

)

+

√

√

√

√

{

n
∑

k=1

(

kκ + k−κ

2

)

}2

− 1







1

κ

(29)

Similar to Equation (10), the κ-Stirling approximation can be obtained as:

u{κ}(n!
κ) =

n
∑

k=1

u{κ}(k) ≈
∫ n

0

dx u{κ}(x)

=
n1+κ

2(1 + κ)
+

n1−κ

2(1− κ)
(30)

Furthermore, the corresponding κ-multinominal coefficient can be defined by:

[

n

n1 · · ·nk

]κ

≡ n!κ ⊖÷
κ

(

n1!
κ⊙

κ
· · ·⊙

κ
nk!

κ

)

(31)

Applying the above Stirling approximation to Equation (31), we obtain:

u{κ}

[

n

n1 · · ·nk

]κ

≈ n1+κ

2(1 + κ)

{

1−
k
∑

i=1

(ni

n

)1+κ

}

− n1−κ

2(1− κ)

{

k
∑

i=1

(ni

n

)1−κ

− 1

}

(32)

This is the complemental relation to Equation (15), and by combining Equations (15) and (32), we have:

ln{κ}

[

n

n1 · · ·nk

]

κ

± 1

κ
u{κ}

[

n

n1 · · ·nk

]κ

≈ ± n1±κ

κ(1± κ)

{

1−
k
∑

i=1

(ni

n

)1±κ

}

(33)

We thus obtain the final result:

(

1− κ

2n1−κ

)

(

ln{κ}

[

n

n1 · · ·nk

]

κ

− 1

κ
u{κ}

[

n

n1 · · ·nk

]κ)

+

(

1 + κ

2n1+κ

)

(

ln{κ}

[

n

n1 · · ·nk

]

κ

+
1

κ
u{κ}

[

n

n1 · · ·nk

]κ)

=
1

2κ

{

1−
k
∑

i=1

(ni

n

)1+κ

}

+
1

2κ

{

k
∑

i=1

(ni

n

)1−κ

− 1

}

= Sκ

(n1

n
, . . . ,

nk

n

)

(34)

Note that since:

lim
κ→0

1

κ
u{κ}

[

n

n1 · · ·nk

]κ

= 0 (35)

as shown in the following, Equation (34) reduces to the standard case of Equation (2) in the limit of

κ → 0.
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To prove Equation (35), we consider:

1

κ
u{κ}

[

n

n1 · · ·nk

]κ

=
1

κ

(

n
∑

ℓ=1

u{κ}(ℓ)−
k
∑

i=1

ni
∑

j=1

u{κ}(j)

)

(36)

In the limit of κ → 0, the numerator of Equation (36) reduces to n −
∑k

i=1
ni, since limκ→0 u{κ} = 1.

Consequently, both the denominator, κ, and the numerator become zero as κ → 0. Then, applying

l’Hopital’s rule and using the relation:

d

dκ
u{κ}(x) = ln x

(

xκ − x−κ

2

)

(37)

we obtain Equation (35).

We would like to comment that our approach is not a generalization of the traditional combinatorial

approach, since the new κ-product and κ-division are not deformed operators, which are ingredients of

the associated κ-factorial Equation (29) and κ-multinominal Equation (31). There are no corresponding

factorials and multinominals in the standard case of κ = 0. We think this fact is not a drawback, but will

provide us with a different view. One of the possible reasons why these new operators play an important

role only when κ 6= 0 is that there exits a new degree of freedom only when κ 6= 0.

4. Another κ-Generalization of the Factorial

In general, some different types of generalization can be introduced. As another κ-generalization

of a factorial, we here explain a different type of the κ-generalized factorial, nκ!, concerning the κ-

generalized gamma function, Γκ(x). In other words, neither n!κ Equation (9) nor n!κ Equation (29)

match this nκ!.

As is well known, the standard factorial, n!, is related with the gamma function:

Γ(x) =

∫ ∞

0

tx−1 exp(−t) dt (38)

as n! = Γ(n+1), which is readily shown by using the property Γ(x+1) = xΓ(x) of the gamma function

and setting x = n ∈ N. In addition, the Taylor expansion of the standard exponential function can be

written in the form:

exp(x) =
∞
∑

n=0

xn

Γ(n + 1)
(39)

Based on these facts, Kaniadakis [15] introduced the following κ-generalized factorial as:

nκ! = Γκ(n + 1) (40)

where the κ-generalized gamma function is defined by:

Γκ(x) ≡
(

1− κ2(x− 1)2
)

∫ ∞

0

tx−1
exp{κ}(−t)
√
1 + κ2t2

dt (41)
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and the κ-exponential function can be expanded in the form:

exp{κ}(x) =
∞
∑

n

xn

Γκ(n + 1)
(42)

Of course, in the limit of κ = 0, the κ-generalized gamma function, Γκ(x), reduces to the standard

gamma function, Γ(x); consequently, the κ-generalized factorial, nκ!, reduces to the standard factorial,

n!. Since:

d

dt
exp{κ}(t) =

exp{κ}(t)√
1 + κ2t2

(43)

by using integration by parts, the Γκ(x) can be also expressed as:

Γκ(x) =
(

1− κ2(x− 1)2
)

(x− 1)

∫ ∞

0

tx−2 exp{κ}(−t) dt (44)

and by using the standard Γ(x), as:

Γκ(x) =
1− |κ|(x− 1)

|2κ|x−1

Γ
(

1

|2κ|
− x−1

2

)

Γ
(

1

|2κ|
+ x−1

2

) Γ(x) (45)

By integrating by parts, we obtain the property:

Γκ(x+ 1) =
x(x− 1)

1− κ2(x− 2)2
Γκ(x− 1) (46)

which is equivalent with:

nκ! =
n(n− 1)

1− κ2(n− 2)2
(n− 2)κ! (47)

The κ-generalized factorial also can be expressed as:

nκ! =
n!

∏n−1

j=1

(

1− (2j − n)κ
) (48)

Recently, Dı́az and Pariguan [16] introduced the k-generalized gamma function and the Pochhammer

k-symbol (x)n,k, which is defined by:

(x)n,k ≡ x(x+ k)(x+ 2k) · · · (x+ (n− 1)k) (49)

for x ∈ C, k ∈ R and n ∈ N. By setting k = 1, one obtains the standard Pochhammer symbol, (x)n,

which is also known as the raising factorial:

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1) (50)

For Re(x) > 0, the k-generalized gamma function is given by:

Γk(x) =

∫ ∞

0

tx−1 exp

(

−tk

k

)

dt (51)
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and satisfies the following properties:

Γk(x+ k) = xΓk(x) (52)

(x)n,k =
Γk(x+ nk)

Γk(x)
(53)

Γk(k) = 1 (54)

and the Γk(x) is logarithmically convex for x ∈ R.

Following Dı́az and Pariguan, we can introduce the Pochhammer κ-symbol as:

(x)n,κ =
Γκ(x+ n)

Γκ(x)
(55)

After straightforward calculations, we see that:

(x)2m,κ =
(x)2m

∏m−1

j=0

(

1− κ2(x+ 2j − 1)2
) (56)

(x)2m−1,κ =
(x)2m−1

∏m−1

j=0

(

1− κ2(x+ 2j − 2)2
) (57)

for m ∈ N.

5. Conclusions

We have generalized Stirling approximation of the factorials and multinominal coefficients based

on the κ-deformed functions, which are different one-parameter generalizations from the q-deformed

functions by Tsallis. In order to relate the κ-generalized multinominal coefficients to the κ-entropy, we

showed the failure of a naive approach, which is similar to that in [3] for the q-generalization. In order

to overcome this difficulty, we have introduced a new kind of κ-product operation, which never existed

in the standard case of κ = 0 and have obtained the relation between the κ-generalized multinominal

coefficients and the κ-entropy. We hope that our approach will shed some light on a future study.

The final result Equation (34) clearly states that the maximizing κ-entropy is equivalent to maximizing

the left hand side of Equation (34) the same as in the standard case of Equation (2).
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