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Abstract: Kernel density estimation is a technique for approximating probability
distributions. Here, it is applied to the calculation of mutual information on a metric
space. This is motivated by the problem in neuroscience of calculating the mutual
information between stimuli and spiking responses; the space of these responses is a
metric space. It is shown that kernel density estimation on a metric space resembles the
k-nearest-neighbor approach. This approach is applied to a toy dataset designed to mimic
electrophysiological data.
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1. Introduction

This paper is concerned with the calculation of mutual information for spike trains using the data
that are available in a typical in vivo electrophysiology experiment in the sensory system. It uses a
kernel-based estimation of probability distributions.

In particular, this paper is concerned with computing the mutual information, I(R;S), between
two random variables, R and S. The motivating neuroscience example is a typical sensory pathway
electrophysiology experiment in which the corpus of sensory stimuli are presented over multiple trials,
so there is a set of recorded responses for each of a number of stimuli. The stimuli are drawn from
a discrete space, the corpus, but the responses are spike trains. The space of spike trains is peculiar;
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locally, it is like a smooth manifold, with the spike times behaving like coordinates; but, globally, it is
foliated into subspaces, each with a different number of spikes. The space of spike trains does, however,
have a metric. As such, S takes values in a discrete set, S , and models the stimulus, and R takes values
in a metric space,R, and models the response.
R is not a discrete space, and so, to calculate the mutual information between S and R, it is necessary

to either discretize R or to use differential mutual information. In the application of information theory
to electrophysiological data, it is common to take the former route and discretize the data. Here, the
latter alternative is chosen, and the differential mutual information is estimated.

The mutual information between two random variables, R and S, is a measure of the average amount
of information that is gained about S from knowing the value of R. With S, a discrete random variable
taking values in S and R, a continuous random variable, the mutual information is:

I(R;S) =
∑
s∈S

∫
R
p(r, s) log2

p(r, s)

p(r)p(s)
dr (1)

where dr is the measure onR: computing the differential mutual information between R and S requires
integration over R. Integration requires a measure, and when there are coordinates on a space, it is
common to use the integration measure derived from these coordinates.

The space of spike trains has no system of coordinates, and so, there is no coordinate-based measure.
This does not mean that the space has no measure. As a sample space, it has an intrinsic measure
corresponding to the probability distribution; thus, there is a measure, just not one derived from
coordinates. The probability of an event occurring in a region of sample space gives a volume for
that region. In other words, the volume of a region, D, can be identified with P (x ∈ D). This is the
measure that will be used throughout this paper; it does not rely on coordinates, and so, can be applied
to the case of interest here.

Of course, in practice, the probability density is not usually known on the space of spike trains, but
P (x ∈ D) can be estimated from the set of experimental data. A Monte-Carlo-like approach is used: the
volume of a region is estimated by counting the fraction of data points that lie within it:

vol(D) = P (x ∈ D) ≈ number of data points in D
total number of points

(2)

This is exploited in this paper to estimate the volume of square kernels, making it possible to estimate
conditional probabilities using kernel density estimation.

The classical approach to the problem of estimating I(R;S) is to map the spike trains to binary
words using temporal binning [1,2], giving a histogram approximation for p(r, s). This approach is
very successful, particularly when supplemented with a strategically chosen prior distribution for the
underlying probability distribution of words [3,4]. This is sometimes called the plug-in method, and that
term is adopted here. One advantage of the plug-in method is that the mutual information it calculates
is correct in the limit: in the limit of an infinite amount of data and an infinitesimal bin size, it gives the
differential mutual information.

Nonetheless, it is interesting to consider other approaches, and in this spirit, an alternate approach is
presented here. This new method exploits the inherent metric structure of the space of spike trains,
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it is very natural and gives an easily implemented algorithm, which is accurate on comparatively
small datasets.

2. Methods

This section describes the proposed method for calculating mutual information. Roughly, the
conditional probability is approximated using kernel density estimation and, by using the unconditioned
probability distribution as a measure, integration is approximated by the Monte-Carlo method of
summing over data points.

Since this is a kernel-based approach, a review of kernel density estimation is given in Section 2.1.
This also serves to establish notation. The two key steps used to derive the kernel-based estimate are
a change of measure and a Monte-Carlo estimate. The change of measure, described in Section 2.2,
permits the estimation of probabilities by a simple Monte-Carlo method. The new measure also
simplifies the calculation of I(R;S), resulting in a formula involving a single conditional distribution.
This conditional distribution is estimated using a Monte-Carlo estimate in Section 2.3.

2.1. Kernel Density Estimation

The non-parametric kernel density estimation (KDE) method [5–7] is an approach to estimating
probability densities. In KDE, a probability density is estimated by filtering the data with a kernel.
This kernel is normalized with an integral of one and is usually symmetric and localized. For an
n-dimensional distribution with outcome vectors {x1,x2, . . . ,xm} and a kernel, k(x), the estimated
distribution is usually written:

p̃(x) =
1

m

∑
i

k(x− xi) (3)

where, because the argument is x− xi, there is a copy of the kernel centered at each data point. In fact,
this relies on the vector-space structure of n-dimensional space; in the application considered here, a
more general notation is required, with k(x;y) denoting the value at x of the kernel when it is centered
on y. In this situation, the estimate becomes:

p̃(x) =
1

m

∑
i

k(x;xi) (4)

The square kernel is a common choice. For a vector space, this is:

k(x;y) =

{
1
V
‖x− y‖ < 1

0 otherwise
(5)

where V is chosen, so that the kernel integrates to one. The kernel is usually scaled to give it a bandwidth:

k(x;y, h) =

{
1
hV
‖x− y‖ < h

0 otherwise
(6)

This bandwidth, h, specifies the amount of smoothing. The square kernel is the most straight-forward
choice of kernel mathematically, and so, in the construction presented here, a square kernel is used.
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In the case that will be of interest here, where x and y are not elements of a vector space, the condition
‖x−y‖ < hmust be replaced by d(x,y) < h, where d(x,y) is a metric measuring the distance between
x and y. Calculating the normalization factor, V , is more difficult, since this requires integration. This
problem is discussed in the next subsection.

2.2. Change of Measure

Calculating the differential mutual information using KDE requires integration, both the integration
required by the definition of the mutual information and the integration needed to normalize the kernel.
As outlined above, these integrals are estimated using a Monte-Carlo approach; this relies on a change
of measure, which is described in this section.

For definiteness, the notation used here is based on the intended application to spike trains. The
number of stimuli is ns, and each stimulus is presented for nt trials. The total number of responses, nr,
is then nr = nsnt. Points in the set of stimuli are called s and in the response space, r; the actual
data points are indexed, ri, and (ri, si) is a response-stimulus pair. As above, the random variables for
stimulus and response are S and R, whereas the set of stimuli and the space of responses are denoted
by a calligraphic S and R, respectively. It is intended that when the method is applied, the responses,
r ∈ R, will be spike trains.

The goal is to calculate the mutual information between the stimulus and the response. Using the
Bayes theorem, this is:

I(R;S) =
∑
s∈S

∫
R
p(r, s) log2

p(r|s)
p(r)

dr (7)

Unlike the differential entropy, the differential mutual information is invariant under the choice of
measure. Typically, differential information theory is applied to examples where there are coordinates,
(x1, x2, . . . , xn), on the response space and the measure is given by dr = dx1dx2 . . . dxn. However,
here, it is intended to use the measure provided by the probability distribution, p(r). Thus, for a region,
D ⊂ R, the change of measure is:

vol(D) =

∫
D
p(r)dr =

∫
D
dβ (8)

so:
dβ = p(r)dr (9)

The new probability density relative to the new measure, pβ(r), is now one:

pβ(r) =
p(r)

dβ/dr
= 1 (10)

Furthermore, since p(r|s) and p(r) are both densities, p(r|s)/p(r) is invariant under a change of
measure and:

I(R;S) =
∑
s

∫
R
pβ(r, s) log2

pβ(r|s)
pβ(r)

dβ =
∑
s

∫
R
pβ(r, s) log2 pβ(r|s)dβ (11)

where, again, pβ(r, s) and pβ(r|s) are the values of the densities, p(r, s) and p(r|s), after the change
of measure.
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The expected value of any function, f(R, S), of random variables, R and S, is:

〈f〉 =
∑
s∈S

∫
R
pβ(r, s)f(r, s)dβ (12)

and this can be estimated on a set of outcomes, {(ri, si)}, as:

〈f〉 ≈ 1

nr

∑
i

f(ri, si) (13)

For the mutual information, this gives:

I(R;S) ≈ 1

nr

∑
i

log2 pβ(ri|si) (14)

Now, an estimate for pβ(ri|si) is needed; this is approximated using KDE.

2.3. A Monte-Carlo Estimate

One advantage to using dβ as the measure is that pβ(r) = 1, and this simplifies the expression
for I(R;S). However, the most significant advantage is that under this new measure, volumes can be
estimated by simply counting data points. This is used to normalize the kernel. It is useful to define
the support of a function: if f(r) is a function, then the support of f(r), supp[f(r)], is the region of its
domain where it has a non-zero value:

supp[f(r)] = {r : f(r) 6= 0} (15)

Typically, the size of a square kernel is specified by the radius of the support. Here, however, it is
specified by volume. In a vector space where the volume measure is derived from the coordinates, there
is a simple formula relating radius and volume. That is not the case here, and specifying the size of
a kernel by volume is not equivalent to specifying it by radius. Choosing the volume over the radius
simplifies subsequent calculations and, also, has the advantage that the size of the kernel is related to the
number of data points. This also means that the radius of the kernel varies acrossR.

The term, bandwidth, will be used to describe the size of the kernel, even though here, the bandwidth
is a volume, rather than a radius. Since dβ is a probability measure, all volumes are between zero and
one. Let h be a bandwidth in this range. If k(r′; r, h) is the value at r′ of a square kernel with bandwidth
h centered on r, the support will be denoted as S(r;h):

S(r;h) = supp[k(r′; r, h)] (16)

and the volume of the support of the kernel is vol[S(r;h)]. The value of the integral is set at one:∫
S(r;h)

k(r′; r, h)dβ = 1 (17)

and so, since the square kernel is being used, k(r′; r, h) has a constant value of 1/vol[S(r;h)] throughout
S(r;h).
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Thus, volumes are calculated using the measure, dβ, based on the probability density. However, this
density is unknown, and so, volumes need to be estimated. As described above, using dβ, the volume
of a region is estimated by the fraction of data points that lie within it. In other words, the change of
measure leads to a Monte-Carlo approach to calculating the volume of any region. In the Monte-Carlo
calculation, the volume of the support of a kernel is estimated as the fraction of data points that lie
within it. A choice of convention has to be made between defining the kernel as containing bhnrc or
dhnre points, that is, on whether to round hnr down or up. The former choice is used, so, the kernel
around a point, r, is estimated as the region containing the nearest nh = bhnrc points to r, including r
itself. Thus, the kernel around a point, ri, is defined as:

k(r; ri, nh) =

{
1
nh
, r is one of the nh closest points to ri

0, otherwise
(18)

and the support, S(ri;nh), has rj ∈ S(ri;nh) if k(rj; ri, nh) = 1/nh, or, put another way, rj is one of
the nh nearest data points. In practice, rather than rounding hnr up or down, the kernel volume in a
particular example can be specified using nh rather than h.

Typically, kernels are balls: regions defined by a constant radius. As such, the kernel described here
makes an implicit assumption about the isotropic distribution of the data points. However, in the normal
application of KDE, special provision must be made near boundaries, where the distribution of data
points is not isotropic [8]. Here, these cases are dealt with automatically.

Since pβ(ri|si) = nspβ(ri, si), here, the conditional distribution, pβ(ri|si), is estimated by first
estimating pβ(ri, si). As described above, a kernel has a fixed volume relative to the measure based
on pβ(r). Here, the kernel is being used to estimate pβ(ri, si):

p̃β(ri, si) =
c(ri, si;nh)

nh
(19)

where c(ri, si;nh) is the number of data points evoked to stimulus si for which ri is one of the nh
closest points:

c(ri, si;nh) = |{(rj, si) : rj ∈ S(ri;nh)}| (20)

This gives the estimated mutual information:

I(R;S) ≈ I(R, S;nh) =
1

nr

∑
i

log2

nsc(ri, si;nh)

nh
(21)

Remarkably, although this is a KDE estimator, it resembles a k-, or, here, nh-, nearest-neighbors
estimator. Basing KDE on the data available for spike trains appears to lead naturally to nearest
neighbor estimation.

The formula for I(R, S;nh) behaves well in the extreme cases. If the responses to each stimulus
are close to each other, but distant from responses to all other stimuli, then c(ri, si;nh) = nh for all
stimulus-response pairs (ri, si). That is, for each data point, all nearby data points are from the same
stimulus. This means that the estimate will be:

I(R, S;nh) = log2 ns (22)
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This is the correct value, because, in this case, the response completely determines the stimulus, and so,
the mutual information is exactly the entropy of the stimulus. On the other hand, if the responses to each
stimulus have the same distribution, then c(ri, si;nh)/nh ≈ 1/ns, so the estimated mutual information
will be close to zero. This is again the correct value, because in this case, the response is independent of
the stimulus.

3. Results

As a test, this method has been applied to a toy dataset modelled on the behavior of real spike trains.
It is important that the method is applied to toy data that resemble the data type, electrophysiological
data, on which the method is intended to perform well. As such, the toy model is selected to mimic
the behavior of sets of spike trains. The formula derived above acts on the matrix of inter-data-point
distances, rather than the points themselves, and so, the dataset is designed to match the distance
distribution observed in real spike trains [9]. The test dataset is also designed to present a stiff challenge
to any algorithm for estimating information.

The toy data are produced by varying the components of one of a set of source vectors. More
precisely, to produce a test dataset, a variance, σ2, is chosen uniformly from [0, 1], and ns sources are
chosen uniformly in a nd-dimensional box centered at the origin with unit sides parallel to the Cartesian
axes. Thus, the sources are all nd-dimensional vectors. The data points are also nd-dimensional vectors;
they are generated by drawing each component from a normal distribution about the corresponding
component of the source. Thus, data points with a source s = (s1, s2, . . . , snd

) are chosen as
r = (r1, r2, . . . , rnd

), where the ri are all drawn from normal distributions with variance σ2 centered
at the corresponding si:

ri ∼ N (si, σ
2) (23)

nt data points are chosen for each source, giving nr = nsnt data points in all.
Each test uses 200 different datasets; random pruning is used to ensure that the values of mutual

information are evenly distributed over the whole range from zero to log2 ns; otherwise, there tends to be
an excess of datasets with a low value. The true mutual information is calculated using a Monte-Carlo
estimate sampled over 10,000 points. The actual probability distributions are known: the probability of
finding a point r generated by a source, s, depends only on the distance d = |r − s| and is given by the
χ-distribution:

p(d) =
21−nd/2

Γ(nd/2)

(
d

σ

)nd−1

e−d
2/2σ2

(24)

There is a bias in estimating the mutual information, in fact, bias is common to any approach to
estimating mutual information [10]. The problem of reducing bias, or defining the mutual information,
so that the amount of bias is low, is well studied and has produced a number of sophisticated
approaches [4,10–14]. One of these, quadratic estimation, thanks to [11,13], is adapted to the current
situation. Basically, it is assumed that for large numbers of data points, nt, the estimated information,
Ĩ(R;S), is related to the true mutual information I(R;S) by:

Ĩ(R;S) = I(R;S) +
A

nt
+
B

n2
t

+O(1/n3
t ) (25)
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This asymptotic expansion is well-motivated in the case of the plug-in approach to spike train
information [10,11,15–17], and since the sources of bias are presumably similar, it is assumed the same
expansion applies. In fact, this assumption is supported by plots of I(R, S;nh) against nt. To extract
I(R;S), the estimate, I(R, S;nh), is calculated for λnr with λ taking values from 0.1 to one in 0.1
increments. Least squares fit is used to estimate I(R;S) from these ten values.

The new method works well on these toy data. It is compared to a histogram approach, where the
nd-dimensional space is discretized into bins and counting is used to estimate the probability of each
bin. This is an analog of the plug-in method, and the same quadratic estimation technique is used to
reduce bias.

Figure 1. Comparing kernel density estimation (KDE) to the histogram method for ten
sources, ns = 10, and three dimensions, nd = 3. In each case, the true information is plotted
against the estimated information; the line, y = x, which represents perfect estimation, is
plotted for clarity. For convenience, the mutual information has been normalized, so in each
case, the value plotted is the estimate of I(R;S)/ log2 ns, with a maximum value of one;
in the cases plotted here, that means the information is measured in ban. (A) and (B) show
the distribution for the histogram method for nt = 10 and nt = 200; (C) and (D) show the
kernel method.
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In Figure 1, the new method is compared to the histogram method when ns = 10 and nd = 3, and
for both low and high numbers of trials, nt = 10 and nt = 200. For the histogram method, the optimum
discretization width is used. This optimal width is large, h = 5 in each case; this roughly corresponds
to a different bin for each octant of the three-dimensional space containing the data. In the new method,
the bandwidth is not optimized on a case by case basis; instead, the kernel bandwidth, nh, is chosen as
being equal to the number of trials, nt. It can be seen that the new method is better at estimating the
information: for nt = 10, it has an average absolute error of 0.189 bits, compared to 0.481 bits for the
histogram method; for nt = 200, the average absolute error is 0.083 bits, compared to 0.442 bits for the
histogram approach.

Figure 2. Comparing the KDE to the histogram method for high and low numbers of sources
and dimensions. The true information is plotted against the estimated information; in (A)
and (C), ns = 10 and nd = 10; in (B) and (D), ns = 3 and nd = 3. The top row, (A)
and (B), is for the histogram method, the bottom row, (C) and (D), is for the kernel method.
As before, the normalized information, I(S;R)/ log2 ns, is plotted. So, for ns = 10, the
information is in ban, for ns = 3, in trit, and in each case, the maximum mutual information
is one. nr = 200 for all graphs.
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In Figure 2, the histogram and kernel methods are compared for ns = 10 and nd = 10 and for ns = 3

and nd = 3; the number of trials is nt = 200 in each case. The kernel method outperforms the histogram
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method. When ns = 10 and nd = 10, the average absolute error for the kernel method is 0.139 bits,
compared to 0.876 bits for the histogram method; for ns = 3 and nd = 3, its average absolute error
is 0.076 bits compared to 0.141 bits for the histogram. Furthermore, the errors for the kernel method
are less clearly modulated by the actual information, which makes the method less prone to producing
misleading results.

4. Discussion

Although the actual method presented here is very different, it was inspired in part by the transmitted
information method for calculating mutual information using metric-based clustering described in [18]
and by the novel approach introduced in [19], where a kernel-like approach to mutual information
is developed. Another significant motivation was the interesting technique given in [20], where the
information is estimated by measuring how large a sphere could be placed around each data point without
it touching another data point. In [20], the actual volume of the sphere is required, or, rather, the rate the
volume changes with diameter. This is calculated by foliating the space of spike trains into subspaces
with a fixed spike number and interpreting the spike times as coordinates. This is avoided here by
using the Monte-Carlo estimate of volumes. Finally, the copula construction is related to the approach
described here. In fact, the construction here can be thought of as a reverse copula construction [21].

An important part of the derivation of the kernel method is the change of measure to one based on
the distribution. Since the kernel size is defined using a volume based on this measure, the radius of
the kernel adapts to the density of data points. This is similar to the adaptive partitioning described, for
example, in [22]. Like the plug-in method of computing mutual information for spike trains, adaptive
partitioning is a discretization approach. However, rather than breaking the space into regions of fixed
width, the discrete regions are chosen dynamically, using estimates of the cumulative distribution, similar
to what is proposed here.

One striking aspect of KDE seen here is that it reduces to a kth nearest-neighbor (kNN) estimator.
The kNN approach to estimating the mutual information of variables lying in metric spaces has been
studied directly in [23]. Rather than using a KDE of the probability distribution, a Kozachenko-Leonenko
estimator [24] is used. To estimate I(X;Y ), whereX and Y are both continuous random variables taking
values in X and Y , Kozachenko-Leonenko estimates are calculated for H(X), H(Y ) and H(X, Y ); by
using different values of k in each space, the terms that would otherwise depend on the dimension of X
and Y cancel.

This approach can be modified to estimate I(R;S), where S is a discrete random variable. Using the
approach described in [23] to estimate H(R) and H(R|S) gives:

Ie(R;S) ≈ z(nk) + z(ntns)−z(nt)−
1

nr

∑
i

z[C(ri, si;nk)] (26)

where z(x) is the digamma function, nk is an integer parameter andC(ri, si;nk) is similar to c(ri, si;nh)
above. Whereas ck(ri, si;nh) counts the number of responses to si for which ri is one of the nh

closest data points, C(ri, si;nk) is computed by first finding the distance, d, from ri to the nkth nearest
spike-train response to stimulus si; then, C(ri, si;nk) counts the number of spike trains, from any
stimulus, that is at most a distance of d from ri. Ie(R;S) is the mutual information with base e, so
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I(R;S) = Ie(R;S)/ ln 2. During the derivation of this formula, expressions involving the dimension of
S appear, but ultimately, they all cancel, leaving an estimate which can be applied in the case of interest
here, where S has no dimension. Since the digamma function can be approximated as:

z(x) ≈ lnx− 1

2x
(27)

for large x, this kNN approach and the kernel method produce very similar estimates. The similarity
between the two formulas, despite the different routes taken to them, lends credibility to both estimators.

Other versions of the kernel method can be envisaged. A kernel with a different shape could be used
or the kernel could be defined by the radius rather than by the volume of the support. The volume
of the support and, therefore, the normalization would then vary from data point to data point. This
volume could be estimated by counting, as it was here. However, as mentioned above, the volume-based
bandwidth has the advantage that it gives a kernel that is adaptive: the radius varies as the density of
data points changes. Another intriguing possibility is to investigate if it would be possible to follow [20]
and [23] more closely than has been done here and use a Monte-Carlo volume estimate to derive a
Kozachenko and Leonenko estimator. Finally, KDE applied to two continuous random variables could
be used to derive an estimate for the mutual information between two sets of spike trains or between a
set of spike trains and a non-discrete stimulus, such as position in a maze.

There is no general, principled approach to choosing bandwidths for KDE methods. There are
heuristic methods, such as cross-validation [25,26], but these include implicit assumptions about how
the distribution of the data is itself drawn from a family of distributions, assumptions that may not apply
to a particular experimental situation. The KDE approach developed here includes a term analogous to
bandwidth, and although a simple choice of this bandwidth is suggested and gives accurate estimates,
the problem of optimal bandwidth selection will require further study.

Applying the KDE approach to spike trains means it is necessary to specify a spike train
metric [18,27,28]. Although the metric is only used to arrange points in the order of proximity, the
dependence on a metric does mean that the estimated mutual information will only include mutual
information encoded in features of the spike train that affect the metric. As described in [20], in the
context of another metric-dependent estimator of mutual information, this means the mutual information
may underestimate the true mutual information, but it does allow the coding structure of spike trains to
be probed by manipulating the spike train metrics.

It is becoming increasingly possible to measure large number spike trains from large numbers of
spike trains simultaneously. There are metrics for measuring distances between sets of multi-neuron
responses [29–31], and so, the approach described here can also be applied to multi-neuronal data.
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