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Abstract: One of the most important issues in theoretical biology is to understand how
control mechanisms are deployed by organisms to maintain their homeostasis and ensure
their survival. A crucial issue is how organisms deal with environmental information in a
way that ensures appropriate exchanges with the environment—even in the most basic of
life forms (namely, bacteria). In this paper, I present an information theoretic formulation
of how Escherichia coli responds to environmental information during chemotaxis and,
more generally, a cybernetic model of the relationship between information and biophysical
(metabolic) dynamics.
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1. Introduction

One of the main questions in the emerging field of studies called NBIC (Nano-technologies, Biology,
Information theory and Cognition) is whether there are information theoretic principles that underlie the
behavior of the most elementary organisms on Earth, namely bacteria. In other words, can we understand
how such organisms deal with information in the environment and are able to exert control over their
internal and external milieu? In the extensively studied bacterium Escherichia coli, the activity known
as chemotaxis—the search for food (sugars) based on concentration gradients of chemical repellents and
attractants in a fluid environment—has attracted special attention (for a general account of chemotaxis
see [1,2]). Here, I present a cybernetic model of the relationship between chemotaxis and metabolism in
terms of information theory, which could be considered as a general model of organismal behavior.

In the following, I first introduce a general entropy—information formalism for describing chemotaxis,

based on the principle of free energy minimization as described by Friston (Section 2). A word of



Entropy 2013, 15 312

warning is appropriate here: In this paper we will refer to the minimization of a free energy. This is a
generic variational free energy that comes from probability (information) theory and Bayesian statistics.
It is not a thermodynamic free energy of the sort found in classical physics, although they have a similar
mathematical form. I reformulate this principle to account for the genetically programmed (default)
state of an organism that rests on an internal comparison between the default state of the organism and
its current state, as inferred from environmental fluctuations. This allows one to understand chemotaxis
as two processes (a process from the interior to the exterior, and another from the exterior to the interior).
These dual processes enable the bacterium to use environmental signals as signs of its approach to or
withdrawal from its nutrients (Section 3). I then introduce the crucial notion of information control
as the procedure by which organisms infer the survival-related significance of external signals—trying
to use them to maintain their homeostatic state (Section 4). Finally, the implicit informational and
metabolic processes are considered in a cybernetic context (Section 5), which permits some brief
conclusions (Section 6).

2. The Organism and the Environment

In the following I shall introduce a simplification. Since the energetic cost of bacterial chemotaxis is
relative low, this allows us to ideally split the whole process in a pure informational part in which we
can avoid thermodynamic considerations, and a metabolic step (in which the bacterium feeds) in which
those considerations are relevant. It is true that recent studies show that there is also an energy taxis,
through which cells do not navigate toward the greatest concentration(s) of effectors but seek positions
where metabolic rates are optimized [3,4]. However, the fact that there is here a correlation between the
strength of a chemostimulus as an attractant and its efficiency as a growth substrate suggests that this
behavior is particularly relevant not very far away from the energy source, where the metabolic step as
such is accomplished.

A generic principle that describes how organisms deal with environmental information has been
proposed in [5-8]. Although originally formulated to describe how the brain deals with sensory
information, the principle can be easily generalized to describe any exchanges of an orgasm with its
environment ([9], Chapters 7 and 8). This (free energy minimisation) principle provides the starting point
for our formulation: Consider the environmental input ¢ as it is encoded by the receptors of a bacterium;
the internal state s describing the state of the organism; an action parameter a describing the bacterium’s
action (reaction), and an unknown or hidden environmental state & that generates environmental input
(for example, the relative concentration of attractants or repellents). Given these variables, we can posit
a function F' expressing the mean logarithmic difference between the probability of both the input 7 and
the external state k, conditional on the action a, on the one hand, and a probability distribution over
the external state k, on the other (the derivation of these equalities can be found in appendix for the
interested reader):
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The prime on the distribution p’(k; s) has the purpose to show that this is another kind probability
(dealing with other sets of events) relative to p(i, k|a). The internal parameter s expresses both the
organism’s response to the external parameter k£ and the internal contribution of the genetic system
[Figure 1]. Then, parameter s is not determined by the exterior only but is a sort of encoding of the
behavior taking into account also an internal component. Moreover, p'(k;s) displays a semi-column,
because the probability distribution is over the external states k&, while the internal states s play the role
of sufficient statistics that parameterize this distribution. The quantity p(i, k|a) expresses the probability
of changes in the parameters £ and 7 given the final choice of an action a (therefore it implements a
feedback loop). The functional F' is known as the analogue of free energy, were the expressions () p,
denotes a statistical average over the distribution p’ and lg is the binary logarithm. The first term in
the last equality is the analogue of (Gibbs) energy and the second term is the negative entropy of the
distribution over external states. In other words, the free-energy function is the Gibbs energy function
minus the entropy of p’. Generally, we can express the (Shannon) entropy of a probability distribution,

say p(ila), as

- 2;10(2'\@) lgp(ila) = —(lgp(ila)), = H(I) 2)
ic

In information theory, the expression — lgp(i|a) is called surprisal and denotes the unexpectedness
of any given event (under some action a). In other words, it represents the mismatch between what
the organism expects given its action and what actually happens. Free energy can also be expressed as
surprisal plus a Kullback-Leibler divergence or relative entropy. This divergence measures the difference
in entropy between the distribution parameterized by the internal states and the (true) probability

distribution over external states, given the current inputs (see Appendix A):

F = —lgp(i Zp (k;s)lgp(k|i,a —I—Zp k;s)lgp'(k; s)
= —lgp(ila )+DKL( (ks s)llp(kli, A)) ()

We could also formulate Equation (1) as (see Appendix B)

F = —Zp Vg p(ilk,a) + Dgr(p'(k)||p(k))

— —Zp ) 1g p(ilk, @) +Zp Vgp'(k) = p'(k) g p(k) (4)

whose second term shows the entropic distance computed on the two distributions p and p’ as functions
of the same parameter k. Crucially the cross entropy or divergence in Equations (3) and (4) can never be
less than zero. This means that when the divergence is zero, free energy becomes surprisal. Technically
this means that the function F' is, by construction, an upper bound on surprisal. What is important here is
that the bacterium is able to minimize its surprisal by minimizing the function F' [10]. The time average
of the free energy is always greater than the time average of surprisal. This is important because, under

ergodic assumptions, the time average of surprisal is equal to the entropy of the inputs:

H(1) =~ (gp(la)), =~ [ lepid)]a(t)d )
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almost surely. This is crucial because it means that we can explain how action resists the natural tendency
of systems towards disorder (cf., the second law of thermodynamics) and places an upper bound on
the entropy of the inputs H (/) and, implicitly, the external states causing those inputs. Therefore,
minimizing the function F' makes the bacterium able to reduce the gap between the expected causes
of its inputs (following its action a) and actual causes (expressed in the current input ). This provides a

mechanism for maintaining a homoeostasis.

Figure 1. A reformulation of Friston’s model that accounts for the studies of bacterial
chemotaxis that is also quite in accordance with the model presented in [11] (see also [9],
Chapters 2 and 8). The action a on the environment will change environmental states. Even
a simple motion away from a certain signal source will induce a change external states
and consequence input. This establishes an internal-external feedback circuit (the action
a changes the external state £ that determines the input 7). Internally, there are two kinds
of processes: (i) information transmission processes (from s to a) displaying a feedforward
activity; which (ii) are coupled to internal feedback circuit (from s’ to s).

ENVIRONMENT ORGANISM

PROCESSOR | REGULATOR

DECIDER

’

S

(programmed ACTION
| default state)

feedfoward circuit > —'

internal feedl:oack circuit

v

|
Y I

PHYSICAL-CHEMICAL SIGNAL |  (réceptor state) |
|

|

—y ———> |
(encoded input)I

k |
(environmental parameter) |

a
(action variable)

ACTION FEEDBACK

Note that the physical motion of the bacterium—although representing a kind of random
walk—uviolates the principle of detailed balance, according to which there are as many transitions per
time unit from a position x to a position " as from from 2’ to = ([12], pp. 77 and 89). Indeed, it is this
sort of directed motion that integrates random fluctuations in pursuit of a biological goal, as we shall
see below (this can obviously also described using statistical methods and computer simulations [13]).
However, before turning to goals and homoeostatic set points, we consider another profound implication
of minimizing the function F'.

Action minimizes F' by changing the input so that it reduces surprisal; but what about the internal
states? From the second equality in Equation (1), it can be seen that the only way internal states can
minimize free energy is by reducing the divergence between the probability distribution over external
states, parameterized by internal states and the true (posterior) distribution over external states. In other
words, the internal states come to parameterize (approximately) the true distribution over external states
causing inputs. In this sense, they represent or codify the hidden external causes of inputs in their

environment. This is entirely consistent with the good regulator hypothesis that states any self-organizing
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homoeostatic system must have a model of the environment in which it is immersed [11,14]. In the
current formulation, this model is probabilistic, such that hidden environmental states are inferred—in a
Bayesian sense—when internal states minimize free energy.

Although we can account for homoeostasis and a resistance to disorder using free-energy function
minimization, we have not explained why bacteria act to increase their sensed levels of attractants and
avoid repellents. This speaks to some internal or intrinsic preferences that can be considered in terms
of the set points of their homoeostatic behavior. I shall associate these preferred states with a subset
of internal states denoted by s’ C s. As noted above, internal states can be regarded as representations
of hidden external states. In this interpretation, the subset s’ play the role of default representations
that are endowed by natural selection and define the external states preferred by the organism. In brief,
these internal states determine what is surprising and enable action to minimize surprisal or prediction
error to realize these default or preferred states. In more detail: The existence of any (bi) partition
of internal states means that all organisms have two internal processes for dealing with environmental
information [Figure 1]: a feedforward mapping from the internal state s to the action a and a second
process that provides constraints on s, provided by the (default or homeostatic) state s’ of the system. In
other words, the internal states s representing external states are compared with the expected homeostatic
state s’ to reduce the gap (prediction error) between s and s’. This is an important aspect of minimizing
surprisal; in the sense that surprisal is not just the difference between the predicted input and the input
encountered—>but it also includes the difference between the predictions before and after seeing input.
In Bayesian statistics, these homoeostatic predictions are known as prior expectations or beliefs. This
means that genetically endowed prior beliefs, entailed by the internal states and configuration of the
organism (denoted by s’) specify what is innately surprising and enable action to counter unpredicted
deviations from expected states. In the context of chemotaxis, one might imagine that the bacterium has
prior beliefs that it should occupy regimes with high concentrations of chemical attractants. Action is
then enslaved, through minimization of the function F', to search out these regimes.

In short, action will take into account both contributions from the informational evidence afforded
by environment and the homoeostatic (prior) states that constitute the organism. As a consequence, the
organism will tend to restore its homeostatic state and undertake appropriate actions for reducing any
gap between inferred and expected external states. As we shall see next, s can be regarded as an estimate
of the external state of the environment, while the apparent goal of the system is to maintain these hidden
states close to its prior expectations (s’), in the presence of environmental fluctuations.

I have largely cast my treatment purely in terms of information theory. However, it is also possible to
talk about the quantities explicitly in terms of Bayesian inference [15]. In this context, cells that minimize
the free-energy function implicitly minimize surprisal. Surprisal is also known as negative Bayesian
model evidence in statistics. This means that minimizing the function F' is equivalent to maximizing
the Bayesian evidence for an organism’s model of its external milieu. In this context, we can associate
the internal states (s, s’) with Bayesian representations or sufficient statistics of the posterior probability
P’ (k; s, s’) over the external states of the environment. In other words, the internal states encode or
represent the external states k. Crucially, we can interpret s’ as prior expectations or beliefs about
external states. In other words, the cell is equipped with prior beliefs s’ about the external states it
should encounter; where s’ places constraints on the posterior representations s that are trying to explain
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the input. We can thus understand the homeostasis afforded by minimization of /' in terms of action
fulfilling posterior beliefs that are constrained by prior expectations, due to the cells internal structure
and states. In this sense, the cell is literally representing or recognizing (in a Bayesian sense) the causes
of its input and is acting to sample those inputs that it expects to encounter.

These expectations are set by the internal states s’, which provide prior constraints on expectations
and therefore active sampling of the chemical sensorium. By analogy with free energy minimization in
the brain, we can therefore associate chemotaxis with the dual processes of action and perception. Action
corresponds to movement that minimizes the surprisal of sensory inputs, while perception corresponds
to changes in internal states that try to explain sensory inputs. Both of these processes are minimizing
free energy.

In the most elementary case, that of bacteria, such dual processes have been well studied:
the feedforward process is based on phosphorylation, while the feedback process is based on
methylation—demethylation (as well as the action of the protein CheZ that dephosphorylates the protein
CheY responsible for the motor output). However, I assume that these dual processes are present—in

some form—in all organisms.

3. Signals and Signs

Pursuing the dual process notion of the previous section, we can split self-organization into two main
parts (Figure 2):

e A process mapping from the inside to the outside (action)
e A process mapping from the outside to the inside (perception)

The former entails the endogenous, programmed, default-state constraints associated with the
organism: it is the way in which the organism tries to assimilate the external environment by selectively
sampling predicted inputs. The latter represents the changes in the bacterium’s state induced by the
environment: this is the way in which the organism accommodates the external environment and
its inherent fluctuations. Action only makes sense only when it is useful to reach a goal (maximal
concentration of sugars for feeding) at a later time. Therefore, this goal needs to be independent
of changes in the external states and therefore needs to be genetically programmed [16]. Little is
known about the genetic (expression—repression) factors involved in chemotaxis, but see the pioneering
study [17]. This also justifies the necessity of an endogenous component in chemotaxis. However,
even in the absence of a true epigenetic process, the genetic component only represents a part of
the explanation for bacterial behavior, which belies its ability to react to unexpected environmental
fluctuations. This illustrates that the evolutionary stable outcome of natural selection is precisely the
combination of these two components that constitute the minimal level of complexity that is necessary for
survival. This can be understood in two senses: it is the level under which the system is most statistically
inefficient and—on the other hand—this minimal level is selected because it is more metabolically
efficient. In other words, one can assume that natural selection drives representational capacity—inherent
in a cells intracellular processing—towards a low level of complexity. Mathematically, this tendency

to find simple or parsimonious mechanisms to suppress the variability (and surprisal) of inputs (that
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underwrites homeostasis) can be seen as a natural consequence of minimizing free energy at an
evolutionary timescale. In informational terms, this can be expressed formally using Equation (4):

F = —(lgp(ilk,a)),, + Drr [p'(k;s) || p(k; s')] (6)

The second term is the divergence between the (parameterized) posterior density p’ and the prior
probability over hidden external states parameterized by s’.  In statistics this is known as
complexity—which means that minimizing the function F' minimizes the complexity of internal
representations of hidden external states [18]. Roughly speaking, the divergence or complexity in
Equation (6) is proportional to the number of internal states used to encode or represent the causes
of the inputs.

Figure 2. This diagram illustrates the bidirectional or circular causality discussed in the main
text. Top: the action a of the organism on the environment resulting from a programmed
goal: the maintenance of the default state s’. Bottom: the action a of the organism as induced

by the codification of the physical-chemical signal.
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In the case of the bacterium E. coli, the goal to reach the maximal concentration of nutrients is
attained by swimming in one direction (with a corresponding action a) in presence of a low activity of the
CheA—determining counterclockwise rotation of the flagella (for details on the molecular machinery of
receptors see [19]). Conversely, if there is high concentration of repellents, the external signal is codified
by the receptors in such a way to determine a high—level of the CheA (the induced internal state s),
which gives rise to clockwise rotation of the flagella (due to the action of the final protein CheY that is
phosphorylated). This changes the direction of swimming, through tumbling and the bacterium remains
in the vicinity of high nutrient concentrations, until these concentrations fall. Once tumbling occurs,
the dual process of perception and action can start again—as external states change and are registered
by receptive input. Note that we can consider the genetically programmed effect (prior expectations) as

inducing a feedback contribution to the action—and we can consider the presence of attractants (inducing



Entropy 2013, 15 318

changes in the internal state s) as a source of environmental contribution to action [20]. Since the latter
depends on action through consequent changes in external states, we have something very similar to the
action—perception cycle, with a recurrent emission of optimal action and adjustments to internal states
that inform the action and are informed by the consequences of action.

Therefore, in themselves, the two processes (from the interior to the exterior and from the exterior to
the interior) can be understood as pure information—transmission (or information—processing) dynamics.
In this sense, we can say that information—transmission (perception or recognizing external states) is
first-order, while chemotaxis is second-order: resting on both perception and action. Such a second-order
process can be considered as a controlled exchange of signs [21,22]. In fact, the input ¢ can be called
an informative factor, since it informs the organism about the state of the world outside. It therefore
stands for the physical-chemical signal. The action determines or “points to” the external signal (for
instance, the concentration of repellents as expressed by the external states k); like an index used to
introduce some kind of modification. In this setting, s’ is the ideal default state that the organism
tends to maintain, and therefore constrains or informs the induced state s—enabling action to fulfill
the constrained or biased estimate of external states. The default states could be called an icon: that
is, the internal structure that represents the states that the organism expects to occupy (or to become)
in the external world. In other words, the input ¢ is informative precisely because it can be placed in
relation to the external signal but, in turn, it can play the role of something standing for the external
signal, because there is an indexical action towards the signal and an icon, under which not only
this action is generated but also ¢ is evaluated (through the induced state s). Therefore, the state s
becomes in turn both the representation of the external signal (through 7) and also the representation of
the gap relative to the programmed state (through comparison with s’). Furthermore, action could be
understood—to a certain extent—as a representation or reflection of this gap, although its function is
pragmatic (i.e., to change the organisms relationship with the external environment; e.g., by moving).
I shall deal with this issue below. Obviously, an “evaluation” of the state s or the input ¢ in bacteria
and in lower eukaryotes only exists in chemical reactions induced by different concentration levels
of certain molecules. However, we should not conflate the mechanism—through which this process
is implemented—with the informational-cybernetic process itself. Indeed it is only through essential
needs encoded by s’ that the organism has “chosen” to sample specific physical-chemical signals in an
environment, where the possible signals are potentially infinite. One could say that such a “choice” is a
result of natural selection, enabling the organism to select and deal with specific information, and this is
what really matters in the end (as it enables survival).

4. Information Control

The processes sketched above are chemical and their induction can be due to mechanical forces,
but the biological and survival-related significance is informational, given the crucial importance of the
“comparison” between the current state s and the default state s’. In particular, the significance of the
whole process is that of an information-control mechanism:

Information control is any procedure through which a system (i) ascertains the functional
relevance of a certain signal (where, as said, a signal can be understood as any modification
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of a physical or chemical medium); and (i1) tends to re-establish a certain steady or default

state when certain operations of functional—vital relevance are impaired or perturbed.

Figure 3. Top: on the left the instructional semiotic process, on the right the representational
one. They correspond roughly to the top and bottom parts of Figure 2, respectively. Bottom:
the whole semiotic circle of information control that corresponds to Figure 1.

s’ k

Therefore, we deal here with the pursuit of a goal—due to a programmed behavior—through
continuous error correction [23]. One can summarize the dual processes above with the help of two
semiotic triangles (exhibiting a cyclical nature) as shown in Figure 3. The triangle on the left shows
the process going from the icon s'—through a—to the external parameter &£ while the second triangle
shows the mapping from k—through i—to a. The first process can also be called an instructional
one, since its source is ultimately in the codification of the genetic material giving rise to a set of
instructions—executed through the whole machinery of the RNA until proteins (for instance the CheZ)
are formed and the appropriate action performed. Conversely, the second process, going from the exterior
to the interior can be called representational, i.e., the constitution of a model [11,14]. Here, we have
the external signal that is codified at the surface of the organism (membrane) where specific receptors
produce the input 7 that leads to action a. Obviously, we do not need to suppose that we have (in bacteria)
the complexity required for an elaborate representation (which is likely to require a central nervous
system). Nevertheless, a general representational function cannot be denied to the humble bacterium
since, as mentioned, it is able to monitor the environment and to translate the external situation using an
internal model implicit in its intracellular chemistry. Taking into account the previous considerations,
action has two different aspects; according to the process involved: In the instructional process, a
represents the assimilation (active sampling) while in the representational process is a represents the
accommodation (perceptual adjustment).

¢ In the instructional process, a represents the assimilation whilst

e In the representational process a represents the accommodation.
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The two processes can be summarized as in the triangle at the bottom of Figure 3. Obviously, the
external parameter k is hidden in the internal terms ¢ and a. I emphasize that it is the connection between
these two processes (instructional and representational)—which, considered separately, are nothing but
pure information transmission—that ensures any detection of an external signal, once that it has been
codified and compared with the icon, becomes a sign of whether the direction of swimming is good
or bad (consistent with prior beliefs). Therefore, it indicates whether the organism is approaching or
receding from the nutrients necessary for self-maintenance. It may be helpful to refer to the schematic
overview of the combined process in Figure 4.

Figure 4. The instructional information bridges between genetic information (the icon) and
a given functionality (the referent) necessary for survival, while information acquisition
from the exterior allows the organism to be informed about the (induced) changes of the
environment (the referent) due to appropriate functional steps (the icon). Through regulation,
these functionalities couple back to the genetic system allowing for expression or repression.
Ensuing distributed circuit therefore displays information control. Adapted from [9].

ACTION

—

function h codified information BOTTOM UP h

PHYSICAL
PERTURBATION

MEMBRANE
SYSTEM information acquisition

5. Informational and Metabolic Steps

It is important to stress that the significance of the endogenous process going from the interior to
the exterior is to ensure the maintenance of the internal order against environmental perturbations. This
can only be accomplished with appropriate and consequently controlled metabolic exchanges with the
environment. Therefore, the mechanism of information control is coupled to, and ultimately serves the
metabolic self-maintenance of the organism that constitutes a cybernetic system. From an informational
point of view, the imperative is to minimize the informational free energy F. If F' is minimized
(and implicitly surprisal), the organism will seek out nutrients, which in turn means it can maintain a
thermodynamic exchange with the environment that is favorable to the maintenance of internal order.
Such maintenance of order is necessary to physically encode prior beliefs or referents, thus enabling
information control. So, the information-control and thermodynamic (or entropic) aspects constitute a
single cybernetic, self-organizing process with circular causality [Figure S]—a circular causality that we
can separate into two processes:

e One can consider the dual (action—perception) process as a part of the thermodynamic exchange
of the organism. At this level, genetic systems are able to induce the motor-metabolic system
to perform an action that has a relative low energetic cost and that is far from thermodynamic
equilibrium. Therefore, the sensory-selective system exhibits order parameters; i.e., parameters
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that are able to drive a system far from equilibrium ([12], pp. 191-200). Note that the time
constants of action are much shorter than the genetic process.

e Conversely, from the point of view of metabolic—thermodynamic processes, it is the
action—perception system (the gate proteins) that is controlled by the genetic system (this now

provides the order parameters).

Figure 5. The figure should be read first from the top to bottom (top-down, following
the gray-shadowed arrows in the middle): The information-control step leads—through
appropriate actions—to lower the surprisal, enabling the organism to approach and consume
nutrients. Then, the second (thermodynamicit) step (represented at the bottom) starts,
through which appropriate metabolic exchanges with the environment are deployed and
controlled. This enables the organism to maintain its order and preserve its configuration
(encoding its prior beliefs) so that it can engage in a further information-control step—to
find new energy sources or, alternatively, to reproduce through binary fission. Here, we go

from the bottom towards the top (bottom-up, following the gray arrows on the left).
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It is worth noting that the metabolic level itself can be rather complex—even in bacteria, so that
many different kinds of action and control can be involved ([9], Ch. 11). Again, a good example is
provided by E. coli. 1 shall follow here the somehow particular but, for our purposes, instructive model
of Jacob and Monod [24,25]. As is well known, the bacterium can discriminate between glucose and
lactose—with a mixture of the two sugars, it shows a preference for glucose, since it first consumes the
glucose and only then digests lactose. When glucose is available, a membrane-associated protein (which

becomes phosphorylated) is involved in transporting glucose into the cell and passes the phosphate group
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to the glucose. When glucose is consumed, the protein remains phosphorylated—since there is nothing
to receive the phosphate group, and is consequently able to convert ATP (adenosine triphosphate) into
cAMP (cyclic adenosine monophosphate), thus raising the cellular concentration of cAMP. The cell uses
the phosphorylated transport protein and a high cAMP concentration as a signal indicating that glucose
is no longer available. Namely, the cAMP concentration is read by the cAMP Receptor Protein (CRP),
which binds to the CRP site in lac, only in the presence of abundant cAMP. This then stabilizes the
contact between lacP (the —10 and —35 regions of the canonical 70 promoters) and RNA polymerase
and therefore signals that the lac operon (lacO) is ready for transcription. In the absence of lactose,
however, transcription events are rare, since the lac repressor molecules bind to two of the operator sites
(O1 and O2) and create a loop in the DNA, blocking the access to the promoter lacP. When lactose
is available the protein [-galactosidase, coded by lacZ, converts some of these sugar molecules to a
related sugar called allolactose, which can bind to the lac repressor, inducing a change in the shape of
the repressor that makes it unable to bind lacO and so freeing lacP for transcription [Figure 6].

Figure 6. Jacob and Monod’s cybernetic model of lac operon. Adapted from [9].
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In summary, Jacob and Monod discovered that in the absence of lactose, the repressor gene codes
for a protein that binds to the promoter of the gene coding for the enzyme that is able to digest lactose,
thus preventing its transcription. When the E. coli is in a solution of lactose, this substance is allowed to
enter the cell to bind the repressor proteins inhibiting the transcription of the genes encoding the lactose
metabolizing enzyme. This shows that a molecule activates an expression that is necessary for its own
metabolism, a beautiful example of feedback and circular causality. Moreover, note that in order to digest
lactose, both control conditions must be satisfied: a negative one (due to concentration) and a positive
one (due to the presence of lactose) involving the transformation of lactose molecules into allolactose.
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6. Conclusions

In conclusion, I would try a guess that can help a future program of research on these issues. We could
assert that the three main activities of an organism are ([9], Chapter 8) (i) self-reproduction (genetic
transmission to subsequent generations), in which the genetic system is the pilot and the metabolic
system is enslaved; (ii) self-production, in which the metabolic system is the pilot and the sensory system
is enslaved; (ii1) production (of actions) in which the sensory system is the pilot and the genetic system
is enslaved. All three dynamics can be cast as minimizing free energy at different timescales that enables
biological organisms to maintain non-equilibrium steady states.

This formulation considers an organism as a system composed of subsystems. Indeed, apart from
uncontrolled fluctuations, only external parameters can drive an ordinary physical system to an unstable
state or a state far from equilibrium (no system can go there spontaneously). However, whenever a system
drives itself far from equilibrium (pursuing a programmed goal representing a kind of prior beliefs), its
subsystems direct another subsystem by providing control parameters. In the example in this paper,
the prior beliefs endowed by genetics enslave the behavior of the organism at a much faster timescale.
However, if the resulting behavior does not conform to thermodynamic (metabolic) constraints on the
organism’s survival, the genetic control could not exist. In this sense, my guess is that there is a profound
circular causality that rests upon a separation of temporal scales that defines the subsystems, which
constitute an organism.

I suspect that for phenotypes that do not possess a central nervous system, the organism’s subsystems
exchange continuously the role of control system according to the task at hand (or at least according
to one of the three main activities outlined above), and that it is likely that the cooperation of two
subsystems is needed to guide and direct the activity of others. In summary, one can cast the exchange
of organisms with their environment in terms of information-control that prescribes actions, which bring
about biophysical states that are (metabolically) consistent with the genetically determined structure and
form of the organism. At the same time, the genetic specification of structure and form that provide
the goals (prior beliefs) guiding information exchange depend upon action. The resulting multilateral
dependency (among the informational, metabolic and genetic processes) induces a circular causality over
different temporal scales, which is the essence of cybernetic self-organization.
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Appendix

A. Derivation of Equation (3)

Equation (3) can be considered a reformulation of Equation (1) by the general probability formula

p(x,y) = p(x)p(y|r) (7)

its entropic counterpart (given by taking the logarithm of both sides and computing the mean or
expectation over p'(y)):

—Zp Vgp(z,y) = —Zp’( Ig p(x Zp ) 1gp(y|z)

= 1gp Zp 1gp (ylz) (®)
and the conditional-probability form of Equation (7)

p(z,y|2) = pla|2)pyle, 2) 9)

means we can finally write
— > P (k:s)lgp(i,kla) = —lgp(ila) — D> p'(k; s) g p(kli, a) (10)
k k

The reason for the last equality of Equation (8) is that we can apply the completeness condition (all
probabilities of a set of events sum to one):

> r(y) =1 (11)
y
since this sum over the probabilities is independent of the expression 1g p(y|x).

The expression Dy, in Equation (3) is called Kullback—Leibler divergence or relative entropy and
measures the difference in entropy between two systems (characterized by the two distributions p’ and
p, respectively); in particular it measures the change in the entropy of the system characterized by the
distribution p relative to the (reference) system with distribution p’. Therefore, given two probability
distributions p(y) and p'(y), the Kullback—Leibler divergence (in the discrete case) is given by

Dkr (0'(y)|lp(y) Zp Zp ) lgp'(y) — lgp(y)] (12)

Equation (3) shows that when Dx;, = 0 we have g = — lg p(i|a). In other words, in this case the function
F reduces to the surprisal (which now takes the simplified form — Ig p(i|a)).
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B. Derivation of Equation (4)

Equation (4) is in accordance with the entropic expression
- Zp Vg p(z,y) = —lgp(y) — > _p'(y) g p(aly) (13)
Yy
and an alternative form of the probability formula (9):

p(x,ylz) = p(yl2)p(zly, 2) (14)

The internal sstate s has been dropped here for clarity. This simplification shows three elements: the
surprisal — lg p(k) (the unexpectedness that the signal has a particular value k), the entropy or variability
of the environmental states &k (for different values k):

— > v(k)lgp' (k) = (lgp'(k)), = H(K) (15)
keK
and the mean logarithm of the probability of the input ¢ conditionally on both the states and the action a

(the conditional entropy of the input relative to the environmental parameter and the action):

— > p(k)lgplilk,a) = (g p(ilk,a)),, = H(I|K, A) (16)

keK
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