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Abstract: This study deals with the combined effects of convective heating and 

suction/injection on the entropy generation rate in a steady flow of an incompressible 

viscous fluid through a channel with permeable walls. The model equations for momentum 

and energy balance are solved numerically using shooting quadrature. Both the velocity 

and temperature profiles are obtained and utilized to compute the entropy generation 

number. The effects of the key parameters on the fluid velocity, temperature, entropy 

generation rate and Bejan number are depicted graphically and analyzed in detail. 

Keywords: permeable wall channel; convective heating; heat transfer; entropy generation; 

Bejan number  

 

Nomenclature 

PC :Specific heat at a constant pressure 2N : Entropy generation due to viscous dissipation	

u : Fluid velocity k : Thermal conductivity	
V : Uniform suction/injection velocity P : Fluid pressure 

1N : Entropy generation due to heat transfer T : Temperature	
GE : Local volumetric rate of entropy generation Be : Bejan number	

fT : Hot fluid temperature T : Ambient temperature 
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hT : Temperature at suction wall )0(T : Temperature at injection wall 

h : Channel width. G : Pressure gradient 

Re : Reynolds number Pr : Prandtl number 

Br : Brinkman number Ec : Eckert number 

1Bi : Lower wall Biot number 2Bi : Upper wall Biot number 

yx, : Cartesian coordinates w : Dimensionless velocity 

X : Dimensionless axial coordinate  

Greek symbols 

 : Thermal diffusivity  : Fluid viscosity 

 : Dimensionless temperature  : Irreversibility ratio 

1 : Lower heat transfer coefficient 2 : Upper heat transfer coefficient 

 : Temperature difference  : Fluid density 

 : Dimensionless transverse coordinate  

1. Introduction 

Considerable attention had been given to convective heating conditions in recent years due to their 

numerous practical applications in engineering devices. For example in heat exchangers, the 

conduction in a solid tube wall is mostly influenced by the convection in the fluid flowing over it. 

Different driving mechanisms for the natural convection flow set-up by Newtonian heating from a flat 

surface were investigated by Merkin [1]. Aziz [2] reported a similarity solution for boundary layer 

flow over a convectively heated flat plate. Lesnic et al. [3] studied the effects of Newtonian heating on 

boundary layer over a vertical and horizontal surface embedded in a porous medium. Mebine and 

Adigio [4] analyzed the unsteady free convection flow with thermal radiation past a vertical porous 

plate with Newtonian heating. Makinde [5] investigated the combined effects of Navier slip and 

Newtonian heating on an unsteady hydromagnetic boundary layer flow over a flat surface and 

concluded that the thermal boundary layer thickness is enhanced by increasing the intensity of 

Newtonian heating and flow unsteadiness. 

Efficient energy utilization during the convection in any fluid flow is one of the fundamental 

problems of the engineering processes to improve the system. Entropy generation is a measure of the 

account of irreversibility associated with the real processes. Considerable research studies were carried 

out to examine entropy generation in permeable walls for various applications after the pioneering 

work of Bejan [6]. Mahmud and Fraser [7] presented a numerical solution for the flow, thermal and 

entropy generation characteristic inside a porous channel with viscous dissipation. Makinde and 

Osalusi [8] analyzed the entropy generation rate in a liquid film falling along an inclined porous heated 

plate and concluded that the entropy generation rate is enhanced by viscous dissipation and generally 

reduced by increasing wall suction. Eegunjobi and Makinde [9] studied the combined effect of 

buoyancy force and Navier slip on entropy generation in a vertical porous channel. Several other 

investigators e.g. Chauhan and Kumar [10], Eegunjobi and Makinde [11], Tasnim et al. [12], etc., have 

investigated entropy generation rate in a thermal system under different physical situations.  
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In this study, our objective was to investigate the combined effects of convective heating and wall 

suction/injection on entropy generation rate in fluid flows through a channel with permeable walls. 

The model equations are obtained and solved numerically using shooting quadrature method. 

Graphical results are presented to analyse the effects of various thermophysical parameters on the 

velocity and temperature profiles, as well as the entropy generation rate and Bejan number. 

2. Mathematical Model 

We consider the steady flow of an incompressible viscous fluid through a channel with permeable 

walls (see Figure 1). It is assumed that the fluid is injected uniformly into the channel at the lower wall 

and fluid suction occurs at the upper wall. The channel lower wall is heated by convection from a hot 
fluid with temperature Tf which provides a heat transfer coefficient 1  while the upper wall losses heat 

to the ambient with heat transfer coefficient 2 . 

Figure 1. Schematic diagram of the problem. 

 

Under these assumptions, the governing equations for the momentum and energy balance in one 

dimension can be written as follows [8,9,11]: 
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where h is the channel width, u is the velocity of the fluid, P is the fluid pressure, V is the uniform  
suction/injection velocity at the channel walls,   is the fluid viscosity,   is the thermal diffusivity, k 
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is the thermal conductivity coefficient, Pc  is the specific heat at constant pressure, T is the temperature 

and T is the ambient temperature. We introduce the following non-dimensional quantities: 
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Substituting Equation (4) into Equations (1), (2), (3), we obtain:  
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with the boundary conditions: 
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where G is the pressure gradient parameter, 
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number). Equation (5) subject to the corresponding boundary conditions in Equation (7) can be solved 

exactly and we obtain: 
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Moreover, the coupled nonlinear boundary value problems represented by Equations (5) and(6) 

together with their boundary conditions in Equation (7) have been solved numerically using the shooting 

iteration technique together with Runge-kutta fourth-order integration scheme, Nachtsheim and Swigert [13]. 

3. Entropy Analysis 

According to Mahmud and Fraser [7] the local volumetric rate of entropy generation for a viscous 

incompressible fluid defined by:  
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It is quite evident from Equation (9) that two sources are responsible for entropy generation in the 

considered problem. The first and the second terms on the right side of Equation (9) represent the 

irreversibility due to heat transfer and fluid friction respectively. Equation (9) is transformed into 

dimensionless form using Equation (4) and we obtain: 








2

22

)( TTk

EhT
Ns

f

G

2
)(











d

d
+ 

2
)(








 


d

dwBr
 (8)



Entropy 2013, 15 224 
 
where  TTTf /)(  is the temperature difference parameter and Br = EcPr is the Brinkman number. 

Let: 
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We then define the Bejan number as: 
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where   is the irreversibility ratio. Clearly, Bejan number ranges from 0 to 1 and Be = 0 is the limit 

where the irreversibility is dominated by fluid friction effects and Be = 1 is the limit where the 

irreversibility due to heat transfer dominates the flow system by virtue of finite temperature differences. 

4. Results and Discussion 

Numerical solutions of this problem is performed and the results are illustrated graphically in 

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 to show the interesting features of significant 

physical parameters on velocity, temperature, skin friction, entropy generation rate and Bejan number 

distributions. To ascertain the accuracy of the numerical results, the exact solution for the velocity 

profile in Equation (8) is compared with the numerical solution as are shown in Table 1 below. We 

notice that the comparison shows a good agreement. Therefore, we are confident that the present 

results are very accurate. 

Table 1. Computation showing comparison between the exact and numerical solution of 

velocity profile for G = 1, Re = 1. 

 Exact Solutionw() Numerical Solution w() 

0 0 0 

0.1 0.03879297 0.03879297 

0.2 0.07114875 0.07114875 

0.3 0.09639032 0.09639032 

0.4 0.11376948 0.09639032 

0.5 0.12245933 0.11376948 

0.6 0.12154600 0.12154600 

0.7 0.11001953 0.11001953 

0.8 0.08676372 0.08676372 

0.9 0.05054498 0.05054498 

1.0 0 0 
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Figure 2. Effect of increasing Re on velocity profiles. 

 

Figure 3. Effect of increasing Re on temperature profiles. 

 

4.1. Effects of Parameter Variations on Velocity and Temperature Profiles 

Figure 2 depicts the effect of an increase in Reynolds number (Re) on the axial velocity profile. As 

Re increases, the injection of hot fluids from the lower permeable wall into the cold fluid flowing 

inside the channel increases as well as the fluid suction at the upper permeable wall increases. It is 

observed that fluid axial velocity profile decreases and skewed towards the upper wall due to 

increasing fluid suction at the upper wall. Figure 3 depicts the effect of an increase in Reynolds 

number on temperature profile. Generally, the fluid temperature increases with increasing values of 

Re. Meanwhile, the fluid temperature at the lower wall is higher than the fluid temperature at the upper 

wall due to combined effects of convective heating and hot fluid injection at the lower wall. Figures 4 and 5 

depict the effect of increasing lower and upper walls Biot numbers on temperature profile. As lower 
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wall Biot number ( 1Bi ) increases, the convective heat transfer from the hot fluid at the lower wall into 

the channel fluid increases, consequently, the fluid temperature in the channel increases. An increase 
in the upper wall Biot number ( 2Bi ) causes a convective cooling on the channel fluid, consequently, 

the fluid temperature inside the channel decreases. Figure 6 illustrates the effects of increasing Eckert 

number (Ec) on the fluid temperature. It is observed that fluid temperature increases due to viscous 

heating as Ec increases. From Figure 7, it is observed that increase in Pr increases fluid temperature in 

the channel. 

Figure 4. Effect of increasing Bi1 on temperature profiles. 

 

Figure 5. Effect of increasing Bi2 on temperature profiles. 
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Figure 6. Effect of increasing Ec on temperature profiles. 

 

Figure 7. Effect of increasing Pr on temperature profiles. 

 

4.2. Effects of Parameter Variations on Entropy Generation Rate 

The effects of various thermophysical parameters on entropy generation rate are considered in this 

section. Figure 8 depicts the effects of increasing Reynolds number on entropy generation rate. As Re 

increases, it is observed that the entropy generation rate decreases in the lower wall region due to fluid 

injection and increases at the upper wall due to suction. Figures 9 and 10 illustrate the effects of 
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increasing the lower and upper wall Biot numbers on entropy generation rate. Generally, it is observed 
that the entropy production increases as both 1Bi  and 2Bi  increase. It is noteworthy that the entropy 

generation rate is lowest within the channel centerline region and highest at the upper wall. The effect 

of increasing values of group parameter ( 1Br ) on entropy generation rate is displayed in Figure 11.  

As 1Br  increases due to viscous dissipation, the entropy production within the lower and upper 

walls region increases but more severe at the upper wall. It is interesting to note that the entropy 

production is not affect by the group parameter within the centerline region of the channel. 

Figure 8. Effect of increasing Re on entropy generation rate. 

 

Figure 9. Effect of increasing Bi1 on entropy generation rate. 
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Figure 10. Effect of increasing Bi2 on entropy generation rate. 

 

Figure 11. Effect of increasing Br−1 on entropy generation rate. 

 

4.3. Effects of Parameter Variations on Bejan Number 

The effect of different parameter values on Bejan number are analyzed in Figures 12, 13, 14 and 15. 

Generally, the Bejan number is highest within the channel centerline with heat transfer irreversibility 

dominating the flow in this region. As the Reynolds number increases, the Bejan number decreases at 

the lower wall region with dominant effect of fluid friction irreversibility and increases at the upper 

wall region with increasing effect of heat transfer irreversibility as demonstrated in Figure 12.  

Figures 13 and 14 show the effects of increasing convective heat transfer at both walls. As 1Bi  and 

2Bi increase, the convective heating at the lower wall and the convective cooling at the upper wall 

increases, leading to an increase in the Bejan number, consequently, the dominant effects of heat 
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transfer irreversibility increases. Figure15 depicts the effect of group parameters ( 1Br ) on Bejan 

number. As the group parameter ( 1Br ) increases due to viscous dissipation effect, the Bejan number 

at both walls decreases, consequently, the dominant effects of fluid friction irreversibility within the 

lower and upper wall region increases.  

Figure 12. Effect of increasing Re on Bejan number. 

 

Figure 13. Effect of increasing Bi1 on Bejan number. 
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Figure 14. Effect of increasing Bi2 on Bejan number. 

 

Figure 15. Effect of increasing Br−1 on Bejan number. 

 

5. Conclusions 

In this paper the combined effect of convective heat transfer and suction/injection on entropy 

generation rate in a steady flow of fluid through a channel with permeable walls has been considered. 
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The model problems are tackled numerically using shooting method together with Runge-kutta fourth-order 

integration scheme. Our results revealed the following: 

(1) The fluid temperature increases with increasing Re, Ec, Bi1, Pr and decreases with increasing 

values of Bi2. 

(2) Entropy generation rate increases with increasing values of Bi1, Bi2, 
1Br . As Re increases, 

entropy production decreases at lower wall and increases at the upper wall. 

(3) Increase in Bi1, Bi2 enhance dominant effects of heat transfer irreversibility while increase in 
1Br  enhance dominant effects of fluid friction irreversibility. 

(4) Increase in Re decrease Bejan number at the lower wall region and increase Bejan number at the 

upper wall region. 

(5) Heat transfer irreversibility dominates the centerline region of the channel. 
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