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Abstract: In this paper, the fault detection in uncertain multivariate nonlinear non-Gaussian
stochastic systems is further investigated. Entropy is introduced to characterize the stochastic
behavior of the detection errors, and the entropy optimization principle is established for
the fault detection problem. The principle is to maximize the entropies of the stochastic
detection errors in the presence of faults and to minimize the entropies of the detection errors
in the presence of disturbances. In order to calculate the entropies, the formulations of the
joint probability density functions (JPDFs) of the stochastic errors are presented in terms of
the known JPDFs of both the disturbances and the faults. By using the novel performance
indexes and the formulations for the entropies of the detection errors, new fault detection
design methods are provided for the considered multivariate nonlinear non-Gaussian plants.
Finally, a simulation example is given to illustrate the efficiency of the proposed fault
detection algorithm.
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1. Introduction

Fault detection (FD) has long been regarded as an important and integrated part in modern
control systems for improving reliability [1–10]. The so-far obtained approaches include the system
identification technique [2] and the statistic approaches based on the Bayesian theorem, likelihood
methods and hypothesis test techniques [11]. Besides, filters or observers have been widely used to
generate the residual signal for fault detection and estimation [2,6,8,9,12–20].

Among the above results, for dynamic stochastic systems, the filter-based approach has been shown
as an effective way where generally the noises or disturbances are supposed to be Gaussian [21,22] and
the filter design objective is to realize a minimum variance residual. However, in many chemical and
manufacturing processes, the inputs involved are non-Gaussian[19,20,23–26]. For example, in paper
making, the length of fibre and the size of filling molecular weight are important input variables, but
none of them would obey a Gaussian distribution. This is simply because most random variables and
random processes are bounded in paper web formation system. Actually, even for stochastic systems with
Gaussian inputs, nonlinearities in the system may lead to non-Gaussian outputs. For the non-Gaussian
variables (vectors), it is well-known that the expectation and variance are insufficient to characterize
their statistics. As a result, new measures should be adopted. Entropy is a known measure that describes
the average information contained in the given PDF (JPDF), which has been widely used in information,
thermodynamics and control fields [6,8,27–30]. By minimizing the entropy, higher order moments can
be minimized with respect to the random variables [13,26,27,31–33].

Nevertheless, since entropy is an integral operation of PDF while a PDF is a non-linear function with
an integral constraint and a positive constraint, it is not easy to find the dynamical relationships between
the PDFs of the input and the concerned output and further to formulate the entropies of the distribution
of outputs. Besides, for random vectors, the formulation for the JPDF of the output becomes much
more complicated than the case of random variables even if the transform matrix is linear. For example,
in [6], πk+1 ∈ [a, b]n is supposed to be a non-Gaussian continuous random vector, Dk ∈ Rm×n, after
the multivariate mapping θk+1 = Dkπk+1, the JPDF of θk+1 should be discussed for three different cases
based on Dk and θk+1 is not continuous any more except that Dk is invertible. Thus, the existing concept
of entropy has to be extended. In fact, the approach presented in [6] holds only for linear systems with
special form of system matrices when applied to FD.

In this paper, the filter-based FD approach for uncertain multivariate nonlinear non-Gaussian
stochastic system is further investigated using the entropy optimization principle. Firstly, a novel filtering
and filter-based FD framework is established to construct a residual such that the fault can be detected
from the changes of the residual. Secondly, the formulations between the JPDFs of the disturbances
and faults and those of the detection errors are established. The entropy optimization principles are then
presented to calculate the gain matrix of the optimal FD filter.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries. In
Section 2.1 and Section 2.2, the nonlinear difference model and the corresponding filter model are
described. In Section 2.3, the definition of entropy is introduced for the detection errors and the basic
relationships are formulated between the entropy of the input and the output. The main results are
given in Section 3, where the entropy optimization performance index is proposed in Section 3.1 and
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its corresponding formulations for entropies are established in Section 3.2. In order to calculate the
JPDFs of the detection errors, the simplified algorithms are provided in Section 3.3 and the FD filtering
algorithms are finally given in Section 3.4 to compute the optimal FD filter gain using the proposed
entropy optimization principle. A simple simulation example is provided in Section 4 to demonstrate the
effectiveness of the main results. Conclusion is given in Section 5.

In the following, unless stated otherwise, matrices are assumed to have compatible dimensions. The
identity and zero matrices are denoted by I and 0 respectively with appropriate dimensions. For a square
matrix M , its inverse and determinant are denoted by M−1 and detM respectively. For two real vectors
v1 and v2, the notation v1 ⪰ v2 means that every element of v1 is no less than the corresponding one of v2
and ∥v1∥2 is used to denote the Euclidean norm. For a multivariate nonlinear smooth function y = g(x),
∂g(x)
∂x

denotes its Jacobian matrix. For a random vector z, the formula P{z ⪯ τ} represents the joint
probability of event z ⪯ τ , Fz(·) denotes its joint probability distribution function, γz(·) denotes the
corresponding joint probability density function (JPDF), and H(z), ε(z) are used to denote its entropy
and expectation, respectively.

2. Preliminary

2.1. Plant Models

Consider a multivariate nonlinear stochastic discrete-time system described by xk+1 = F0(xk, δk, wk) +△F
yk = G(xk, vk)

(1)

where xk ∈ Rn is the state, yk ∈ Rm is the output, wk ∈ Rp is the stochastic disturbance input, vk ∈ Rm

is the disturbance influencing on the output and δk ∈ Rq is the fault to be detected. F0(., ., .) is a known
multivariate Borel measurable and smooth nonlinear functions of their arguments, △F represents the
uncertainty satisfying ∥△F∥2 ≤ δ0 and | det ∂F0(.,.,.)

∂wk
| ̸= 0 holds for any wk ∈ [a, b]p.

It should be pointed out that δk, wk and vk are supposed to be arbitrary bounded independent random
vectors rather than Gaussian ones, which is different from the existing FD approaches based on the
Kalman filtering theory. It is noted that δk can also represent the abrupt change of the model parameters.
This model is actually a generalization of those where only additive faults or unexpected changes of
model parameters are concerned.

To simplify the FD design procedures, the following assumptions are required, which can be satisfied
by many practical processes.

Assumption 1. x0, δk, vk and wk (k = 0, 1, 2, · · ·) are bounded, mutually independent random vectors
with known JPDFs denoted as γx0(τ), γδ(τ), γv(τ) and γw(τ), respectively. γw(τ) = γw0(τ) +△γw(τ)
where γw0(τ) is a known function defined on [a, b]p and △γw(τ) satisfies ∥△γw(τ)∥2 ≤ δ1.

Generally speaking, two groups of approaches can be used to determine γx0(τ), γδ(τ), γv(τ), and
γw(τ). One is the direct measurement using some advanced instruments such as the digital camera.
For example, with the developments in image processing, several digital cameras have been used to
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measure the distribution of the flame in the flame combustion system, which can be further transformed
into the temperature distribution. The other is the kernel estimation technique based on the open loop
test [34]. In some practical processes (e.g., paper web formation control and particle size distribution
control), enormous data can be stored and used to analyze the model of both the disturbances and
the faults, with which some probabilistic properties can also be obtained, where the involved random
vectors (including both the disturbances and the faults) may also obey the non-Gaussian statistic
behaviour [14,15,18,32,35].

Assumption 2. F0(·, ·, ·) is a known multivariate Borel measurable and smooth nonlinear functions of
their arguments, where F0(0, 0, 0) = 0 holds.

Assumption 3. G(·, ·) = Ckxk +Dkvk, where Ck ∈ Rm×n and m ≤ n hold. Further, Ck is with a full
row rank at every sample time, and its first m columns also have full rank (otherwise, the column can be
re-arranged to guarantee this assumption). Dk ∈ Rm×m is an invertible matrix.

2.2. Filter and Error Dynamics

For the nonlinear dynamic system given by (1), the filter can be described by x̂k+1 = F0(x̂k, 0, 0) + Uk(yk − ŷk)

ŷk = Ckx̂k
(2)

where Uk ∈ Rn×m is the filter matrix gain to be determined. Combining (1) with (2), the resulting
estimation error ek = xk − x̂k satisfies

ek+1 = Φ(xk, δk, wk) (3)

= F0(xk, δk, wk) +△F − Ukyk − F0(x̂k, 0, 0) + Ukŷk (4)

The residual signal for the fault detection is therefore defined by

êk = yk − ŷk = Ckek +Dkvk (5)

Related to (4), the vector denoted by

θk = −Ukyk − F0(x̂k, 0, 0) + Ukŷk (6)

can be regarded as a deterministic term with an unknown matrix gain Uk. The main difficulty is that the
term F0(xk, δk, wk) in (4) is both nonlinear and multivariate at each sample time. As the detection error,
it is supposed that êk is defined on [α, β]m, where α and β can also be respectively chosen as −∞ and
+∞. In the following, we will establish the relationships recursively between the JPDFs of x0, δk, vk
and wk with êk.

Remark 1. In [8], ek is considered instead of êk for simplicity based on a rigorous assumption, which
may lead to considerable conservations. As such, in this note, êk will be concerned directly for which êk
should be affected primarily by the fault δk and minimally by the disturbances vk and wk.
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2.3. Entropy and Its Formulation

H(z) can be regarded as a measure of randomness of z, which is defined as follows.

Definition 1. The entropy for a continuous random vector z is defined by

H(z) =

 −
∫
[α,β]l γz(τ) ln (γz(τ)) dτ γz(τ) > 0

0 γz(τ) = 0
(7)

where γz(τ) is denoted as the JPDF of z, z ∈ [α, β]l.

Based on Remark 1, the main task for fault detection is to find Uk such that H(êk) can be influenced
by δk maximally and by wk or vk minimally.

It can be shown that H(êk), as the conditional entropies of xk−1, δk, vk, wk, △F and Uk, is actually
a functional of γδ(τ), γv(τ), γw(τ) and γxk−1

(τ) as well as the underdetermined gain Uk, which can be
further represented by H(êk | xk−1, δk, wk, vk,△F,Uk). In order to calculate the entropies, the JPDFs
of the errors have to be formulated in advance. The following result reveals the relationship between the
JPDFs of the input and output, subject to a multivariate nonlinear mapping.

Lemma 1. For a multivariate Borel smooth function φ = Γ(σ), if σ is a random vector with known
JPDF γσ(τ), the JPDFs of φ can be given by

γφ(τ) =
d
[∫

Ωk(τ)
γσk

(ρ)dρ
]

dρ
(8)

where for a given τ,Ωk(τ) is the definition domain of the random vector σ with Ωk(τ) = {ρ | Γ(ρ) ⪯ τ}.

Proof: For a given τ , Ωk(τ) is the set consisting of all events ρ such that Γ(ρ) ⪯ τ . For the concerned
function, φ is also a random vector. Based on Probability theory [27], the joint distribution function of
φ can be given by

Fφ(τ) = P{φ ⪯ τ} =
∫
Ωk(τ)

γσk
(ρ)dρ (9)

Hence, Equation (8) can be obtained by taking derivatives on both sides of (9). Q.E.D

The next step is to consider the special relationship between êk and the terms ek, vk in (5), which is
related to the linear mapping φ = Θσ, where Θ ∈ Rm×n is a compatible real matrix.

In the following, Lemma 2 and Lemma 3 will be given respectively according to whether the
concerned matrix Θ is invertible.

Lemma 2. If m = n and Θ is invertible, the following relationship holds

γφ(τ) = γσ
(
Θ−1τ

) ∣∣∣detΘ−1
∣∣∣ (10)
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Proof: If Θ is invertible, it can be verified that for given τ , there exists τ0 such that τ0 = Θ−1τ . Thus,
by using Lemma 1, we have

γφ(τ)dτ = P{τ ≺ φ ⪯ τ + dτ} = P{τ0 ≺ σ ⪯ τ0 + dτ0} = γσ(τ0)dτ0 = γσ(Θ
−1τ)

∣∣∣detΘ−1
∣∣∣ dτ

This process also can be regarded as a generalization of the classical relationship for random variables
(see, e.g., Chapter 6, [27]). Q.E.D

In the other case, Θ is a singular matrix. Corresponding to the structure of Ck, supposing Θ is with a
full row rank. In this case, there exist a low-triangle invertible matrix T1 and an upper-triangle invertible
matrix T2 such that

T1ΘT2 =
[
Im 0

]
(11)

where Im represents an m−dimensional identical matrix and T2 is invertible with positive diagonal
elements.

To simplify the presentation, we denote

φ̃ :=

 φ̃(1)

φ̃(2)

 = T1φ, σ̃ := T−1
2 σ =

 σ̃(1)

σ̃(2)

 , τ̃ := T1τ =

 τ̃ (1)

τ̃ (2)

 (12)

with compatible dimensions. This implies

φ̃ =
[
I m 0

]
σ̃ = σ(1) (13)

Lemma 3. If Θ ∈ Rm×n is with full row rank and m < n, then for the linear mapping φ = Θσ, the
following relationship holds

γφ(τ) =
∫
[a,b]n−m

γσ(η) |detT1| |detT2| dτ̃ (2) (14)

with the auxiliary integral argument η being denoted by η :=
[
(T2T1τ)

T (T2τ̃
(2))T

]T
, where T1 and

T2 are denoted by (11) and τ̃ (2) is denoted by (12).

Proof: To complete the required proof, there are three tasks to be achieved: (1) find γσ̃ in terms of γσ;
(2) formulate γφ̃ in terms of γσ̃; (3) represent γφ in terms of γφ̃.

Based on Lemma 1, task 1 and 3 can be solved as follows. From (12), it can be shown that the JPDFs
of φ̃ and σ̃ should satisfy

γφ(τ) = γφ̃ (T1τ) |detT1| , γσ̃(ϵ) = γσ (T2ϵ) |detT2| (15)

On the other hand, (13) implies that

P
{
φ̃ ⪯ τ̃ (1)

}
= P{σ̃(1) ⪯ τ̃ (1), σ̃(2) ∈ [a, b]n−m} (16)

It is noted that both τ̃ (1) and σ̃(1) are m−dimensional sub-vectors as defined by (12). Thus, we have

Fφ̃(τ̃
(1)) = Fσ̃(1)(τ̃ (1)) =

∫
[a,b]n−m

Fσ̃(τ̃)dτ̃
(2)
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which means that

γφ̃(τ̃
(1)) =

∂Fφ̃(τ̃
(1))

∂τ̃ (1)
=
∂Fσ̃(1)(τ̃ (1))

∂τ̃ (1)

= γσ̃(1)(τ̃ (1)) =
∫
[a,b]n−m

γσ̃(τ̃)dτ̃
(2) (17)

As such, task 2 is completed. Combining (15) with (17) yields (14). Q.E.D

Remark 2. In Lemma 3, if m = n, according to matrix theory, T2 = T
′
1 holds. In this case, Θ =

(T2T1)
−1 and

γφ(τ) = γσ(η) |detT1| |detT2|
= γσ(T2T1τ) |detT2T1|
= γσ(Θ

−1τ)
∣∣∣detΘ−1

∣∣∣
which implies that Lemma 3 is consistent with Lemma 2 when both the row rank and the column rank
of Θ is m.

3. Main Results

3.1. Performance Indexes

Following the above procedures, the fault detection objective can be performed by judging the changes
of êk at every sample time, where the entropies of êk only in the presence of vk and wk are minimized,
but the entropies resulting from δk are maximized. After the corresponding performance indexes are
established, the involved filter gain can be designed based on the entropy optimization principle.

Generally speaking, there are two main tasks to finish in the following procedures. The first one is to
provide appropriate optimization principles to achieve the FD objectives, which are represented by the
entropies of êk. The second one is to formulate the entropies and PDFs of êk in terms of the PDFs of x0,
vk, wk and xk, δk, as well as ∆F .

In this subsection, we will focus on the entropy optimization principle. The JPDF of êk(ek) in the
presence of vk, wk and ∆F and in the absence of δk can be represented by γ0êk(γ0ek), while that in the
presence of δk,∆F and in the absence of vk, wk can be represented by γ1êk(γ1ek). Similarly, we denote
H0(êk | xk−1, vk, wk, Uk,∆F ) (H1(êk | xk−1, δk, Uk,∆F )) as the entropy of êk in the presence of
vk, wk,∆F and in the absence of δk (in the presence of δk,∆F and in the absence of vk, wk). Concretely
it can be further denoted that for i = 0, 1,

H i(êk) =

 −
∫
[α,β]m γ

i
êk
(τ) ln

(
γiêk(τ)

)
dτ γiêk(τ) > 0

0 γiêk(τ) = 0
(18)

where H i(êk) (i = 0, 1) represents the conditional entropies H0(êk | xk−1, vk, wk, Uk,∆F ) and H1(êk |
xk−1, δk, Uk,∆F ) respectively for brevity.

Based on (2), (4), (5) and Assumption 3, it can be claimed that only the first m rows of Uk are
related to H i(êk+1) while the last n−m rows are irrelevant to the entropy. This means that in this case,
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Uk,m+1, · · · , Uk,n in (19) are redundant vectors for the optimization, where Uk,m+1 = · · · = Uk,n = 0 can
be selected under this circumstance.

Since Uk is an n×m matrix, in order to use conventional optimization techniques, we denote

Uk = [UT
k1 · · ·UT

kn]
T , uk = [Uk1 · · ·Ukn]

T (19)

where Uki is the row vector of Uk and thus uk ∈ Rmn×1 is a stretched column vector.
The entropy optimization performance index is proposed as follows

JN(êk) :=
N∑
k=1

J(êk, xk−1, δk, wk, vk, uk) =
N∑
k=1

[
−H0(êk) +

1

2
uTkR1uk +R2H

1(êk)
]

(20)

where R1 and R2 are pre-specified matrix weight and constant weight respectively.
If there exists a filter such that JN(êk) is minimized for each sample time N, then it is called as an

entropy optimization FD filter.

Remark 3. It is noted that entropy optimization is corresponding to variance optimization for Gaussian
signals [32]. For example, the entropy optimization principle for FD problems is in parallel to the main
results in [2], where linear Gaussian systems were studied and the minimax technology was applied to
the variance of errors.

Remark 4. To enhance the FD filtering performance, the expectation vector ε(êk) can also be included
in the cost function described in JN(êk). We can consider the more general performance indexes than
JN(êk) where the entropies of the error resulting from x0, vk, wk and δk are considered simultaneously.
However, noting that there is no added difference between the two performance indexes in optimization
context, we will focus on JN(êk) for the FD problem in the following subsections.

Remark 5. In the entropy optimization performance index, R1 and R2 are two pre-specified weights.
R1 corresponds to the energy. If there is no restriction on the energy, R1 can be selected as 0. Generally,
the smaller R1 is, the easier the fault can be detected. R3 can also be added as the weight of H0(êk).
In that case R2 and R3 are relative, so we set R3 = 1 and regulate R2. It is noted that the cumulative
performance index is adopted in this paper. If there is no sum operation, the index corresponds to
the “greedy” one [36]. However, it is shown that the use of long-range prediction can overcome the
problem of stabilizing a non-minimum phase plant with unknown or variable dead-time. As such, in this
paper, (20) is employed. Moreover, Entropy optimization is equivalent to the variance optimization for
Gaussian signals. It can be verified that the entropy optimization is consistent with the results for linear
Gaussian systems.

3.2. Formulations for the Error JPDFs

In this subsection, the formulations for the JPDFs related to the FD performance index will be
discussed. The JPDFs γiek have to be calculated in order to formulate γiêk based on Lemmas 1–3, and
then to provide the representation of H i(êk) (i = 0, 1).
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For a given τ ∈ [α, β]n, the domains of definition for several involved functions are defined as follows

Π0
k := {(τ1, τ2) | Φ(τ1, 0, τ2) ⪯ τ},Π1

k := {(τ1, τ2) | Φ(τ1, τ2, 0) ⪯ τ} (21)

Ξ0
k := {(τ1, τ2) | F (τ1, 0, τ2) ⪯ τ},Ξ1

k := {(τ1, τ2) | F (τ1, τ2, 0) ⪯ τ} (22)

where the notation ⪯ have been defined in the ending of the Introduction section.
To summarize, the following result can be obtained.

Theorem 1. Under Assumptions 1-3, γ0ek(τ) and γ1ek(τ)(k = 1, 2, · · ·) can be calculated from the
differentials on the multiple integrations as follows:

γ0ek(τ) =
d
[∫ ∫

Π0
k
(τ) γxk−1,w(τ1, τ2)dτ1dτ2

]
dτ

, γ1ek(τ) =
d
[∫ ∫

Π1
k
(τ) γxk−1,δ(τ1, τ2)dτ1dτ2

]
dτ

where

γ0xk
(τ) =

d
[∫ ∫

Ξ0
k
(τ) γxk−1,w(τ1, τ2)dτ1dτ2

]
dτ

, γ1xk
(τ) =

d
[∫ ∫

Ξ1
k
(τ) γxk−1,δ(τ1, τ2)dτ1dτ2

]
dτ

,

and Πi
k(τ), Ξ

i
k(τ) (i = 0, 1) are denoted respectively by (21) and (22).

Proof: This result can be obtained similarly to Lemma 1 using the independence property in
probability theory. Q.E.D

For the FD problem, êk is used as the residual to detect the fault. In order to calculate the entropies of
γiêk(τ) (i = 0, 1), we denote two auxiliary vectors as follows

s1k = Ckek, s2k = Dkvk

and correspondingly to (11), we suppose that there exist T1k and T2k such that

T1kCkT2k =
[
Im 0

]
Theorem 2. Under Assumptions 1–3, γiêk(τ)(i = 0, 1; k = 0, 1, 2, · · ·) can be calculated from the
following

γiêk(τ) =
∫
[α,β]m

γis1k(τ − τ1)γs2k(τ1)dτ1

where

γis1k(τ) =

[∫
[α,β]n−m

γiek(η) |detT1k| |detT2k| dτ̃
(2)

]
and

γs2k(τ) = γv
(
Dk

−1τ
) ∣∣∣detDk

−1
∣∣∣

Proof: The formulations of γis1k(τ) can be obtained using Lemma 2 and Lemma 3. Noting êk = s1k+s2k,
the result can be provided. Q.E.D
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3.3. Simplified Calculation of the Error JPDFs

In the above results, the formulations of the entropies have been reduced to the differentials of some
multiple integrals that depend on their integral domains. To simplify the design methods, the following
assumption is introduced.

Assumption 4. det[∂F (xk,δk,wk)
∂xk

] ̸= 0 holds and det[∂Φ(xk,δk,wk)
∂xk

] ̸= 0 holds for any xk in their
operation domain.

Different from Theorem 1, under Assumption 4, simplified algorithms can be further obtained to
calculate γiek(τ) and then to formulate γiêk(τ) (i = 0, 1) by constructing the following auxiliary
multivariate functions.

Under Assumption 4, for functions Φ(·, ·, ·) and F (·, ·, ·) and a given vector τ1, there exist the inverse
functions denoted by

δ = Φ−1(τ1, τ, 0), w = Φ−1(τ1, 0, τ) (23)

respectively, which satisfy
τ = Φ(τ1, δ, 0), τ = Φ(τ1, 0, w)

Construct the auxiliary vectors for γek+1 as

η0k+1 =

 wk+1

ek+1

 ,Ψ0(wk+1, xk) =

 wk+1

Φ(xk, 0, wk+1)

 (24)

η1k+1 =

 δk+1

ek+1

 ,Ψ1(δk+1, xk) =

 δk+1

Φ(xk, δk+1, 0)

 (25)

And for γxk+1, we denote

ξ0k+1 =

 wk+1

xk+1

 ,Υ0(wk+1, xk) =

 wk+1

F (xk, 0, wk+1)

 (26)

ξ1k+1 =

 δk+1

xk+1

 ,Υ1(δk+1, xk) =

 δk+1

F (xk, δk+1, 0)

 (27)

where Φ(·, ·, ·) is denoted by (3). With (25) and (24), the dynamics of estimation errors in the presence
of δk+1 (wk+1) and in the absence of wk+1 (δk+1) can also be represented respectively by

η0k+1 = Ψ0(wk+1, xk), η
1
k+1 = Ψ1(δk+1, xk), ξ

0
k+1 = Υ0(wk+1, xk), ξ

1
k+1 = Υ1(δk+1, xk) (28)

Using the auxiliary vectors and functions given by (25), (24), (27), (26) and (28), the following results
can be obtained.

Theorem 3. Under Assumptions 1–4, γ0ek(τ) and γ1ek(τ) can be calculated by (k = 0, 1, 2, · · ·)

γ0ek+1
(τ) =

∫
[α,β]p

γw(τ1)γ
0
xk
(Φ−1(τ1, 0, τ))ψ0(τ1, τ)dτ1 (29)

and
γ1ek+1

(τ) =
∫
[α,β]q

γδ(τ1)γ
1
xk
(Φ−1(τ1, τ, 0))ψ1(τ1, τ)dτ1 (30)
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where
γ0xk+1

(τ) =
∫
[α,β]p

γw(τ1)γ
0
xk
(F−1(τ1, 0, τ))ψ0(τ1, τ)dτ1 (31)

γ1xk+1
(τ) =

∫
[α,β]q

γδ(τ1)γ
1
xk
(F−1(τ1, τ, 0))ψ1(τ1, τ)dτ1 (32)

and

ψ0(τ1, τ) :=

∣∣∣∣∣det ∂F (τ1, 0, τ)∂τ1

∣∣∣∣∣
−1

, ψ1(τ1, τ) :=

∣∣∣∣∣det ∂F (τ1, τ, 0)∂τ1

∣∣∣∣∣
−1

(33)

Proof: Firstly, from (25) and (28), it can be claimed that γ1ek+1
(τ) =

∫
[α,β]q γη1k+1

(τ1, τ)dτ1. It is noted
that Ψ1(δk+1, xk) is an one-to-one mapping from (δk+1, xk) to (δk+1, ek+1) under Assumption A.4. Thus,
the PDF of (δk+1, ek+1) can be represented by that of (δk+1, xk) (see e.g., [27]). On the other hand,
random vectors xk and δk+1 can be regarded as mutually independent ones under Assumption A.1. As
such, based on the special structure described by (25) and the notations in (23), it can be verified that

γη1
k+1

(τ1, τ) = γδk+1xk
(τ1, δ)

∣∣∣∣∣det ∂F (τ1, τ, 0)∂τ1

∣∣∣∣∣
−1

= γδk+1
(τ1)γxk

(Φ−1(τ1, τ, 0))

∣∣∣∣∣det ∂F (τ1, τ, 0)∂τ1

∣∣∣∣∣
−1

= γδk+1
(τ1)γxk

(Φ−1(τ1, τ, 0))ψ1(τ1, τ) (34)

which means that (30) holds. Similarly, by considering the auxiliary vector and function described by
η0k+1 = Ψ0(wk+1, xk), we can obtain (32). This procedure can also be used to prove (29) and (31). Q.E.D

With γiek(τ) (i = 0, 1), γiêk(τ) can be obtained by using Theorem 2 so that H i(êk) can also be
formulated for JN(êk).

3.4. Optimal FD Filter Design Strategy

Based on the above procedures, it can be claimed that the optimization is required for the performance
index JN(êk).

It is noted that (20) leads to

Jk(êk) = Jk−1(êk) +
[
Ψ(uk) +

1

2
uTkR1uk

]
, k = 0, 1, 2, · · · ,+∞ (35)

where
Ψ(uk) := Ψ(êk, uk) = −H0(êk) +R1H

1(êk) (36)

The optimal filtering strategy can be obtained through

∂
[
Ψ(êk, uk) +

1
2
uTkR1uk

]
∂uk

= 0 (37)

where an explicit function from other arguments to uk can be further determined. The principle of
optimality can thus result in the optimal FD filtering law for the whole process. To simplify the filter
structure, a recursive design procedure is formulated in the following.

Denote
uk = uk−1 +∆uk, k = 0, 1, 2, · · · , N, · · · ,+∞ (38)
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As a function of ek, wk and τ, it can be approximated to give

Ψ(êk, uk) = Ψk0 +Ψk1∆uk +
1

2
∆uTkΨk2∆uk + o(∆uTk uk) (39)

where

Ψk0 := Ψk(uk)|uk=uk−1
,Ψk1 :=

∂Ψk(uk)

∂uk

∣∣∣∣∣
uk=uk−1

,Ψk2 :=
∂2Ψk(uk)

∂u2k

∣∣∣∣∣
uk=uk−1

The recursive algorithm can be provided to determine the gain of the entropy optimization FD filter.

Theorem 4. An entropy optimization FD filtering strategy for JN subject to nonlinear error model (4) is
given by

∆u∗k = −Ψk1 +R1uk−1

Ψk2 +R1

(40)

for a weight R1 > 0 satisfying
Ψk2 +R1 > 0 (41)

Proof: Firstly, it can be seen that

R1u
2
k = uTk−1R1uk−1 + 2uTk−1R1∆uk +∆uTkR1∆uk (42)

Substituting (39) and (42) into (37) yields recursive suboptimal control law (40) for all k =

0, 1, 2, · · · ,+∞, under condition (41). It should be pointed out that the above algorithm given by (40)
results from a necessary condition for optimization. To guarantee the sufficiency, the following
second-order derivative should also be satisfied

∂2
[
Ψk(uk) +

1
2
uTkR1uk

]
∂∆u2k

= Ψk2 +R1

which can be guaranteed if R1 is selected sufficiently large. Q.E.D

Remark 6. The real-time suboptimal FD filter design algorithm can be summarized as follows:

• Initialize x0, x̂0 = ε(x0) and u0;

• At the sample time k, compute γiek+1
(τ), τ ∈ [α, β]n based on Theorem 3;

• At the sample time k, compute γiêk+1
(τ), τ ∈ [α, β]m and then obtain H i(êk+1) (i = 0, 1) via (18);

• Calculate ∆uk and uk using equation (40) and (38);

• Increase k by 1 to the next step.

The schematic diagram and flow chart are given in Figures 1 and 2 to illustrate how to apply our
function based fault detection method to multivariate uncertain non-Gaussian system step by step.
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Figure 1. Function based fault detection.
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Figure 2. Flow chart of function based fault detection.
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4. Simulation Results

To demonstrate the FD algorithm, we consider a nonlinear non-Gaussian model described as
[
x1,k+1

x2,k+1

]
=

[
1 0

0 a0(k)

][
x1,k

x2,k

]
+

[
sinx1,k

cos2 x2,k

]
+

[
1

b0(k)

]
δk+1 +

[
1

1

]
ωk+1 +△F

yk = x1,k + x2,k + vk

where a0(k) = − arctan(1 + k)−1 + 0.5, b0(k) = 0.02(k + 1)−1/2, the fault δk and the disturbances
ωk, vk(k = 1, 2, · · ·) are assumed to be mutually independent. The asymmetric PDF of δk is defined by

γδ(x) =

 −48(x2 − x+ 3
16
) x ∈ [0.25, 0.75]

0 x ∈ (−∞, 0.25) ∪ (0.75,+∞)

The PDF of the disturbance wk is supposed to have a perturbation, i.e., γω(x) = γω0(x)+△γω where

γω0(x) =

 −3000(x2−0.01)
4

x ∈ [−0.1, 0.1]

0 x ∈ (−∞,−0.1) ∪ (0.1,+∞)
and |△γω| ≤ 0.01.

The disturbance vk is a Gaussian variable with the distribution N(0, 0.01).

According to (2), the filter can be formed as follows:
[
x̂1,k+1

x̂2,k+1

]
=

[
1 0

0 a0(k)

][
x̂1,k

x̂2,k

]
+

[
sin x̂1,k

cos2 x̂2,k

]
+

[
uk

0

]
(yk − ŷk)

ŷk = x̂1,k + x̂2,k

Thus, the estimation error system is driven by

ek+1 =

[
x1,k + sinx1,k

a0(k)x2,k + cos2 x2,k

]
+

[
1

b0(k)

]
δk+1 +

[
1

1

]
ωk+1 −

[
x̂1,k + sin x̂1,k

a0(k)x̂2,k + cos2 x̂2,k

]

−
[
uk

0

]
(yk − ŷk) +△F.

and thus

êk+1 = yk+1 − ŷk+1

= x1,k+1 + x2,k+1 + vk+1 − x̂1,k+1 − x̂2,k+1

= e1,k+1 + e2,k+1 + vk+1

In the simulations, x0 is set to be under uniform distribution on the interval [0, 1]2 and thus x̂0 =

ε(x0) = [0.5, 0.5]T , u0 is set to be [0, 0]T , the weights are set to be R1 = 1 and R2 = 0.1. Figures 3–5
show the signals for the fault and disturbances, while Figures 6–8 show the corresponding pdfs of the
signal. Figures 9 and 10 are provided to demonstrate the residual signals êk in the absence and in the
presence of fault emerging respectively. When the random fault occurs, it is shown that the detection
error increases significantly. Figure 11 is the 3-D mesh of the system output y, which shows a remarkable
change of the pdf γy when the fault occurs at sample time 50. Figure 12 is the optimization performance
index along time t. The result shows that a satisfactory FD performance can be obtained through the
error dynamics by optimizing the entropies of the detection errors.
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Figure 3. The response of the fault δ.
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Figure 4. The response of the input disturbance ωk.
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Figure 5. The response of the output disturbance vk.
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Figure 6. The PDF of the fault signal δ.
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Figure 7. The PDF of the input disturbance ωk.
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Figure 8. The PDF of the output disturbance vk.
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Figure 9. The residual value when fault occurs.
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Figure 10. The residual value when no fault occurs.
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Figure 11. 3-D mesh of the system output y.
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Figure 12. The optimization performance index J .
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5. Conclusions

Since the classical FD approach using the Kalman-filter theory is insufficient to apply to the stochastic
systems with non-Gaussian variables, a new FD framework is proposed in this paper for dynamic
multivariate nonlinear stochastic systems. The entropy optimization principle is established for the
concerned nonlinear detection error system, as represented by a non-Gaussian stochastic system. The
main design principle is to maximize the entropies of the residual errors when the faults occur and to
minimize the entropies of the residual errors resulting from other stochastic noises. For this purpose,
new relationships are provided to calculate the JPDFs of the detection error in terms of the JPDFs of
both the disturbances and the faults. As such, recursive approaches can be constructed to formulate the
entropies of the detection errors. Combining the formulations with the novel performance indexes based
on the entropy optimization principles, the recursive algorithms are provided to calculate the gain of the
optimal FD filters. The advantages derived from the proposed fault detection approach are summarized
as following

• The detected fault and system noises do not have to be Gaussian.

• The entropy optimization principle for FD problems is in parallel to the main results to [2], where
linear Gaussian systems were studied and the minimax technology was applied to the variance of
errors. It has therefore generalized variance optimization for Gaussian signal.

• The fault detection algorithm only uses the JPDF of the residual signal to calculate the filter gain
matrix. There is no need to measure the system output pdf. This constitutes a major advantage
compared with [37–39], which require the output pdf to be measurable.

• This fault detection approach is applicable to multivariate and uncertain systems. It is a
generalization of the method in [8] where only single-input-signal-output system is concerned.

However, several issues still need to be studied in the future, i.e., how to determine the threshold and
how to perform fault diagnosis. Moreover, as a branch of stochastic distribution control (SDC), fault
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detection using entropy optimization principle still remains in the theoretic research stage [8,37,40]. Its
real world application requires more research efforts.

Acknowledgment

This work is jointly supported by the National Science Foundation of China under grant
60925012,61104123,61104073,61105115 and China Postdoctoral Science Foundation funded project
(2012M520141). These are gratefully acknowledged.

References

1. Basseville, M. On-board component fault detection and isolation using the statistic local approach.
Automatic 1998, 34, 1391–1415.

2. Chen, R.H.; Mingori, D.L.; Speyer, J.L. Optimal stochastic fault detection filter. Automatica 2003,
39, 377–390.

3. Chen, R.H.; Speyer, J.L. A generalized least-squares fault detection filter. Int. J. Adapt. Contr.
Signal Process. 2000, 14, 747–757.

4. De Persis, C.; Isidori, A. A geometric approach to nonlinear fault detection and isolation.
IEEE Trans. Automat. Contr. 2001, 46, 853–856.

5. Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy
a survey and some new results. Automatica 1990, 26, 459–474.

6. Guo, L.; Wang, H. Minimum entropy filtering for multivariate stochastic systems with
non-Gaussian noises. IEEE Trans. Automat. Contr. 2006, 51, 695–700.

7. Shields, D.N.; Ashton, S.A.; Daley, S. Robust fault detection observers for nonlinear polynomial
systems. Int. J. Syst. Sci. 2001, 32, 723–737.

8. Guo, L.; Wang, H.; Chai, T. Fault detection for non-linear non-Gaussian stochastic systems using
entropy optimization principle. Trans. Inst. Meas. Contr. 2006, 28, 145–161.

9. Mao, Z.H.; Jiang, B.; Shi, P. H-infinity fault detection filter design for networked control systems
modelled by discrete Markovian jump systems. IET Proc. Contr. Theor. Appl. 2007, 1, 1336–1343.

10. Jiang, B. Staroswiecki, M.; Cocquempot, V. Fault accommodation for a class of nonlinear systems.
IEEE Trans. Automat. Contr. 2006, 51, 1578–1583.

11. Basseville, M.; Nikiforv, I. Fault isolation and diagnosis: Nuisance rejection and multiple
hypothesis testing. Annu. Rev. Contr. 2002, 26, 189–202.

12. Bar-Shalom, Y.; Li, X.R. Estimation and Tracking: Princples, Techniques, and Software; Artech
House: Norwood, MA, USA, 1996.

13. Zhang, J.; Cai, L.; Wang, H. Minimum entropy filtering for networked control systems via
information theoretic learning approach. In Proceedings of the 2010 International Conference on
Modelling, Identification and Control, Okayama, Japan, 17–19 July 2010; pp. 774–778.

14. Orchardand, M.; Vachtsevanos, G. A particle filtering approach for on-line fault diagnosis and
failure prognosis. Trans. Inst. Meas. Contr. 2009, 31, 221–246.



Entropy 2013, 15 51

15. Chen, C.; Zhang, B.; Vachtsevanos, G.; Orchard, M. Machine condition prediction based on
adaptive neuro-fuzzy and high-order particle filtering. IEEE Trans. Ind. Electron. 2011, 58,
4353–4364 .

16. Wang, H.; Afshar, P. ILC-based fixed-structure controller design for output PDF shaping in
stochastic systems using LMI techniques. IEEE Trans. Automat. Contr. 2009, 54, 760–773.

17. Zhou, J.; Zhou, D.; Wang, H.; Guo, L.; Chai, T. Distribution function tracking filter design using
hybrid characteristic functions. Automatica 2010, 46, 101–109.

18. Chen, C.; Brown, D.; Sconyers, C.; Zhang, B.; Vachtsevanos, G.; Orchard, M. An integrated
architecture for fault diagnosis and failure prognosis of complex engineering systems. Expert Syst.
Appl. 2012, 39, 9031–9040.

19. Yin, L.; Guo, L. Fault isolation for dynamic multivariate nonlinear non-gaussian stochastic systems
using generalized entropy optimization principle. Automatica 2009, 45, 2612–2619.

20. Yin, L.; Guo, L. Fault detection for NARMAX stochastic systems using entropy optimization
principle. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China,
June 2009; pp. 870–875.

21. Guo, L.; Chen, W. Disturbance attenuation and rejection for systems with nonlinearity via DOBC
approach. Int. J. Robust Nonlinear Contr. 2005, 15, 109–125.

22. Yang, F.; Wang, Z.; Hung, S. Robust kalman filtering for discrete time-varying uncertain systems
with multiplicative noise. IEEE Trans. Automat. Contr. 2002, 47, 1179–1183.

23. Guo, L.; Wang, H.; Wang, A.P. Optimal probability density fuction control for NARMAX
stochastic systems. Automatica 2008, 44, 1904–1911.

24. Yin, L.; Guo, L. Joint stochastic distribution tracking control for multivariate descriptor systems
with non-gaussian variables. Int. J. Syst. Sci. 2012, 43, 192–200.

25. Guo, L.; Yin, L.; Wang, H. Robust PDF control with guaranteed stability for nonlinear stochastic
systems under modeling errors. IET Contr. Theor. Appl. 2009, 3, 575–582.

26. Yin, L.; Guo, L.; Wang, H. Robust minimum entropy tracking control with guaranteed stability
for nonlinear stochastic systems under modeling errors. In Proceedings of the 10th International
Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008;
pp. 1469–1474.

27. Papoulis, A. Probablity, Random Variables and Stochastic Processes, 3rd ed.; McGraw-Hill:
New York, NY, USA, 1991.

28. Patton, R.J.; Frank, P.; Clark, R. Fault Diagnosis in Dynamic Systems: Theory and Application;
Prentice Hall: Englewood Cliff, NJ, USA, 1989.

29. Feng, X.B.; Loparo, K.A. Active probing for information in control system with quantized state
measurements: A minimum entropy approach. IEEE Trans. Automat. Contr. 1997, 42, 216–238.

30. Wang, H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Trans.
Automat. Contr. 2002, 47, 398–403.

31. Saridis, G.N. Entropy formulation of optimal and adaptive control. IEEE Trans. Automat. Contr.
1988, 33, 713–720.

32. Wang, H. Bounded Dynamic Stochastc Systems: Modelling and Control; Springer-Verlag: London,
UK, 2000.



Entropy 2013, 15 52

33. Zhang, J.; Du, L.; Ren, M.; Hou, G. Minimum error entropy filter for fault detection of networked
control systems. Entropy 2012, 14, 505–516.

34. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London,
UK, 1986.

35. Wang, H.; Lin, W. Applying observer based FDI techniques to detect faults in dynamic and
bounded stochastc distributions. Int. J. Contr. 2000, 73, 1424–1436.

36. Yue, H.; Wang, H. Minimum entropy control of closed-loop tracking errors for dynamic stochastic
systems. IEEE Trans. Automat. Contr. 2003, 48, 118–121.

37. Guo, L.; Zhang, Y.M.; Wang, H.; Fang, J.C. Observer-based optimal fault detection and diagnosis
using conditional probability distributions. IEEE Trans. Signal Process. 2006, 54, 3712–3719.

38. Zhang, Y.M.; Guo, L.; Wang, H. Filter-based fault detection and diagnosis using output PDFs for
stochastic systems with time delays. Int. J. Adapt. Contr. Signal Process. 2006, 20, 175–194.

39. Li, T.; Guo, L.; Wu, L.Y. Observer-based optimal fault detection using PDFs for time-delay
stochastic systems. Nonlinear Anal. R. World Appl. 2008, 9, 2337–2349.

40. Guo, L.; Yin, L.; Wang, H.; Chai, T.Y. Entropy optimization filtering for fault isolation of nonlinear
non-gaussian stochastic systems. IEEE Trans. Automat. Contr. 2009, 54, 804–810.

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Preliminary
	Plant Models
	Filter and Error Dynamics
	Entropy and Its Formulation

	Main Results
	Performance Indexes
	Formulations for the Error JPDFs
	Simplified Calculation of the Error JPDFs
	Optimal FD Filter Design Strategy

	Simulation Results
	Conclusions

