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Abstract: Information flow, or information transfer as it may be referred to, is a
fundamental notion in general physics which has wide applications in scientific disciplines.
Recently, a rigorous formalism has been established with respect to both deterministic and
stochastic systems, with flow measures explicitly obtained. These measures possess some
important properties, among which is flow or transfer asymmetry. The formalism has been
validated and put to application with a variety of benchmark systems, such as the baker
transformation, Hénon map, truncated Burgers-Hopf system, Langevin equation, etc. In the
chaotic Burgers-Hopf system, all the transfers, save for one, are essentially zero,
indicating that the processes underlying a dynamical phenomenon, albeit complex, could
be simple. (Truth is simple.) In the Langevin equation case, it is found that there could be no
information flowing from one certain time series to another series, though the two are highly
correlated. Information flow/transfer provides a potential measure of the
cause–effect relation between dynamical events, a relation usually hidden behind the
correlation in a traditional sense.
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1. Introduction

Information flow, or information transfer as it sometimes appears in the literature, refers to the
transference of information between two entities in a dynamical system through some processes, with
one entity being the source, and another the receiver. Its importance lies beyond its literal meaning in
that it actually carries an implication of causation, uncertainty propagation, predictability transfer, etc.,
and, therefore, has applications in a wide variety of disciplines. In the following, we first give a brief
demonstration of how it may be applied in different disciplines; the reader may skip this part and go
directly to the last two paragraphs of this section.

According to how the source and receiver are chosen, information flow may appear in two types
of form. The first is what one would envision in the usual sense, i.e., the transference between two
parallel parties (for example, two chaotic circuits [1]), which are linked through some mechanism within
a system. This is found in neuroscience (e.g., [2–4]), network dynamics (e.g., [5–7]), atmosphere–ocean
science (e.g., [8–11]), financial economics (e.g., [12,13]), to name but a few. For instance, neuroscientists
focus their studies on the brain and its impact on behavior and cognitive functions, which are associated
with flows of information within the nervous system (e.g., [3]). This includes how information flows
from one neuron to another neuron across the synapse, how dendrites bring information to the cell body,
how axons take information away from the cell body, and so forth. Similar issues arise in computer
and social networks, where the node–node interconnection, causal dependencies, and directedness of
information flow, among others, are of concern [6,14,15]. In atmosphere–ocean science, the application
is vast, albeit newly begun. An example is provided by the extensively studied El Niño phenomenon
in the Pacific Ocean, which is well known through its linkage to global natural disasters, such as the
floods in Ecuador and the droughts in Southeast Asia, southern Africa and northern Australia, to the
death of birds and dolphins in Peru, to the increased number of storms over the Pacific, and to the famine
and epidemic diseases in far-flung parts of the world [16–18]. A major focus in El Niño research is
the predictability of the onset of the irregularly occurring event, in order to issue in-advance warning of
potential hazardous impacts [19–21]. It has now become known that the variabilities in the Indian Ocean
could affect the El Niño predictability (e.g., [22]). That is to say, at least a part of the uncertainty source
for El Niño predictions is from the Indian Ocean. Therefore, to some extent, the El Niño predictability
may also be posed as an information flow problem, i.e., a problem on how information flows from the
Indian Ocean to the Pacific Ocean to make the El Niño more predictable or more uncertain.

Financial economics provides another field of application of information flow of the first type; this
field has received enormous public attention since the recent global financial crisis triggered by the
subprime mortgage meltdown. A conspicuous example is the cause–effect relation between the
equity and options markets, which reflects the preference of traders in deciding where to place their
trades. Usually, information is believed to flow unidirectionally from equity to options markets because
informed traders prefer to trade in the options markets (e.g., [23]), but recent studies show that the flow
may also exist in the opposite way: informed traders actually trade both stocks and “out-of-the-money”
options, and hence the causal relation from stocks to options may reverse [12]. More (and perhaps the
most important) applications are seen through predictability studies. For instance, the predictability of
asset return characteristics is a continuing problem in financial economics, which is largely due to the
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information flow in markets. Understanding the information flow helps to assess the relative impact from
the markets and the diffusive innovation on financial management. Particularly, it helps the prediction
of jump timing, a fundamental question in financial decision making, through determining information
covariates that affect jump occurrence up to the intraday levels, hence providing empirical evidence in
the equity markets, and pointing us to an efficient financial management [13].

The second type of information flow appears in a more abstract way. In this case, we have one
dynamical event; the transference occurs between different levels, or sometimes scales, within the
same event. Examples for this type are found in disciplines such as evolutionary biology [24–26],
statistical physics [27,28], turbulence, etc., and are also seen in network dynamics. Consider the
transitions in biological complexity. A reductionist, for example, views that the emergence of new, higher
level entities can be traced back to lower level entities, and hence there is a “bottom-up”
causation, i.e., an information flow from the lower levels to higher levels. Bottom-up causation lays the
theoretical foundation for statistical mechanics, which explains macroscopic thermodynamic states from
a point of view of molecular motions. On the other hand, “top-down” causation is also
important [29,30]. In evolution (e.g., [31]), it has been shown that higher level processes may constrain
and influence what happens at lower levels; particularly, in transiting complexity, there is a transition of
information flow, from the bottom-up to top-down, leading to a radical change in the structure of
causation (see, for example [32]). Similar to evolutionary biology, in network dynamics, some
simple computer networks may experience a transition from a low traffic state to a high congestion
state, beneath which is a flow of information from a bunch of almost independent entities to a collective
pattern representing a higher level of organization (e.g., [33]). In the study of turbulence, the notoriously
challenging problem in classical physics, it is of much interest to know how information flows over the
spectrum to form patterns on different scales. This may help to better explain the cause of the observed
higher moments of the statistics, such as excess kurtosis and skewness, of velocity components and
velocity derivatives [34]. Generally, the flows/transfers are two-way, i.e., both from small scales to large
scales, and from large scales to small scales, but the flow or transfer rates may be quite different.

Apart from the diverse real-world applications, information flow/transfer is important in that it offers a
methodology for scientific research. In particular, it offers a new way of time series
analysis [35–37]. Traditionally, correlation analysis is widely used for identifying the relation between
two events represented by time series of measurements; an alternative approach is through mutual
information analysis, which may be viewed as a type of nonlinear correlation analysis. But both
correlation analysis and mutual information analysis put the two events on an equal stance. As a
result, there is no way to pick out the cause and the effect. In econometrics, Granger causality [38]
is usually employed to characterize the causal relation between time series, but the characterization
is just in a qualitative sense; when two events are mutually causal, it is difficult to differentiate their
relative strengths. The concept of information flow/transfer is expected to remedy this deficiency, with
the mutual causal relation quantitatively expressed.

Causality implies directionality. Perhaps the most conspicuous observation on information
flow/transfer is its asymmetry between the involved parties. A typical example is seen in our daily life
when a baker is kneading a dough. As the baker stretches, cuts, and folds, he guides a unilateral flow of
information from the horizontal to the vertical. That is to say, information goes only from the stretching
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direction to the folding direction, not vice versa. The one-way information flow (in a conventional point
of view) between the equity and options markets offers another good example. In other cases, such as in
the aforementioned El Niño event, though the Indian and Pacific Oceans may interact with each other,
i.e., the flow route could be a two-way street, the flow rate generally differs from one direction to another
direction. For all that account, transfer asymmetry makes a basic property of information flow; it is this
property that distinguishes information flow from the traditional concepts such as mutual information.

As an aside, one should not confuse dynamics with causality, the important property reflected in
the asymmetry of information flow. It is temptating to think that, for a system, when the dynamics are
known, the causal relations are determined. While this might be the case for linear deterministic systems,
in general, however, this need not be true. Nonlinearity may lead a deterministic system to chaos; the
future may not be predictable after a certain period of time, even though the dynamics is explicitly given.
The concept of emergence in complex systems offers another example. It has long been found that
irregular motions according to some simple rules may result in the emergence of regular patterns (such as
the inverse cascade in the planar turbulence in natural world [39,40]). Obviously, how this instantaneous
flow of information from the low-level entities to high-level entities, i.e., the patterns, cannot be simply
explained by the rudimentary rules set a priori. In the language of complexity, emergence does not
result from rules only (e.g., [41–43]); rather, as said by Corning (2002) [44], “Rules, or laws, have
no causal efficacy; they do not in fact ‘generate’ anything... the underlying causal agencies must be
separately specified.”

Historically, quantification of information flow has been an enduring problem. The challenge lies
in that this is a real physical notion, while the physical foundation is not as clear as those well-known
physical laws. During the past decades, formalisms have been established empirically or half-empirically
based on observations in the aforementioned diverse disciplines, among which are Vastano and
Swinney’s time-delayed mutual information [45], and Schreiber’s transfer entropy [46,47]. Particularly,
transfer entropy is established with an emphasis of the above transfer asymmetry between the source
and receiver, so as to have the causal relation represented; it has been successfully applied in many
real problem studies. These formalisms, when carefully analyzed, can be approximately understood as
dealing with the change of marginal entropy in the Shannon sense, and how this change may be
altered in the presence of information flow (see [48], section 4 for a detailed analysis). This motivates
us to think about the possibility of a rigorous formalism when the dynamics of the system is known.
As such, the underlying evolution of the joint probability density function (pdf) will also be given, for
deterministic systems, by the Liouville equation or, for stochastic systems, by the Fokker-Planck
equation (cf. §4 and §5 below). From the joint pdf, it is easy to obtain the marginal density, and hence
the marginal entropy. One thus expects that the concept of information flow/transfer may be built on a
rigorous footing when the dynamics are known, as is the case with many real world problems like those in
atmosphere–ocean science. And, indeed, Liang and Kleeman (2005) [49] find that, for two-dimensional
(2D) systems, there is a concise law on entropy evolution that makes the hypothesis come true. Since
then, the formalism has been extended to systems in different forms and of arbitrary dimensionality,
and has been applied with success in benchmark dynamical systems and more realistic problems. In the
following sections, we will give a systematic introduction of the theories and a brief review of some of
the important applications.
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In the rest of this review, we first set up a theoretical framework, then illustrate through a simple case
how a rigorous formalism can be achieved. Specifically, our goal is to compute within the framework,
for a continuous-time system, the transference rate of information, and, for a discrete-time system or
mapping, the amount of the transference upon each application of the mapping. To unify the terminology,
we may simply use “information flow/transfer” to indicate either the “rate of information flow/transfer”
or the “amount of information flow/transfer” wherever no ambiguity exists in the context. The next
three sections are devoted to the derivations of the transference formulas for three different systems.
Sections 3 and 4 are for deterministic systems, with randomness limited within initial conditions, where
the former deals with discrete mappings and the latter with continuous flows. Section 5 discusses the
case when stochasticity is taken in account. In the section that follows, four major applications are
briefly reviewed. While these applications are important per se, some of them also provide validations
for the formalism. Besides, they are also typical in terms of computation; different approaches (both
analytical and computational) have been employed in computing the flow or transfer rates for these
systems. We summarize in Section 7 the major results regarding the formulas and their corresponding
properties, and give a brief discussion on the future research along this line. As a convention in the history
of development, the terms “information flow” and “information transfer” will be used synonymously.
Throughout this review, by entropy we always mean Shannon or absolute entropy, unless otherwise
specified. Whenever a theorem is stated, generally only the result is given and interpreted; for detailed
proofs, the reader is referred to the original papers.

2. Mathematical Formalism

2.1. Theoretical Framework

Consider a system with n state variables, x1, x2, ..., xn, which we put together as a column vector
x = (x1, ..., xn)

T . Throughout this paper, x may be either deterministic or random, depending on the
context where it appears. This is a notational convention adopted in the physics literature, where random
and deterministic states for the same variable are not distinguished. (In probability theory, they are
usually distinguished with lower and upper cases like x and X.) Consider a sample space of x, Ω ⊂ Rn.
Defined on Ω is a joint probability density function (pdf) ρ = ρ(x). For convenience, assume that ρ and
its derivatives (up to an order as high as enough) are compactly supported. This makes sense, as in the
real physical world, the probability of extreme events vanishes. Thus, without loss of generality, we
may extend Ω to Rn and consider the problem on Rn, giving a joint density in L1(Rn) and n marginal
densities ρi ∈ L1(R):

ρi(xi) =

∫
Rn−1

ρ(x1, x2, ..., xn) dx1...dxi−1dxi+1...dxn, i = 1, ...n

Correspondingly, we have an entropy functional of ρ (joint entropy) in the Shannon sense

H = −
∫
Rn

ρ(x) log ρ(x) dx (1)

and n marginal entropies

Hi = −
∫
R
ρ(xi) log ρ(xi) dxi, i = 1, ..., n (2)
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Consider an n-dimensional dynamical system, autonomous or nonautonomous,

dx
dt

= F(x, t) (3)

where F = (F1, F2, ..., Fn)
T is the vector field. With random inputs at the initial stage, the system

generates a continuous stochastic process {x(t), t ≥ 0}, which is what we are concerned with. In many
cases, the process may not be continuous in time (such as that generated by the baker transformation, as
mentioned in the introduction). We thence also need to consider a system in the discrete mapping form:

x(τ + 1) = Φ(x(τ)) (4)

with τ being positiver integers. Here Φ is an n-dimensional transformation

Φ : Rn → Rn, (x1, x2, ..., xn) 7→ (Φ1(x),Φ2(x), ...,Φn(x)) (5)

the counterpart of the vector field F. Again, the system is assumed to be perfect, with randomness
limited within the initial conditions. Cases with stochasticity due to model inaccuracies are deferred to
Section 5. The stochastic process thus formed is in a discrete time form {x(τ), τ}, with τ > 0 signifying
the time steps. Our formalism will be established henceforth within these frameworks.

2.2. Toward a Rigorous Formalism—A Heuristic Argument

First, let us look at the two-dimensional (2D) case originally studied by Liang and Kleeman [49]

dx1

dt
= F1(x1, x2, t) (6)

dx2

dt
= F2(x1, x2, t) (7)

This is a system of minimal dimensionality that admits information flow. Without loss of generality,
examine only the flow/transfer from x2 to x1.

Under the vector field F = (F1, F2)
T x evolves with time; correspondingly its joint pdf ρ(x) evolves,

observing a Liouville equation [50]:

∂ρ

∂t
+

∂

∂x1

(F1ρ) +
∂

∂x2

(F2ρ) = 0 (8)

As argued in the introduction, what matters here is the evolution of H1 namely the marginal entropy of
x1. For this purpose, integrate (8) with respect to x2 over R to get:

∂ρ1
∂t

+
∂

∂x1

∫
R
F1ρ dx2 = 0 (9)

Other terms vanish, thanks to the compact support assumption for ρ. Multiplication of (9) by −(1 + log ρ1)

followed by an integration over R gives the tendency of H1:

dH1

dt
=

∫
R2

[
log ρ1

∂(ρF1)

∂x1

]
dx1dx2 = −E

(
F1

ρ1

∂ρ1
∂x1

)
(10)
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where E stands for mathematical expectation with respect to ρ. In the derivation, integration by parts
has been used, as well as the compact support assumption.

Now what is the rate of information flow from x2 to x1? In [49], Liang and Kleeman argue that, as
the system steers a state forward, the marginal entropy of x1 is replenished from two different sources:
one is from x1 itself, another from x2. The latter is through the very mechanism namely information
flow/transfer. If we write the former as dH∗

1/dt, and denote by T2→1 the rate of information flow/transfer
from x2 to x1 (T stands for “transfer”), this gives a decomposition of the marginal entropy increase
according to the underlying mechanisms:

dH1

dt
=

dH∗
1

dt
+ T2→1 (11)

Here dH1/dt is known from Equation (10). To find T2→1, one may look for dH∗
1/dt instead. In [49],

Liang and Kleeman find that this is indeed possible, based on a heuristic argument. To see this, multiply
the Liouville Equation (8) by −(1 + log ρ), then integrate over R2. This yields an equation governing
the evolution of the joint entropy H which, after a series of manipulation, is reduced to

dH

dt
=

∫
R2

∇ · (ρ log ρF)dx1dx2 +

∫
R2

ρ∇ · Fdx1dx2

where ∇ is the divergence operator. With the assumption of compact support, the first term on the right
hand side goes to zero. Using E to indicate the operator of mathematical expectation, this becomes

dH

dt
= E (∇ · F) (12)

That is to say, the time rate of change of H is precisely equal to the mathematical expectation of the
divergence of the vector field. This remarkably concise result tells that, as a system moves on, the
change of its joint entropy is totally controlled by the contraction or expansion of the phase space of
the system. Later on, Liang and Kleeman show that this is actually a property holding for deterministic
systems of arbitrary dimensionality, even without invoking the compact assumption [51]. Moreover, it
has also been shown that, the local marginal entropy production observes a law in the similar form, if no
remote effect is taken in account [52].

With Equation (12), Liang and Kleeman argue that, apart from the complicated relations, the rate of
change of the marginal entropy H1 due to x1 only (i.e., dH∗

1/dt as symbolized above), should be

dH∗
1

dt
= E

(
∂F1

∂x1

)
=

∫
R2

ρ
∂F1

∂x1

dx1dx2 (13)

This heuristic reasoning makes the separation (11) possible. Hence the information flows from x2 to x1

at a rate of

T2→1 =
dH1

dt
− dH∗

1

dt
= −E

(
F1

ρ1

∂ρ1
∂x1

)
− E

(
∂F1

∂x1

)
= −E

[
1

ρ1

∂(F1ρ1)

∂x1

]
= −

∫
R2

ρ2|1(x2|x1)
∂(F1ρ1)

∂x1

dx1dx2 (14)
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where ρ2|1 is the conditional pdf of x2, given x1. The rate of information flow from x1 to x2, written
T1→2, can be derived in the same way. This tight formalism (called “LK2005 formalism” henceforth),
albeit based on heuristic reasoning, turns out to be very successful. The same strategy has been applied
again in a similar study by Majda and Harlim [53]. We will have a chance to see these in Sections 4
and 6.

2.3. Mathematical Formalism

The success of the LK2005 formalism is remarkable. However, its utility is limited to systems of
dimensionality 2. For an n-dimensional system with n > 2, the so-obtained Equation (14) is not the
transfer from x2 to x1, but the cumulant transfer to x1 from all other components x2, x3,..., xn. Unless
one can screen out from Equation (14) the part contributed from x2, it seems that the formalism does not
yield the desiderata for high-dimensional systems.

To overcome the difficulty, Liang and Kleeman [48,51] observe that, the key part in Equation (14)
namely dH∗

1/dt actually can be alternatively interpreted, for a 2D system, as the evolution of H1 with
the effect of x2 excluded. In other words, it is the tendency of H1 with x2 frozen instantaneously at time
t. To avoid confusing with dH∗

1/dt, denote it as dH1\2/dt, with the subscript \2 signifying that the effect
of x2 is removed. In this way dH1/dt is decomposed into two disjoint parts: T2→1 namely the rate of
information flow and dH1\2/dt. The flow is then the difference between dH1/dt and dH1\2/dt:

T2→1 =
dH1

dt
−

dH1\2

dt
(15)

For 2D systems, this is just a restatement of Equation (14) in another set of symbols; but for systems
with dimensionality higher than 2, they are quite different. Since the above partitioning does not have
any restraints on n, Equation (15) is applicable to systems of arbitrary dimensionality.

In the same spirit, we can formulate the information transfer for discrete systems in the form of
Equation (4). As x is mapped forth under the transformation Φ from time step τ to τ+1, correspondingly
its density ρ is steered forward by an operator termed after Georg Frobenius and Oskar Perron, which
we will introduce later. Accordingly the entropies H , H1, and H2 also change with time. On the interval
[τ, τ+1], let H1 be incremented by ∆H1 from τ to τ+1. By the foregoing argument, the evolution of H1

can be decomposed into two exclusive parts according to their driving mechanisms, i.e., the information
flow from x2, T2→1, and the evolution with the effect of x2 excluded, written as ∆H1\2. We therefore
obtain the discrete counterpart of Equation (15):

T2→1 = ∆H1 −∆H1\2 (16)

Equations (15) and (16) give the rates of information flow/transfer from component x2 to component
x1 for systems (3) and (4), respectively. One may switch the corresponding indices to obtain the flow
between any component pair xi and xj , i ̸= j. In the following two sections we will be exploring how
these equations are evaluated.
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3. Discrete Systems

3.1. Frobenius-Perron Operator

For discrete systems in the form of Equation (4), as x is carried forth under the transformation Φ,
there is another transformation, called Frobenius–Perron operator P (F-P operator hereafter), steering
ρ(x), i.e., the pdf of x, to Pρ (see a schematic in Figure 1). The F-P operator governs the evolution of
the density of x.

A rigorous definition requires some ingredients of measure theory which is beyond the scope this
review, and the reader may consult with the reference [50]. Loosely speaking, given a transformation
Φ : Ω → Ω (in this review, Ω = Rn), x 7→ Φx, it is a mapping P : L1(Ωn) → L1(Ωn), ρ 7→ Pρ,
such that ∫

ω

Pρ(x)dx =

∫
Φ−1(ω)

ρ(x)dx (17)

for any ω ⊂ Ω. If Φ is nonsingular and invertible, it actually can be explicitly evaluated. Making
transformation y = Φ(x), the right hand side is, in this case,∫

Φ−1(ω)

ρ(x) dx =

∫
ω

ρ
[
Φ−1(y)

]
·
∣∣J−1

∣∣ dy

where J is the Jacobian of Φ:

J = det

[
∂(y1, y2, ..., yn)

∂(x1, x2, ..., xn)

]
and J−1 its inverse. Since ω is arbitrarily chosen, we have

Pρ(x) = ρ
[
Φ−1(x)

]
·
∣∣J−1

∣∣ (18)

If no nonsingularity is assumed for the transformation Φ, but the sample space Ω is in a Cartesian
product form, as is for this review, the F-P operator can also be evaluated, though not in an explicit form.
Consider a domain

ω = [a1, x1]× [a2, x2]× ...× [an, xn]

where a = (a1, ..., an) is some constant point (usually can be set to be the origin). Let the counterimage
of ω be Φ−1(ω), then it has been proved (c.f. [50]) that

Pρ(x) =
∂n

∂xn...∂x2∂x1

∫
Φ−1(ω)

ρ(ξ1, ξ2, ..., ξn) dξ1dξ2...dξn

In this review, we consider a sample space Rn, so essentially all the F-P operators can be calculated
this way.
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Figure 1. Illustration of the Frobenius-Perron operator P , which takes ρ(x) to Pρ(x) as Φ
takes x to Φx.
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3.2. Information Flow

The F-P operator P allows for an evaluation of the change of entropy as the system evolves forth. By
the formalism (16) , we need to examine how the marginal entropy changes on a time interval [τ, τ +1].
Without loss of generality, consider only the flow from x2 to x1. First look at increase of H1. Let ρ be
the joint density at step τ , then the joint density at step τ + 1 is Pρ, and hence

∆H1 = H1(τ + 1)−H1(τ)

= −
∫
R
(Pρ)1(y1) · log(Pρ)1(y1) dy1 +

∫
R
ρ1(x1) · log ρ1(x1) dx1 (19)

Here (Pρ)1 means the marginal density of x1 at τ + 1; it is equal to Pρ with all components of x but
x1 being integrated out. The independent variables with respect to which the integrations are taken are
dummy; but for the sake of clarity, we use different notations, i.e., x and y, for them at time step τ and
τ + 1, respectively.

The key to the formalism (16) is the finding of

∆H1\2 = H1\2(τ + 1)−H1(τ) (20)

namely the increment of the marginal entropy of x1 on [τ, τ +1] with the contribution from x2 excluded.
Here the system in question is no longer Equation (4), but a system with a mapping modified from Φ:

Φ\2 :


y1 = Φ1(x1, x2, x3, ..., xn)

y3 = Φ3(x1, x2, x3, ..., xn)
...

...
yn = Φn(x1, x2, x3, ..., xn)

(21)

with x2 frozen instantaneously at τ as a parameter. Again, we use xi = xi(τ), yi = Φ(x(τ)) =

xi(τ + 1), i = 1, ..., n, to indicate the state variables at steps τ and τ + 1, respectively, to avoid any
possible confusion. In the mean time, the dependence on τ and τ + 1 are suppressed for notational
economy. Corresponding to the modified transformation Φ\2 is a modified F-P operator, written P\2. To
find H1\2(τ + 1), examine the quantity h = − log(P\2ρ)1(y1), where the subscript 1 indicates that this is
a marginal density of the first component, and the dependence on y1 tells that this is evaluated at step
τ + 1. Recall how Shannon entropy is defined: H1\2(τ + 1) is essentially the mathematical expectation,
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or “average” in loose language, of h. More specifically, it is h multiplied with some pdf followed by
an integration over Rn, i.e., the corresponding sample space. The pdf is composed of several different
factors. The first is, of course, (P\2ρ)1(y1). But h, as well as (P\2ρ)1, also has dependence on x2, which
is embedded within the subscript \2. Recall how x2 is treated during [τ, τ + 1]: It is frozen at step τ

and kept on as a parameter, given all other components at τ . Therefore, the second part of the density
is ρ(x2|x1, x3, ..., xn), i.e., the conditional density of x2 on x1, x3, ..., xn. (Note again that xi means
variables at time step τ .) This factor introduces extra dependencies: x3, x4, ..., xn (that of x1 is embed-
ded in y1), which must also be averaged out, so the third factor of the density is ρ3...n(x3, ..., xn) namely
the joint density of (x3, x4, ..., xn). Put all these together,

H1\2(τ + 1) = −
∫
Rn

(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1, x3, ..., xn)

·ρ3...n(x3, ..., xn) dy1dx2dx3...dxn (22)

Subtraction of H1\2(τ + 1) − H1(τ) from Equation (19) gives, eventually, the rate of information
flow/transfer from x2 to x1:

T2→1 = −
∫
R
(Pρ)1(y1) · log(Pρ)1(y1) dy1

+

∫
Rn

(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1, x3, ..., xn)·

ρ3...n(x3, ..., xn) dy1dx2dx3...dxn (23)

Notice that the conditional density of x2 is on x1, not on y1. (x1 and y1 are the same state variable
evaluated at different time steps, and are connected via y1 = Φ1(x1, x2, ..., xn).

Likewise, it is easy to obtain the information flow between any pair of components. If, for example,
we are concerned with the flow from xj to xi (i, j = 1, 2, ..., n, i ̸= j), replacement of the indices 1 and 2

in Equation (23) respectively with i and j gives

Tj→i = −
∫
R
(Pρ)i(yi) · log(Pρ)i(yi) dyi

+

∫
Rn

(P\jρ)i(yi) · log(P\jρ)1(yi) · ρ(xj | x1, x2, ..., xj−1, xj+1, ..., xn)·
ρ\i\j dx1dx2...dxi−1dyidxi+1...dxn (24)

Here the subscript \j of P means the F-P operator with the effect of the jth component excluded through
freezing it instantaneously as a parameter. We have also abused the notation a little bit for the density
function to indicate the marginalization of that component. That is to say,

ρ\i = ρ\i(x1, ..., xi−1, xi+1, ..., xn) =

∫
R
ρ(x) dxi (25)

and ρ\i\j is the density after being marginalized twice, with respect to xi and xj . To avoid this
potential notation complexity, alternatively, one may reorganize the order of the components of the
vector x = (x1, ..., xn)

T such that the pair appears in the first two slots, and modify the mapping Φ

accordingly. In this case, the flow/transfer is precisely the same in form as Equation (23). Equations (23)
and (24) can be evaluated explicitly for systems that are definitely specified. In the following sections
we will see several concrete examples.
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3.3. Properties

The information flow obtained in Equations (23) or (24) has some nice properties. The first is a
concretization of the transfer asymmetry emphasized by Schreiber [47] (as mentioned in the
introduction), and the second a special property for 2D systems.

Theorem 3.1 For the system Equation (4), if Φi is independent of xj , then Tj→i = 0 (in the mean time,
Ti→j need not be zero).

The proof is rather technically involved; the reader is referred to [48] for details. This theorem states
that, if the evolution of xi has nothing to do with xj , then there will be no information flowing from
xj to xi. This is in agreement with observations, and with what one would argue on physical grounds.
On the other hand, the vanishing Tj→i yields no clue on Ti→j , i.e., the flow from xi to xj need not be
zero in the mean time, unless Φj does not rely on xi. This is indicative of a very important physical
fact: information flow between a component pair is not symmetric, in contrast to the notion of mutual
information ever existing in information theory. As emphasized by Schreiber [47], a faithful formalism
must be able to recover this asymmetry. The theorem shows that our formalism yields precisely what is
expected. Since transfer asymmetry is a reflection of causality, the above theorem is also referred to as
property of causality by Liang and Kleeman [48].

Theorem 3.2 For the system Equation (4), if n = 2 and Φ1 is invertible, then T2→1 = ∆H1−E log |J1|,
where J1 = ∂Φ1/∂x1.

A brief proof will help to gain better understanding of the theorem. If n = 2, the modified system has a
mapping Φ\2 which is simply Φ1 with x2 as a parameter. Equation (22) is thus reduced to

H1\2(τ + 1) = −
∫
R2

(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1) dy1dx2

where y1 = Φ1(x1, x2), and (P\2ρ)1 the marginal density of x1 evolving from ρ\2 = ρ1 upon one
transformation of Φ\2 = Φ1. By assumption Φ1 is invertible, that is to say, J1 = ∂Φ1

∂x1
̸= 0. The F-P

operator hence can be explicitly written out:

(P\2ρ)1(y1) = ρ
[
Φ−1

1 (y1, x2)
]
·
∣∣J−1

1

∣∣
= ρ1(x1)

∣∣J−1
1

∣∣ (26)

So

∆H1\2 = H1\2(τ + 1)−H1(τ)

= −
∫
R2

ρ1(x1)
∣∣J−1

1

∣∣ log (ρ1(x1)
∣∣J−1

1

∣∣) ρ(x2|x1) |J1| dx1dx2 +

∫
R
ρ1 log ρ1 dx1

= −
∫
R2

ρ1(x1) ρ(x2|x1) log
∣∣J−1

1

∣∣ dx1dx2

=

∫
R2

ρ(x1, x2) log |J1| dx1dx2

= E log |J1| (27)

The conclusion follows subsequently from Equation (16).
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The above theorem actually states another interesting fact that parallels what we introduced previously
in §2.2 via heuristic reasoning. To see this, reconsider the mapping Φ : Rn → Rn, x 7→ x. Let Φ be
nonsingular and invertible. By Equation (18), the F-P operator of the joint pdf ρ can be explicitly
evaluated. Accordingly, the entropy increases, as time moves from step τ to step τ + 1, by

∆H = −
∫
Rn

Pρ(x) logPρ(x) dx +

∫
Rn

ρ(x) log ρ(x) dx

= −
∫
Rn

ρ
[
Φ−1(x)

] ∣∣J−1
∣∣ log ρ [Φ−1(x)

] ∣∣J−1
∣∣ dx +

∫
Rn

ρ(x) log ρ(x) dx

After some manipulation (see [48] for details), this is reduced to

∆H = E log |J | (28)

This is the discrete counterpart of Equation (12), yet another remarkably concise formula. Now, if the
system in question is 2-dimensional, then, as argued in §2.2, the information flow from x2 to x1 should
be ∆H1 − ∆H∗

1 , with ∆H∗
1 being the marginal entropy increase due to x1 itself. Furthermore, if Φ1 is

nonsingular and invertible, then Equation (28) tells us it must be that

∆H∗
1 = E log |J1|

and this is precisely what Theorem 3.2 reads.

4. Continuous Systems

For continuous systems in the form of Equation (3), we may take advantage of what we already have
from the previous section to obtain the information flow. Without loss of generality, consider only the
flow/transfer from x2 to x1, T2→1. We adopt the following strategy to fulfill the task:

• Discretize the continuous system in time on [t, t +∆t], and construct a mapping Φ to take x(t) to
x(t+∆t);

• Freeze x2 in Φ throughout [t, t+∆t] to obtain a modified mapping Φ\2;
• Compute the marginal entropy change ∆H1 as Φ steers the system from t to t+∆t;
• Derive the marginal entropy change ∆H1\2 as Φ\2 steers the modified system from t to t+∆t;
• Take the limit

T2→1 = lim
∆t→0

∆H1 −∆H1\2

∆t

to arrive at the desiderata.

4.1. Discretization of the Continuous System

As the first step, construct out of Equation (3) an n-dimensional discrete system, which steers
x(t) = (x1, x2, ..., xn) to x(t + ∆t). To avoid any confusion that may arise, x(t + ∆t) will be
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denoted as y = (y1, y2, ..., yn) hereafter. Discretization of Equation (3) results in a mapping, to the
first order of ∆t, Φ = (Φ1,Φ2, ...,Φn): Rn → Rn, x 7→ y:

Φ :


y1 = x1 +∆t · F1(x)
y2 = x2 +∆t · F2(x)
...

...
yn = xn +∆t · Fn(x)

(29)

Clearly, this mapping is always invertible so long as ∆t is small enough. In fact, we have

Φ−1 :


x1 = y1 −∆t · F1(y) +O(∆t2)

x2 = y2 −∆t · F2(y) +O(∆t2)
...

...
xn = yn −∆t · Fn(y) +O(∆t2)

(30)

to the first order of ∆t. Furthermore, its Jacobian J is

J = det

[
∂(y1, y2, ..., yn)

∂(x1, x2, ..., xn)

]
=

∏
i

(
1 + ∆t

∂Fi

∂xi

)
+O(∆t2)

= 1 + ∆t

n∑
i=1

∂Fi

∂xi

+O(∆t2) (31)

Likewise, it is easy to get

J−1 = = det

[
∂(x1, x2, ..., xn)

∂(y1, y2, ..., yn)

]
= 1−∆t

n∑
i=1

∂Fi

∂xi

+O(∆t2) (32)

This makes it possible to evaluate the F-P operator associated with Φ. By Equation (18),

Pρ(y1, ..., yn) = ρ
(
Φ−1(y1, ...yn)

) ∣∣J−1
∣∣

= ρ(x1, x2, ..., xn) · |1−∆t∇ · F|+O(∆t2) (33)

Here ∇ · F =
∑

i
∂Fi

∂x1
; we have suppressed its dependence on x to simplify the notation.

As an aside, the explicit evaluation (31), and subsequently (32) and (33), actually can be utilized to
arrive at the important entropy evolution law (12) without invoking any assumptions. To see this, recall
that ∆H = E log |J | by Equation (28). Let ∆t go to zero to get

dH

dt
= lim

∆t→0

∆H

∆t
= E lim

∆t→0

1

∆t
log
(
1 + ∆t∇ · F +O(∆t2)

)
which is the very result E(∇ · F), just as one may expect.
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4.2. Information Flow

To compute the information flow T2→1, we need to know dH1/dt and dH1\2/dt. The former is easy to
find from the Liouville equation associated with Equation (3), i.e.,

∂ρ

∂t
+

∂(F1ρ)

∂x1

+
∂(F2ρ)

∂x2

+ ...+
∂(Fnρ)

∂xn

= 0 (34)

following the same derivation as that in §2.2:
dH1

dt
=

∫
Rn

log ρ1
∂(F1ρ)

∂x1

dx (35)

The challenge lies in the evaluation of dH1\2/dt. We summarize the result in the following proposition:

Proposition 4.1 For the dynamical system (3), the rate of change of the marginal entropy of x1 with the
effect of x2 instantaneously excluded is:

dH1\2

dt
=

∫
Rn

(1 + log ρ1) ·
∂(F1ρ\2)

∂x1

·Θ2|1 dx +∫
Rn

ρ1 log ρ1 · F1 ·
∂(ρ/ρ\2)

∂x1

· ρ\1\2 dx (36)

where

θ2|1 = θ2|1(x1, x2, x3, ..., xn) =
ρ

ρ\2
ρ\1\2 (37)

Θ2|1 =

∫
ΩRn−2

θ2|1(x) dx3...dxn (38)

and ρ\2 =
∫
R ρ dx2, ρ\1\2 =

∫
R2 ρ dx1dx2 are the densities after marginalized with x2 and (x1, x2),

respectively.

The proof is rather technically involved; for details, see [51], section 5.
With the above result, subtract dH1\2/dt from dH1/dt and one obtains the flow rate from x2 to x1.

Likewise, the information flow between any component pair (xi, xj), i, j = 1, 2, ..., n; i ̸= j, can be
obtained henceforth.

Theorem 4.1 For the dynamical system (3), the rate of information flow from xj to xi is

Tj→i =

∫
Ω

(1 + log ρi)

(
∂(Fiρ)

∂xi

−
∂(Fiρ\j)

∂xi

·Θj|i

)
dx

+

∫
Ω

∂(Fiρi log ρi)

∂xi

· θj|i dx (39)

where

θj|i = θj|i(x) =
ρ

ρ\j
ρ\i\j (40)

ρ\i =

∫
R
ρ(x) dxi (41)

ρ\i\j =

∫
R2

ρ(x) dxidxj (42)

Θj|i = Θj|i(xi, xj) =

∫
Rn−2

θj|i(x)
∏
ν ̸=i,j

dxν (43)
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In this formula, Θj|i reminds one of the conditional density xj on xi, and, if n = 2, it is indeed so. We
may therefore call it the “generalized conditional density” of xj on xi.

4.3. Properties

Recall that, as we argue in §2.2 based on the entropy evolution law (12), the time rate of change of
the marginal entropy of a component, say x1, due to its own reason, is dH∗

1/dt = E(∂F1/∂x1). Since
for a 2D system, dH∗

1/dt is precisely dH1\2/dt, we expect that the above formalism (36) or (39) verifies
this result.

Theorem 4.2 If the system (3) has a dimensionality 2, then

dH1\2

dt
= E

(
∂F1

∂x1

)
(44)

and hence the rate of information flow from x2 to x1 is

T2→1 = −E

[
1

ρ1

∂(F1ρ1)

∂x1

]
(45)

What makes a 2D system so special is that, when n = 2, ρ\2 = ρ1, and Θ2|1 is just the conditional
distribution of x2 given x1, ρ/ρ1 = ρ(x2|x1). Equation (36) can thereby be greatly simplified:

dH1\2

dt
=

∫
Rn

(1 + log ρ1)
∂F1ρ1
∂x1

· ρ

ρ1
dx +

∫
Rn

ρ1 log ρ1 · F1 ·
∂ρ(x2|x1)

∂x1

dx

=

∫
Rn

∂(F1ρ1)

∂x1

ρ

ρ1
dx +

∫
Rn

log ρ1 ·
∂(F1ρ)

∂x1

dx

=

∫
Rn

ρ

(
∂F1

∂x1

)
dx = E

(
∂F1

∂x1

)
(46)

Subtract this from what has been obtained above for dH1/dt, and we get an information flow just as that
in Equation (14) via heuristic argument.

As in the discrete case, one important property that Tj→i must possess is transfer asymmetry, which
has been emphasized previously, particularly by Schreiber [47]. The following is a concretization of
the argument.

Theorem 4.3 (Causality) For system (3), if Fi is independent of xj , then Tj→i = 0; in the mean time,
Ti→j need not vanish, unless Fj has no dependence on xi.

Look at the right-hand side of the formula (39). Given that (1 + log ρi) and ρ\j , as well as Fi (by
assumption), are independent of xj , the integration with respect to xj can be taken within the multiple
integrals. Consider the second integral first. All the variables except θj|i have dependence on xj . But∫
θj|idxj = 1, so the whole term is equal to

∫
Rn−1

∂(Fiρi log ρi)
∂xi

dx1...dxj−1dxj+1...dxn which vanishes by
the assumption of compact support. For the first integral, move the integration with respect to xj into the
parentheses, as the factor outside has nothing to do with xj . This integration yields∫

R

∂(Fiρ)

∂xi

dxj −
∫
R

∂(Fiρ\j)

∂xi

·Θj|idxj

=

∫
Rn−1

[
∂

∂xi

(
Fi

∫
ρdxj

)
− ∂

∂xi

(Fiρ\j) ·
∫

Θj|idxj

]
dx1...dxj−1dxj+1...dxn

= 0
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because
∫
ρdxj = ρ\j and

∫
Θj|idxj = 1. For all that account, both the two integrals on the right-hand

side of Equation (39) vanish, leaving a zero flow of information from xj to xi. Notice that this vanishing
Tj→i gives no hint on the flow in the opposite direction. In other words, this kind of flow or transfer is
not symmetric, reflecting the causal relation between the component pair. As Theorem 3.1 is for discrete
systems, Theorem 4.3 is the property of causality for continuous systems.

5. Stochastic Systems

So far, all the systems considered are deterministic. In this section we turn to systems with
stochasticity included. Consider the stochastic counterpart of Equation (3)

dx = F(x, t)dt+ B(x, t)dw (47)

where w is a vector of standard Wiener processes, and B = (bij) the matrix of perturbation amplitudes.
In this section, we limit our discussion to 2D systems, and hence have only two flows/transfers to discuss.
Without loss of generality, consider only T2→1, i.e., the rate of flow/transfer from x2 to x1.

As before, we first need to find the time rate of change of H1, the marginal entropy of x1. This
can be easily derived from the density evolution equation corresponding to Equation (47), i.e., the
Fokker-Planck equation:

∂ρ

∂t
+

∂(F1ρ)

∂x1

+
∂(F2ρ)

∂x2

=
1

2

2∑
i,j=1

∂2(gijρ)

∂xi∂xj

(48)

where gij = gji =
∑2

k=1 bikbjk, i, j = 1, 2. This integrated over R with respect to x2 gives the evolution
of ρ1:

∂ρ1
∂t

+

∫
R

∂(F1ρ)

∂x1

dx2 =
1

2

∫
R

∂2(g11ρ)

∂x2
1

dx2 (49)

Multiply (49) by −(1 + log ρ1), and integrate with respect to x1 over R. After some manipulation, one
obtains, using the compact support assumption,

dH1

dt
= −E

(
F1

∂ log ρ1
∂x1

)
− 1

2
E

(
g11

∂2 log ρ1
∂x2

1

)
(50)

where E is the mathematical expectation with respect to ρ.
Again, the key to the formalism is the finding of dH1\2/dt. For stochastic systems, this could be

a challenging task. The major challenge is that we cannot obtain an F-P operator as nice as that in
the previous section for the map resulting from discretization. In early days, Majda and Harlim [53]
have tried our heuristic argument in §2.2 to consider a special system modeling the atmosphere–ocean
interaction, which is in the form

dx1 = F1(x1, x2)dt

dx2 = F2(x1, x2)dt+ b22dw2

Their purpose is to find T2→1 namely the information transfer from x2 to x1. In this case, since the
governing equation for x1 is deterministic, the result is precisely the same as that of LK05, which is
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shown in in §2.2. The problem here is that the approach cannot be extended even to finding T1→2, since
the nice law on which the argument is based, i.e., Equation (12), does not hold for stochastic processes.

Liang (2008) [54] adopted a different approach to give this problem a solution. As in the previous
section, the general strategy is also to discretize the system in time, modify the discretized system with x2

frozen as a parameter on an interval [t, t+∆t], and then let ∆t go to zero and take the limit. But this time
no operator analogous to the F-P operator is sought; instead, we discretize the Fokker–Planck equation
and expand x1\2(t+∆t), namely the first component at t+∆t with x2 frozen at t, using the Euler–Bernstein
approximation. The complete derivation is beyond the scope of this review; the reader is referred to [54]
for details. In the following, the final result is supplied in the form of a proposition.

Proposition 5.1 For the 2D stochastic system (47), the time change of the marginal entropy of x1 with
the contribution from x2 excluded is

dH1\2

dt
= E

(
∂F1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1
∂x2

1

)
− 1

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
(51)

In the equation, the second and the third terms on the right hand side are from the stochastic perturbation.
The first term, as one may recall, is precisely the result of Theorem 4.2. The heuristic argument for 2D
systems in Equation (13) is successfully recovered here. With this the rate of information flow can be
easily obtained by subtracting dH1\2/dt from dH1/dt.

Theorem 5.1 For the 2D stochastic system (47), the rate of information flow from x2 to x1 is

T2→1 = −E

(
1

ρ1

∂(F1ρ1)

∂x1

)
+

1

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
(52)

where E is the expectation with respect to ρ(x1, x2).

It has been a routine to check for the obtained flow the property of causality or asymmetry. Here in
Equation (52), the first term on the right hand side is from the deterministic part of the system, which has
been checked before. For the second term, if b11, b12, and hence g11 =

∑
k b1kb1k have no dependence

on x2, then the integration with respect to x2 can be taken inside with ρ/ρ1 or ρ(x2|x1), and results in 1.
The remaining part is in a divergence form, which, by the assumption of compact support, gives a zero
contribution from the stochastic perturbation. We therefore have the following theorem:

Theorem 5.2 If, in the stochastic system (47), the evolution of x1 is independent of x2, then T2→1 = 0.

The above argument actually has more implications. Suppose B = (bij) are independent of x, i.e., the
noises are uncorrelated with the state variables. This model is indeed of interest, as in the real world, a
large portion of noises are additive; in other words, bij , and hence gij , are constant more often than not.
In this case, no matter what the vector field F is, by the above argument the resulting information flows
within the system will involve no contribution from the stochastic perturbation. That is to say,
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Theorem 5.3 Within a stochastic system, if the noise is additive, then the information flows are the same
in form as that of the corresponding deterministic system.

This theorem shows that, if only information flows are considered, a stochastic system with additive
noise functions just like deterministic. Of course, the resemblance is limited to the form of formula; the
marginal density ρ1 in Equation (52) already takes into account the effect of stochasticity, as can be seen
from the integrated Fokker–Planck Equation (49). A more appropriate statement might be that, for this
case, stochasticity is disguised within the formula of information flow.

6. Applications

Since its establishment, the formalism of information flow has been applied with a variety of
dynamical system problems. In the following we give a brief description of these applications.

6.1. Baker Transformation

The baker transformation as a prototype of an area-conserving chaotic map is one of the most studied
discrete dynamical systems. Topologically it is conjugate to another well-studied system, the horseshoe
map, and has been be used to model the diffusion process in real physical world.

The baker transformation mimicks the kneading of dough: first the dough is compressed, then cut in
half; the two halves are stacked on one another, compressed, and so forth. Formally, it is defined as a
mapping on the unit square Ω = [0, 1]× [0, 1], Φ : Ω → Ω,

Φ(x1, x2) =

{
(2x1,

x2

2
), 0 ≤ x1 ≤ 1

2
, 0 ≤ x2 ≤ 1

(2x1 − 1, 1
2
x2 +

1
2
), 1

2
< x1 ≤ 1, 0 ≤ x2 ≤ 1

(53)

with a Jacobian J = det
[
∂(Φ1(x),Φ2(x))

∂(x1,x2)

]
= 1. This is the area-conserving property, which, by

Equation (28) yields ∆H = E log |J | = 0; that is to say, the entropy is also conserved. The
nonvanishing Jacobian implies that it is invertible; in fact, it has an inverse

Φ−1(x1, x2) =

{
(x1

2
, 2x2), 0 ≤ x2 ≤ 1

2
, 0 ≤ x1 ≤ 1

(x1+1
2

, 2x2 − 1), 1
2
≤ x2 ≤ 1, 0 ≤ x1 ≤ 1

(54)

Thus the F-P operator P can be easily found

Pρ(x1, x2) = ρ
[
Φ−1(x1, x2)

]
·
∣∣J−1

∣∣ = { ρ(x1

2
, 2x2), 0 ≤ x2 <

1
2

ρ(1+x1

2
, 2x2 − 1), 1

2
≤ x2 ≤ 1

(55)

First compute T2→1, the information flow from x2 to x1. Let ρ1 be the marginal density of x1 at time
step τ . Taking integration of Equation (55) with respect to x2, one obtains the marginal density of x1 at
τ + 1

(Pρ)1(x1) =

∫ 1/2

0

ρ(
x1

2
, 2x2) dx2 +

∫ 1

1/2

ρ(
x1 + 1

2
, 2x2 − 1) dx2

=
1

2

∫ 1

0

[
ρ
(x1

2
, x2

)
+ ρ

(
x1 + 1

2
, x2

)]
dx2
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=
1

2

[
ρ1

(x1

2

)
+ ρ1

(
x1 + 1

2

)]
(56)

One may also compute the marginal entropy H1(τ + 1), which is an entropy functional of (Pρ)1.
However, here it is not necessary, as will soon become clear.

If, on the other hand, x2 is frozen as a parameter, the transformation (53) then reduces to a dyadic
mapping in the stretching direction, Φ1 : [0, 1] → [0, 1], Φ1(x1) = 2x1 (mod 1). For any 0 < x1 < 1,
The counterimage of [0, x1] is

Φ−1([0, x1]) =
[
0,

x1

2

]
∪
[
1

2
,
1 + x1

2

]
So

(P\2ρ)1(x1) =
∂

∂x1

∫
Φ−1([0,x1])

ρ(s) ds

=
∂

∂x1

∫ x1/2

0

ρ(s) ds+
∂

∂x1

∫ (1+x1)/2

1/2

ρ(s) ds

=
1

2

[
ρ
(x1

2

)
+ ρ

(
1 + x1

2

)]
Two observations: (1) This result is exactly the same as Equation (56), i.e., (P\2ρ)1 is equal to (Pρ)1.
(2) The resulting (P\2ρ)1 has no dependence on the parameter x2. The latter helps to simplify the
computation of H1\2(τ + 1) in Equation (22): Now the integration with respect to x2 can be taken
inside, giving

∫
ρ(x2|x1)dx2 = 1. So H1\2(τ + 1) is precisely the entropy functional of (P\2ρ)1. But

(P\2ρ)1 = (Pρ)1 by observation (1). Thus H1(τ + 1) = H1\2(τ + 1), leading to a flow/transfer

T2→1 = 0 (57)

The information flow in the opposite direction is different. As above, first compute the
marginal density

(Pρ)2(x2) =

∫ 1

0

Pρ(x1, x2) dx1 =

{ ∫ 1

0
ρ
(
x1

2
, 2x2

)
dx1, 0 ≤ x2 <

1
2∫ 1

0
ρ
(
x1+1
2

, 2x2 − 1
)
dx1,

1
2
≤ x2 ≤ 1

(58)

The marginal entropy increase of x2 is then

∆H2 = −
∫ 1

0

∫ 1

0

Pρ(x1, x2) ·
[
log

(∫ 1

0

Pρ(λ, x2)dλ

)]
dx1dx2

+

∫ 1

0

∫ 1

0

ρ(x1, x2) ·
[
log

(∫ 1

0

ρ(λ, x2)dλ

)]
dx1dx2, (59)

which is reduced to, after some algebraic manipulation,

∆H2 = − log 2 + (I + II) (60)

where

I =

∫ 1

0

∫ 1/2

0

ρ(x1, x2) ·

[
log

∫ 1

0
ρ(λ, x2)dλ∫ 1/2

0
ρ(λ, x2)dλ

]
dx1dx2 (61)

II =

∫ 1

0

∫ 1

1/2

ρ(x1, x2) ·

[
log

∫ 1

0
ρ(λ, x2)dλ∫ 1

1/2
ρ(λ, x2)dλ

]
dx1dx2 (62)
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To compute H2\1, freeze x1. The transformation is invertible and the Jacobian J2 is equal to a constant
1
2
. By Theorem 3.2,

∆H2\1 = E log
1

2
= − log 2 (63)

So,

T1→2 = ∆H2 −∆H2\1 = I + II (64)

In the expressions for I and II , since both ρ and the terms within the brackets are nonnegative, I+II ≥ 0.
Furthermore, the two brackets cannot vanish simultaneously, hence I + II > 0. By Equation (64) T1→2

is strictly positive; in other words, there is always information flowing from x1 to x2.
To summarize, the baker transformation transfers information asymmetrically between the two

directions x1 and x2. As the baker stretches the dough, and folds back on top the other, information
flows continuously from the stretching direction x1 to the folding direction x2 (T1→2 > 0), while no
transfer occurs in the opposite direction (T2→1 = 0). These results are schematically illustrated in
Figure 2; they are in agreement with what one would observe in daily life, as described in the beginning
of this review.

Figure 2. Illustration of the unidirectional information flow within the baker transformation.
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6.2. Hénon Map

The Hénon map is another most studied discrete dynamical systems that exhibit chaotic behavior.
Introduced by Michel Hénon as a simplified Poincaré section of the Lorenz system, it is a mapping
Φ = (Φ1,Φ2) : R2 7→ R2 defined such that{

Φ1(x1, x2) = 1 + x2 − ax2
1

Φ2(x1, x2) = bx1

(65)

with a > 0, b > 0. When a = 1.4, b = 0.3, the map is termed “canonical,” for which initially a point
will either diverge to infinity, or approach an invariant set known as the Hénon strange attractor. Shown
in Figure 3 is the attractor.
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Like the baker transformation, the Hénon map is invertible, with an inverse

Φ−1(x1, x2) =
(x2

b
, x1 − 1 +

a

b2
x2
2

)
(66)

The F-P operator thus can be easily found from Equation (18):

Pρ(x1, x2) = ρ(Φ−1(x1, x2))|J−1|
=

1

b
· ρ
(x2

b
, x1 − 1 +

a

b2
x2
2

)
(67)

In the following, we compute the flows/transfers between x1 and x2.

Figure 3. A trajectory of the canonical Hénon map (a = 1.4, b = 0.3) starting at
(x1, x2) = (1, 0).
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First, consider T2→1, i.e., the flow from the linear component x2 to the quadratic component x1. By
Equation (23), we need to find the marginal density of x1 at step τ + 1 with and without the effect of x2,
i.e., (Pρ)1 and (Pρ)1\2. With the F-P operator obtained above, (Pρ)1 is

(Pρ)1(x1) =

∫
R
Pρ(x1, x2) dx2

=

∫
R

1

b
· ρ
(x2

b
, x1 − 1 +

a

b
x2
2

)
dx2

=

∫
R
ρ(η, x1 − 1 + aη2) dη (x2/b ≡ η)

If a = 0, this integral would be equal to ρ2(x1−1). Note it is the marginal density of x2, but the argument
is x1 − 1. But here a > 0, the integration is taken along a parabolic curve rather than a straight line. Still
the final result will be related to the marginal density of x2; we may as well write it ρ̃2(x1), that is

(Pρ)1(x1) = ρ̃2(x1) (68)

Again, notice that the argument is x1.
To compute (P\2ρ)1, let

y1 ≡ Φ1(x1) = 1 + x2 − ax2
1
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following our convention to distinguish variables at different steps. Modify the system so that x2 is now
a parameter. As before, we need to find the counterimage of (−∞, y1] under the transformation with
x2 frozen:

Φ−1
1 ((−∞, y1]) =

(
−∞, −

√
(1 + x2 − y1)/a

]
∪
[√

(1 + x2 − y1)/a, ∞
)

Therefore,

(P\2ρ)1(y1) =
d

dy1

∫
Φ−1

1 ((−∞,y1])

ρ1(s) ds

=
d

dy1

∫ −
√

(1+x2−y1)/a

−∞
ρ1(s) ds+

d

dy1

∫ ∞

√
(1+x2−y1)/a

ρ1(s) ds

=
1

2
√
a(1 + x2 − y1)

[
ρ1

(
−
√
(1 + x2 − y1)/a

)
+ ρ1

(√
(1 + x2 − y1)/a

)]
(y1 < 1 + x2)

=
1

2a|x1|
[ρ1(−x1) + ρ1(x1)] . (recall y1 = 1 + x2 − ax2

1)

Denote the average of ρ1(−x1) and ρ1(x1) as ρ̄1(x1) to make an even function of x1. Then (P\2ρ)1

is simply

(P\2ρ)1(y1) =
ρ̄1(x1)

a|x1|
(69)

Note that the parameter x2 does not appear in the arguments. Furthermore, J1 = det
(

∂Φ1

∂x1

)
= −2ax1.

Substitute all the above into Equation (23) to get

T2→1 = −
∫
R
(Pρ)1(x1) · log(Pρ)1(x1) dx1

+

∫
R2

(P\2ρ)1(y1) log(Pρ)1\2(y1) · ρ(x2|x1) · |J1| dx1dx2

= −
∫
R
ρ̃2(x1) log ρ̃2(x1) dx1

+

∫
R

ρ̄1(x1)

a|x1|
log

ρ̄1(x1)

a|x1|
· |−2ax1| ·

[∫
R
ρ(x2|x1)dx2

]
dx1

The taking of the integration with respect to x2 inside the integral is legal since all the terms except the
conditional density are independent of x2. With the fact

∫
R ρ(x2|x1)dx2 = 1, and the introduction of

notations H̃ and H̄ for the entropy functionals of ρ̃ and ρ̄, respectively, we have

T2→1 = H̃2 − 2H̄1 − log |ax1| (70)

Next, consider T1→2, the flow from the quadratic component to the linear component. As a common
practice, one may start off by computing (Pρ)2 and (P\1ρ)2. However, in this case, things can be much
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simplified. Observe that, for the modified system with x1 frozen as a parameter, the Jacobian of the
transformation J2 = det

[
∂Φ2

∂x2

]
= 0. So, by Equation (24),

T1→2 = −
∫
R
(Pρ)2(x2) · log(Pρ)2(x2) dx2

+

∫
R
(P\1ρ)2(y2) · log(P\1ρ)2(y2) · ρ(x1|x2) · |J2| dx1dx2,

(y2 ≡ Φ2(x1, x2))

= −
∫
R
(Pρ)2(x2) · log(Pρ)2(x2) dx2

with Equation (67), the marginal density

(Pρ)2(x2) =

∫
R
Pρ(x1, x2) dx1

=

∫
R

1

b
ρ

(
x2

b
, x1 − 1 + a

x2
2

b2

)
dx1

=
1

b

∫
R
ρ(y, ξ) dξ =

1

b
ρ1

(x2

b

)
allowing us to arrive at an information flow from x1 to x2 in the amount of:

T1→2 = −
∫
R

1

b
ρ1

(x2

b

)
· log

[
1

b
ρ1

(x2

b

)]
dx2

= H1 + log b (71)

That is to say, the flow from x1 to x2 has nothing to do with x2; it is equal to the marginal entropy of x1,
plus a correction term due to the factor b.

The simple result of Equation (71) is remarkable; particularly, if b = 1, the information flow from x1

to x2 is just the entropy of x1. This is precisely what what one would expect of the mapping component
Φ2(x1, x2) = bx1 in Equation (65). While the information flow is interesting per se, it also serves as an
excellent example for the verification of our formalism.

6.3. Truncated Burgers–Hopf System

In this section, we examine a more complicated system, the Truncated Burgers–Hopf system (TBS
hereafter). Originally introduced by Majda and Timofeyev [55] as a prototype of climate modeling, the
TBS results from a Galerkin truncation of the Fourier expansion of the inviscid Burgers’ equation, i.e.,

∂u

∂t
+ u

∂u

∂x
= 0 (72)

to the nth order. Liang and Kleeman [51] examined such a system with two Fourier modes retained,
which is governed by 4 ordinary differential equations:

dx1

dt
= F1(x) = x1x4 − x3x2 (73)

dx2

dt
= F2(x) = −x1x3 − x2x4 (74)

dx3

dt
= F3(x) = 2x1x2 (75)

dx4

dt
= F4(x) = −x2

1 + x2
2 (76)
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Despite its simplicity, the system is intrinsically chaotic, with a strange attractor lying within

[−24.8, 24.6]× [−25.0, 24.5]× [−22.3, 21.9]× [−23.7, 23.7]

Shown in Figure 4 are its projections onto the x1-x2-x4 and x1-x3-x4 subspaces, respectively.
Finding the information flows within the TBS system turns out to be a challenge in computation, since

the Liouville equation corresponding to Equations (73)–(76) is a four-dimensional partial differential
equation. In [51], Liang and Kleeman adopt a strategy of ensemble prediction to reduce the computation
to an acceptable level. This is summarized in the following steps:

1. Initialize the joint density of (x1, x2, x3, x4) with some distribution ρ0; make random draws
according to ρ0 to form an ensemble. The ensemble should be large enough to resolve adequately
the sample space.

2. Discretize the sample space into “bins.”
3. Do ensemble prediction for the system (73)–(74).
4. At each step, estimate the probability density function ρ by counting the bins.
5. Plug the estimated ρ back to Equation (39) to compute the rates of information flow at that step.

Figure 4. The invariant attractor of the truncated Burgers–Hopf system (73)–(76). Shown
here is the trajectory segment for 2 ≤ t ≤ 20 starting at (40, 40, 40, 40). (a) and (b) are the
3-dimensional projections onto the subspaces x1-x2-x3 and x2-x3-x4, respectively.
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Notice that the invariant attractor in Figure 4 allows us to perform the computation on a compact subspace
of R4. Denote by [−d, d]4 the Cartesian product [−d, d] × [−d, d] × [−d, d] × [−d, d]. Obviously,
[−30, 30]4 is large enough to cover the whole attractor, and hence can be taken as the sample space.
Liang and Kleeman [51] discretize this space into 304 bins. With a Gaussian initial distribution N(µ,Σ),
where

µ =


µ1

µ2

µ3

µ4

 , Σ =


σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


they generate an ensemble of 2,560,000 members, each steered independently under the system (73)–(76).
The details about the sample space discretization, probability estimation, etc., are referred to [51]. Shown
in the following are only the major results.

Between the four components of the TBS system, pairwise there are 12 information flows, namely,

T2→1, T3→1, T4→1

T1→2, T3→2, T4→2

T1→3, T2→3, T4→3

T1→4, T2→4, T3→4

To compute these flows, Liang and Kleeman [51] have tried different parameters µ and σ2
k (k = 1, 2, 3, 4),

but found the final results are the same after t = 2 when the trajectories are attracted into the invariant
set. It therefore suffices to show the result of just one experiment: µk = 9 and σ2

k = 9, k = 1, 2, 3, 4.

Figure 5. Information flows within the 4D truncated Burgers-Hopf system. The series prior
to t = 2 are not shown because some trajectories have not entered the attractor by that time.
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Plotted in Figure 5 are the 12 flow rates. First observe that T3→4 = T4→3 = 0. This is easy to
understand, as both F3 and F4 in Equations (75) and (76) have no dependence on x3 nor on x4,
implying a zero flow in either direction between the pair (x3, x4) by the property of causality. What
makes the result remarkable is, besides T3→4 and T4→3, essentially all the flows, except T3→2, are
negligible, although obvious oscillations are found for T2→1, T3→1, T1→2, T4→1, T2→3, and T2→4. The
only significant flow, i.e., T3→2, means that, within the TBS system, it is the fine component that causes
an increase in uncertainty in a coarse component but not conversely. Originally the TBS was introduced
by Majda and Timofeyev [55] to test their stochastic closure scheme that models the unresolved high
Fourier modes. Since additive noises are independent of the state variables, information can only be
transferred from the former to the latter. The transfer asymmetry observed here is thus reflected in the
scheme.

6.4. Langevin Equation

Most of the applications of information flow/transfer are expected with stochastic systems. Here we
illustrate this with a simple 2D system, which has been studied in reference [54] for the validation of
Equation (52):

dx = Axdt+ Bdw (77)

where A = (aij) and B = (bij) are 2 × 2 constant matrices. This is the linear version of
Equation (47). Linear systems are particular in that, if initialized with a normally distributed
ensemble, then the distribution of the variables will be a Gaussian subsequently (e.g., [56]). This greatly
simplifies the computation which, as we have seen in the previous subsection, is often a formidable task.

Let x ∼ N (µ,Σ). Here µ =

(
µ1

µ2

)
is the mean vector, and Σ =

(
σ2
1 σ12

σ21 σ2
2

)
the covariance

matrix; they evolve as

dµ/dt = A µ (78a)

dΣ/dt = A Σ+Σ AT + B BT (78b)

(BBT is the matrix (gij) we have seen in Section 5), which determine the joint density of x:

ρ(x) =
1

2π (detΣ)1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (79)

By Theorem 5.1, the rates of information flow thus can be accurately computed.
Several sets of parameters have been chosen in [54] to study the model behavior. Here we just look

at one such choice: B =

(
1 1

1 1

)
, A =

(
−0.5 0.1

0 −0.5

)
. Its corresponding mean and covariance

approach to an equilibrium: µ(∞) =

(
0

0

)
, Σ(∞) =

(
2.44 2.2

2.2 2

)
. Shown in Figure 6 are the

time evolutions of µ and Σ initialized with µ(0) =

(
1

2

)
and Σ(0) =

(
9 0

0 9

)
, and a sample
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path of x starting from (1, 2). The computed rates of information flow, T2→1 and T1→2, are plotted
in Figure 7a and b. As time moves on, T2→1 increases monotonically and eventually approaches a
constant; on the other hand, T1→2 vanishes throughout. While this is within one’s expectations, since
dx2 = −0.5x2dt + dw1 + dw2 has no dependence on x1 and hence there should be no transfer of
information from x1 to x2, it is interesting to observe that, in contrast, the typical paths of x1 and x2

could be highly correlated, as shown in Figure 6c. In other words, for two highly correlated time series,
say x1(t) and x2(t), one series may have nothing to do with the other. This is a good example illustrating
how information flow extends the classical notion of correlation analysis, and how it may be potentially
utilized to identify the causal relation between complex dynamical events.

Figure 6. A solution of Equation (78), the model examined in [54], with a21 = 0 and initial
conditions as shown in the text: (a) µ; (b) Σ; and (c) a sample path starting from (1,2).
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Figure 7. The computed rates of information flow for the system (77): (a) T2→1, (b) T1→2.
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7. Summary

The past decades have seen a surge of interest in information flow (or information transfer, as it is
sometimes called) in different fields of scientific research, mostly in the appearance of some
empirical/half-empirical form. We have shown that, given a dynamical system, deterministic or
stochastic, this important notion can actually be formulated on a rigorous footing, with flow measures
explicitly derived. The general results are summarized in the theorems in Sections 3, 4 and 5. For
two-dimensional systems, the result is fairly tight. In fact, if writing such a system as{

dx1 = F1(x, t)dt+ b11(x, t)dw1 + b12(x, t)dw2

dx2 = F2(x, t)dt+ b21(x, t)dw1 + b22(x, t)dw2

where (w1, w2) are standard Wiener processes, we have a rate of information flowing from x2 to x1,

T2→1 = −E

(
F1

∂ log ρ1
∂x1

)
− E

(
∂F1

∂x1

)
+

1

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
This is an alternative expression of that in Theorem 5.1; T1→2 can be obtained by switching the
subscripts 1 and 2. In the formula, g11 =

∑
k b

2
1k, ρ1 is the marginal density of x1, and E stands for

mathematical expectation with respect to ρ, i.e., the joint probability density. On the right-hand side, the
third term is contributed by the Brownian notion; if the system is deterministic, this term vanishes. In the
remaining two terms, the first is the tendency of H1, namely the marginal entropy of x1; the second can
be interpreted as the rate of H1 increase on x1 its own, thanks to the law of entropy production (12) [49],
which we restate here:

For an n-dimensional system dx
dt

= F(x, t), its joint entropy H evolves as dH
dt

= E(∇ · F)

This interpretation lies at the core of all the theories along this line. It illustrates that the marginal entropy
increase of a component, say, x1, is due to two different mechanisms: the information transferred from
some component, say, x2, and the marginal entropy increase associated with a system without taking x2

into account. On this ground, the formalism is henceforth established, with respect to discrete mappings,
continuous flows, and stochastic systems, respectively. Correspondingly, the resulting measures are
summarized in Equations (24), (39) and (52).

The above-obtained measures possess several interesting properties, some of which one may expect
based on daily life experiences. The first one is a property of flow/transfer asymmetry, which has been
set as the basic requirement for the identification of causal relations between dynamical events. The
information flowing from one event to another event, denoted respectively as x2 and x1, may yield no
clue about its counterpart in the opposite direction, i.e., the flow/transfer from x1 to x2. The second says
that, if the evolution of x1 is independent of x2, then the flow from x2 to x1 is zero. The third one is about
the role of stochasticity, which asserts that, if the stochastic perturbation to the receiving component does
not rely on the given component, the flow measure then has a form same as that for the corresponding
deterministic system. As a direct corollary, when the noise is additive, then in terms of information flow,
the stochastic system functions in a deterministic manner.

The formalism has been put to application with benchmark dynamical systems. In the context
of the baker transformation, it is found that there is always information flowing from the stretching
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direction to the folding direction, while no flow exists conversely. This is in agreement with what
one would observe in kneading dough. Application to the Hénon map also yields a result just as
expected on physical grounds. In a more complex case, the formalism has been applied to the study of the
scale–scale interaction and information flow between the first two modes of the chaotic truncated
Burgers equation. Surprisingly, all the twelve flows are essentially zero, save for one strong flow from
the high-frequency mode to the low-frequency mode. This demonstrates that the route of information
flow within a dynamical system, albeit seemingly complex, could be simple. In another application, we
test how one may control the information flow by tuning the coefficients in a two-dimensional Langevin
system. A remarkable observation is that, for two highly correlated time series, there could be no transfer
from one certain series, say x2, to the other (x1). That is to say, the evolution of x1 may have nothing
to do with x2, even though x1 and x2 are highly correlated. Information flow/transfer analysis thus
extends the traditional notion of correlation analysis and/or mutual information analysis by providing a
quantitative measure of causality between dynamical events, and this quantification is based firmly on a
rigorous mathematical and physical footing.

The above applications are mostly with idealized systems; this is, to a large extent, intended for the
validation of the obtained flow measures. Next, we would extend the results to more complex systems,
and develop important applications to realistic problems in different disciplines, as envisioned in the
beginning of this paper. The scale–scale information flow within the Burgers–Hopf system in § 6.3,
for example, may be extended to the flow between scale windows. By a scale window we mean,
loosely, a subspace with a range of scales included (cf. [57]). In atmosphere–ocean science, important
phenomena are usually defined on scale windows, rather than on individual scales (e.g., [58]). As
discussed in [53], the dynamical core of the atmosphere and ocean general
circulation models is essentially a quadratically nonlinear system, with the linear and nonlinear operators
possessing certain symmetry resulting from some conservation properties (such as energy conservation).
Majda and Harlim [53] argue that the state space may be decomposed into a direct sum of scale windows
which inherit evolution properties from the quadratic system, and then information flow/transfer may be
investigated between these windows. Intriguing as this conceptual model might be, there still exist some
theoretical difficulties. For example, the governing equation for a window may be problem-specific;
there may not be such governing equations as simply written as those like Equation (3) for individual
components. Hence one may need to seek new ways to the derivation of the information flow formula.
Nonetheless, central at the problem is still the aforementioned classification of mechanisms that govern
the marginal entropy evolution; we are expecting new breakthroughs along this line of development.

The formalism we have presented thus far is with respect to Shannon entropy, or absolute entropy
as one may choose to refer to it. In many cases, such as in the El Niño case where predictability is
concerned, this may need to be modified, since the predictability of a dynamical system is measured by
relative entropy. Relative entropy is also called Kullback–Leibler divergence; it is defined as

D(ρ∥q) = Eρ

[
log

(
ρ

q

)]
i.e., the expectation of the logarithmic difference between a probability ρ and another reference
probability q, where the expectation is with respect to ρ. Roughly it may be interpreted as the
“distance” between ρ and q, though it does not satisfy all the axioms for a distance functional.
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Therefore, for a system, if letting the reference density be the initial distribution, its relative entropy
at a time t informs how much additional information is added (rather than how much information it
has). This provides a natural choice for the measure of the utility of a prediction, as pointed out by
Kleeman (2002) [59]. Kleeman also argues in favor of relative entropy because of its appealing
properties, such as nonnegativity and invariance under nonlinear transformations [60]. Besides, in the
context of a Markov chain, it has been proved that it always decreases monotonically with time, a
property usually referred to as the generalized second law of thermodynamics (e.g., [60,61]). The
concept of relative entropy is now a well-accepted measure of predictability (e.g., [59,62]). When
predictability problems (such as those problems in atmosphere-ocean science and financial economics
as mentioned in the introduction) are dealt with, it is necessary to extend the current formalism to one
with respect to the relative entropy functional. For all the dynamical system settings in this review, the
extension should be straightforward.
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