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Abstract: The major function of dynamic networks is to sense information from the 

environment and process the information to the downstream. Therefore how to measure the 

information transmission ability of a dynamic network is an important topic to evaluate 

network performance. However, the dynamic behavior of a dynamic network is complex 

and, despite knowledge of network components, interactions and noises, it is a challenge to 

measure the information transmission ability of a dynamic network, especially a nonlinear 

stochastic dynamic network. Based on nonlinear stochastic dynamic system theory, the 

information transmission ability can be investigated by solving a Hamilton-Jacobi 

inequality (HJI)-constrained optimization problem. To avoid difficulties associated with 

solving a complex HJI-constrained optimization problem for information transmission 

ability, the Takagi-Sugeno (T-S) fuzzy model is introduced to approximate the nonlinear 

stochastic dynamic network by interpolating several local linear stochastic dynamic 

networks so that a HJI-constrained optimization problem can be replaced by the linear 

matrix inequalities (LMIs)-constrained optimization problem. The LMI problem can then 

be efficiently solved for measuring information transmission ability. We found that a more 

stable (robust) dynamic network has less information transmission ability, and vice versa. 

Finally, an example of a biochemical network in cellular communication is given to 

illustrate the measurement of information transmission ability and to confirm the results by 

using Monte Carlo simulations. 

Keywords: information transmission ability; nonlinear stochastic dynamic network; HJI; 

LMI, T-S fuzzy model; network performance 
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1. Introduction 

There exist many kinds of networks to process information in the real world. For example, signal 

transmission networks (signal transduction pathways) are one of the fastest information processing 

networks in biological networks. They enable cells to sense and transduce extracellular signals through 

inter- and intra-cellular communication. Signal transmission networks consist of interactions between 

signal proteins, where different external changes or events stimulate specific signaling networks. 

Typical external signal stimuli are hormones, pheromones, heat, cold, light, osmotic pressure, and 

ionic concentration changes [1]. Therefore, signal transmission networks can also be viewed as the 

information processing and transferring systems of cells [2]. Similarly, many communication networks 

like sensor networks or wireless sensor networks (WSNs) can be also considered as information 

processing and transferring systems [3–5]. 

For biological networks, many studies have investigated the properties of signal transduction 

pathway, such as amplification [6], specificity [7], adaptive ultrasensitivity [8,9], oscillation [9] and 

synchronization [10]. However, due to the complex behavior of dynamic networks, knowledge of 

components of dynamic networks and their interactions is often not enough to interpret the system 

behavior of dynamic networks. To the best of our knowledge, the first attempt to express the 

information transmission ability as a mathematic formula appeared in 1982 [11]. It focused on 

sensitivity amplification, which is defined as the ratio of the percent change in output response to the 

percent change in the input stimulus, i.e., the relative change of network output respect to a specific 

input. Further, a signal amplification is also defined as signal gain for a signaling network, where at 

least one maximum exists with respect to the ratio of inputs to outputs [12,13]. More recently, based on 

cascade mechanisms in electrical engineering systems, signal transmission ability is designated as the 

maximum of output to the maximum of input, i.e., Output_max/Input_max [14]. Obviously, the 

information transmission ability designed above is on a case-by-case basis, i.e., the measured results 

are affected by not only structure of the network, but also the input to the network. 

In this study, we specifically investigate the information transmission ability of a dynamic network, 

which will be measured based on information and system theory from the viewpoint of input/output 

signal energy [15]. In accordance with system gain viewpoint, the ratio of output to input signal energy 

of a stochastic dynamic network is determined for all possible input signals. Then the maximum ratio 

is denoted as the information transmission ability, i.e., from the system (network) gain perspective [16–20]. 

This measure of information transmission ability is more dependent on the system characteristics of 

the studied dynamic network rather than the input signals. Like a low-pass filter, the filtering ability is 

more dependent on the systematic characteristics of the low-pass filter itself compared to the input 

signals. Based on the proposed information transmission ability, the measurement scheme needs to 

solve a corresponding nonlinear Hamilton-Jacobi inequality (HJI) for information transmission ability 

of nonlinear stochastic dynamic networks. At present, there are no analytic or numerical solutions for 

HJI directly, except for some simple cases. In this study, a T-S fuzzy system is employed to interpolate 

several local linear stochastic dynamic networks via a set of fuzzy bases to approximate a nonlinear 

stochastic dynamic network [21–26]. In this situation, HJIs can be replaced by a set of linear matrix 

inequalities (LMIs) [21–25,27]. Then, this allows the HJI-constrained optimization problem for 
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nonlinear transmission ability measurement to be transformed into an equivalent LMIs-constrained 

optimization problem, which can be easily solved with the help of the LMI toolbox in Matlab [28]. 

Further, because the proposed method for information transmission ability is based on fuzzy local 

interpolation of nonlinear stochastic dynamic networks, the information transmission ability can be 

investigated from these fuzzy-interpolated local linear stochastic dynamic networks. With this method, 

we can gain insight into network information transmission from the linear system viewpoint. In the 

future, nonlinear stochastic dynamic networks may be characterized according to the proposed 

measurement, which is useful for development and application in network processing. Finally, a 

nonlinear biological network is given to illustrate the measure procedure of information transmission 

ability and to confirm the results of proposed measurement method by using Monte Carlo  

computer simulations. 

2. On the Information Transmission Ability Measure of Linear Stochastic Dynamic Networks 

Initially, for the convenience of illustration, we consider the following linear dynamic network: 

( )
( ) ( )

( ) ( )

dx t
Nx t Bv t

dt
y t Cx t

 


 

(1) 

where ( )x t  denotes the state vector of the dynamic network, ( )v t  and ( )y t  denotes the input and 

output signal vectors, N denotes the network interaction matrix, and B and C denote the input and 

output coupling matrices, respectively, in the following:  
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in which ( )ix t  denotes the state of the ith node, and Nii denotes the dynamic interaction from node j 

to node i in the linear dynamic network (see Figure 1). 

Remark 1: In the molecular gene network [1,2],  denotes the concentrations of n genes,  

denotes the molecular regulation from the upstream genes and environment,  denotes the output 

molecules to the downstream genes, and Nij denotes the regulation from the jth gene to the ith gene. 

Suppose the linear dynamic network suffers from intrinsic parameter fluctuations so that  is 

perturbed by random fluctuation sources as , where  denotes the effect on the 

network due to random fluctuation source , which is represented by white Gaussian noise with 

zero mean and unit variance to denote the stochastic part of fluctuation. That is, the stochastic part of 

fluctuation is absorbed by  with  , where  is a standard Wiener process [16–18] 

(Brownian motion) and the change of linear dynamic network by the random fluctuation source  

is denoted by . 

  

( )x t ( )v t

( )y t

N

( )N Nn t  N
( )n t

( )n t ( ) ( )dw t n t dt ( )w t
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N
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Figure 1. A simple linear dynamic network with ( ) ( ) ( )x t Nx t Bv t  , ( ) ( )y t Cx t ,  
 

where,  

   

 

In the situation, the linear dynamic network in (1) is modified as follows: 

 ( )
( ) ( ) ( )

( ) ( )

dx t
N Nn t x t Bv t

dt
y t Cx t

   


 

(2)

In the conventional notation of engineering and system science, the linear stochastic dynamic 

network in (2) can be represented by the following Ito stochastic dynamic network [16]: 

( ) ( ) ( ) ( ) ( )

( ) ( )

dx t Nx t dt Bv t dt Nx t dw t

y t Cx t

   


 (3)

where ( ) ( )dw t n t dt , and ( )w t  denotes the corresponding Wiener process or Brownian motion of 
random parametric fluctuation in the linear stochastic dynamic network. 

Remark 2: The random parametric fluctuation modeled as Wiener process in the Ito stochastic 

dynamic network (3) may be due to continuous thermal fluctuation, modeling error, time-varying 

characteristic or gene variation in biological networks. However, if the random parametric fluctuation 

is due to some discontinuous pathogen invasion, genetic mutations or impulsive stimuli, which may be 

accumulated in the dynamic network, it is more appropriate to be modeled as Poisson (jump) process [29]. 

In this situation, the linear stochastic dynamic network (3) can be modified as follows:  

1
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(4)

where 
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Poisson process with mean t  and variance t . iN  denotes the variation of N  due to 

discontinuous changes ( )tP t t  occurring at it t . 
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The focus of this study is on the measurement of information transmission ability of the stochastic 

dynamic network in (3). Since information transmission ability is a systematic property, it is not easy 

to investigate information transmission ability from the input/output data directly. Like a filter, the 

filtering ability is more dependent on systematic property itself of the filter rather than to input/output 

signals. Further, from the information transmission ability, we could get insight into the system 

characteristic of communication networks. The information transmission ability can be defined from 

the system gain viewpoint as follows [15]:  

 
 

1
2

1
2

2 2

0 2

( ) [0, ] ( ) [0, ]
2

0

( ) ( ) ( )
sup sup

( )
( ) ( )

f

ff f

t T

o
tv t L t v t L tT

E y t y t dt E y t
I

E v t
E v t v t dt

 
 




 

(5)

where ( )v t  and ( )y t  are the input and output signals of the linear stochastic dynamic network in (3), 

respectively. The physical meaning of information transmission ability is the maximum root mean 

square (RMS) energy ratio of output signal to input signal for all possible finite energy input signals 

within the time interval [0,tf ], 
where L2[0,tf ] 

denoted the set of all possible finite energy signals in [0,tf ]. 

The reason for employing the maximum RMS energy ratio of the output signal to all possible input 

signals is that input signals to stochastic dynamic network may change under different conditions, 

causing the signal RMS energy ratio to vary. Hence, information transmission ability should be based 

on the maximum effect of all the possible input signals on the output signals and exhibit greater 

dependency on the characteristics of the stochastic dynamic network, in accordance with the system 

gain viewpoint. Theoretically, the information transmission ability in (5) can be measured directly by 

testing all possible finite energy input signals to get the maximum RMS energy ratio. In general, the 

maximization problem described in (5) for measuring the information transmission ability of stochastic 

dynamic network cannot be solved directly because infinite finite-energy input signals need to be 

tested. It can only be solved indirectly by applying a systematic analysis method to the stochastic 

dynamic network in (3). In this study, we will solve the optimization problem in (5) for measuring the 

information transmission ability from the suboptimal perspective, i.e., minimize its upper bound to 

approach the optimal value oI . 

Let us denote the upper bound of information transmission ability as follows: 

22
2

2

( )
, ( ) [0, ]

( ) f

E y t
I v t L t

E v t
    (6)

or: 

   2
20 0

( ) ( ) ( ) ( ) , ( ) [0, ]
f ft tT T

fE y t y t dt I E v t v t dt v t L t     (7)

for (0) 0x  . In (6) and (7), if 2I  is the upper bound of 
2 2

( ) ( )E y t E v t  for every 

2( ) [0, ]fv t L t  , then 2I  is also the upper bound of 2
oI  in (5), as every 2( ) [0, ]fv t L t  should 

include the input signal which leads to the maximum RMS energy ratio in (5). Therefore, we can find 

the upper bound I  for the information transmission ability Io, and then minimize the upper bound I to 

approach the information transmission ability Io, i.e., the information transmission ability Io is 

estimated by minimizing the upper bound I. Then we get the following result: 
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Theorem 1: For the linear stochastic dynamic network in (3), if a positive definite symmetric matrix 
0P   exists, satisfying the following Riccati-like inequality:  

2

1
0T T T TC C N P PN PBB P N P N

I
        (8)

then the information transmission ability oI  is bounded by I . Proof: See Appendix A. 

The above theorem claims that if the Riccati-like inequality in (8) has a positive definite solution 
0P   , then I  is the upper bound of the information transmission ability oI . 

Remark 3: For the linear stochastic dynamic network with discontinuous parametric fluctuation (4), 

the Riccati-like inequality (8) in Theorem 1 can be modified as follows: 

2
1 1

1
0

L L
T T T T T

i i

C C N P PN PBB P PP N N N P N
I


 

             (9)

Therefore, if there exists a positive definite symmetric matrix 0P   satisfied the Riccati-like 
inequality (9), then the information transmission ability oI  can also be bounded by I . Proof: See 

Appendix B. 

In order to solve the Riccati-like inequality in (8) by the conventional LMI method, the positive 
definite symmetric matrix 1Q P is multiplied at both sides of (8). The Riccati-like inequality in (8) 

can be described as:  

1
2

1
0T T T TQC CQ QN NQ BB Q N Q NQ

I
        (10)

By the Schur complement method [15], the Riccati-like inequality in (10) is then equivalent to the 

following LMI:  

2

1

0 0

0

T T T TQN NQ BB QC Q N
I

CQ I

NQ Q

    
 

  
  
 
 

 (11) 

If the LMI in (11) holds for 0Q  , the information transmission ability of linear stochastic 

dynamic network in (3) is less than I , i.e., I  is the upper bound of the information transmission 

ability oI  in (5). Therefore, the information transmission ability of the stochastic dynamic network in 

(3) could be obtained by solving the following LMI-constrained optimization problem:  

0
min

  (9)

o Q
I I

subject to LMI in




  (12)

which can then be solved by decreasing I until no positive definite symmetric matrix Q  is able to 

satisfy the inequality in (10) or (11). 

Remark4: (i) The constrained optimization problem in (12) for information transmission ability 

measurement is known as an “eigenvalue problem” [15], which can be efficiently solved by the LMI 

toolbox in Matlab [28]. (ii) After substituting oI  for I  in (8), we get:  
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(13)

If Io is smaller, the fourth term will be larger so that the eigenvalues of N would be in the far left 

hand complex domain, (i.e., with more negative real part or more stable) to let the inequality in (13) 

hold, i.e., if the stochastic dynamic network is more stable (robust), the information transmission 

ability is smaller (or the input signal is attenuated by the stochastic dynamic network). If Io is larger, 

the eigenvalues of N would approach the imaginary axis (less stable) in order to amplify the input 

signal. If N becomes larger in (13), Io will become large, i.e., the network perturbation will lead to an 

overestimate of information transmission ability. Obviously, the information transmission ability is 

more dependent on the system characteristics N, B ,C, N of stochastic dynamic network than on input 
signal ( )v t , just as a low-pass filter is more dependent on the low-pass characteristics (poles and 

zeros ) of the system than on the filtered noise. 

3. On the Information Transmission Ability Measurement of Nonlinear Stochastic Dynamic 

Networks 

In real world, many stochastic dynamic networks are nonlinear. In this situation, the linear 

stochastic dynamic network in (3) should be modified as:  

( ) ( ( )) ( ( )) ( ) ( ( )) ( )

( ) ( ( ))

dx t N x t dt B x t v t dt N x t dw t

y t C x t

   


  (14)

where ( ( ))N x t  and ( ( ))N x t  denote the nonlinear interaction and perturbation of the nonlinear 

stochastic dynamic network, respectively; ( ( ))B x t  and ( ( ))C x t  denote the nonlinear input and 

output couplings of the nonlinear stochastic dynamic network, respectively. 

Consider the nonlinear stochastic dynamic network in (14). There exist many equilibrium points 

(phenotypes in nonlinear biological network). Suppose a stable equilibrium ex  is of interest. For 

convenience of analysis, the origin of the nonlinear stochastic dynamic network is shifted to the 

equilibrium point ex  to simplify the measuring procedure of information transmission ability of the 

nonlinear stochastic dynamic network. Let us denote ( ) ( ) ex t x t x  , then the following shifted 

nonlinear stochastic dynamic network can be obtained as follows [17,18]: 

( ) ( ( ) ) ( ( ) ) ( ) ( ( ) ) ( )

( ) ( ( ) )
e e e

e

dx t N x t x dt B x t x v t dt N x t x dw t

y t C x t x

      

 

   


 (15)

That is, the origin ( ) 0x t   of the shifted nonlinear stochastic dynamic network in (15) is at the 

equilibrium ex  of the original nonlinear stochastic dynamic network in (14). Then, let us consider the 

information transmission ability of the nonlinear stochastic dynamic network in (15). According to the 

stochastic Lyapunov theory [17], we get the following result. 

Theorem 2: If the following Hamilton Jacobi inequality (HJI) holds, for some positive Lyapunov 
function ( ( )) 0V x t  .  

2

1
0T T T T

o

C C N P PN PBB P N P N
I
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 

2

2

2
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( ( ) ) ( ( ) ) ( ( ) )

( )

1 ( ( )) ( ( ))
( ( ) ) ( ( ) )

4 ( ) ( )

1 ( ( ))
( ( ) ) ( ( ) ) 0

2 ( )

T

T
e e e

T

T
e e

T
e e

V x t
C x t x C x t x N x t x

x t

V x t V x t
B x t x B x t x

I x t x t

V x t
N x t x N x t x

x t

 
     

    
         

 
       

  


  
 

 


 (16)

then the information transmission ability oI  of the nonlinear stochastic dynamic network in (14) or 

(15) is less than or equal to I . Proof: See Appendix C. 

Since I is the upper bound of information transmission ability, the information transmission ability 

Io can be obtained by solving the following HJI-constrained optimization problem: 

( ( )) 0
min

  (14)

o V x t
I I

subject to HJI in




  (17)

It means to make I as small a value as possible without violating HJI with ( ( )) 0V x t   in (16). 

After solving the information transmission ability Io from the HJI-constrained optimization problem in 

(17) and substituting Io for I in (16), we find:  

 

2

2

2

( ( ))
( ( ) ) ( ( ) ) ( ( ) )

( )

1 ( ( )) ( ( ))
( ( ) ) ( ( ) )

4 ( ) ( )

1 ( ( ))
( ( ) ) ( ( ) ) 0

2 ( )

T

T
e e e

T

T
e e

o

T
e e

V x t
C x t x C x t x N x t x

x t

V x t V x t
B x t x B x t x

I x t x t

V x t
N x t x N x t x

x t

 
     

    
         

 
       

  


  
 

 


 (18) 

From (18), it is seen that if the information transmission ability oI  is small, the third term in (18) 

will be relatively large. In this situation, the second term 
( ( ))

( ( ) )
( )

T

e

V x t
N x t x

x t

 
  

 


 should be more 

negative (more stable) so that the HJI in (18) still holds, i.e., a more stable nonlinear stochastic 

dynamic network will lead to a less information transmission. On the other hand, if 

( ( ))
( ( ) )

( )

T

e

V x t
N x t x

x t

 
  

 


 is less negative (less stable), then the information transmission ability oI  

could be large enough to satisfy HJI in (18). It can be seen that a less stable nonlinear stochastic 

dynamic network will lead to a more information transmission. Further, the last term in (18) due to 
network perturbation will lead to an overestimate of oI  because a large ( ( ))N x t   will make oI  large. 

In general, it is still very difficult to solve HJI-constrained optimization problem in (17) for the 

measurement of information transmission ability of nonlinear stochastic dynamic network in (14) or (15). 

Recently, T-S fuzzy method has been employed to interpolate several local linear systems to efficiently 

approximate a nonlinear system via fuzzy bases [21–24]. Thus, in this study, the fuzzy interpolation 

method is employed to overcome the nonlinear HJI problem in (16) and to simplify the procedure of 
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solving the HJI-constrained optimization problem in (17) for measuring the information  

transmission ability. 

The T-S fuzzy dynamic model is described by fuzzy “If-then” rules and employed here to solve the 

HJI-constrained optimization problem in (17) for information transmission ability of nonlinear 

stochastic dynamic network in (14) or (15). The ith rule of fuzzy model for nonlinear stochastic 

dynamic network in (15) is proposed as follows [21–24]:  

1 1, 2 2, , :   ( )   ( )  ... ( )  

                 ( ) ( ) ( ) ( ) ( )

                        ( ) ( )

i i l il

i i i

i

Rule i If x t is F x t is F x t is F

then dx t N x t B v t N x t dw t

y t C x t

   


  
  


  (19)

where 1, 2,i L  . ( )ix t  is the premise variable, ijF  is the fuzzy set, iN , iB , iN  and iC  are 

local linear system matrices of the nonlinear stochastic dynamic network. L  is the number of fuzzy 
rules, and l  is the number of premise variables. If all state variables are used as premise variables 
then l n . The physical meaning of fuzzy rule i  in (19) is that if state variables 1 2( ), ( ),... ( )lx t x t x t    
are with the local fuzzy set 1 2, ,...i i ilF F F , then the nonlinear stochastic dynamic network in (15) could 

be represented by the linear stochastic dynamic network in the “then” part of (19). The fuzzy inference 

system of (19) can then be described as follows [21–24]: 

 
 1

1

1

1

1

1

( ( )) ( ) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( ) ( )

( ( ))

( ( )) ( )
( ) ( ( )) ( )

( ( ))

L

i i i i L
i

i i i iL
i

i
i

L

i i L
i

i iL
i

i
i

x t N x t B v t N x t dw t
dx t m x t N x t B v t N x t dw t

x t

x t C x t
y t m x t C x t

x t





















 
   

 











  
   



 
 



 (20)

where 
1

( ( )) ( ( )) ( ( ))
L

i i i
i

m x t x t x t 


     and 
1

( ( )) ( ( ))
L

i ij i
i

x t F x t


  , with ( ( ))ij iF x t describing the 

grade of membership of ( )ix t  in ijF  and ( ( ))im x t , 1, 2,i L   are fuzzy bases. The denominator 

1

( ( ))
L

i
i

x t

   is applied to enable normalization so that the total sum of fuzzy bases 

1

( ( )) 1
L

i
i

x t


  . 

The physical meaning of fuzzy interference system in (20) is that L local linear stochastic dynamic 
networks are interpolated through nonlinear fuzzy bases ( ( ))im x t  to approximate the nonlinear 

stochastic dynamic network in (15). Aside from the fuzzy bases, other interpolation bases could also be 

employed to interpolate several linear stochastic dynamic networks to approximate a nonlinear 

stochastic dynamic network, for example, the global linearization method, which interpolates local 

linear systems at M  vertices of a polytope to approximate a nonlinear system [15].  

Remark 5: In applying a T–S fuzzy approach [24] to approximate a nonlinear system, the effect from 

fuzzy approximation errors 
1

( ( )) ( ( )) ( ( )) ( )
L

i i
i

x t N x t x t N x t 


      and 
1

( ( )) ( ( )) ( ( )) ( )
L

i i
i

x t N x t x t N x t 


        

are usually omitted for concise representation. It is well known, the fuzzy approximation error is not 
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only dependent on the complexity of nonlinear system but also dependent on the number of fuzzy rules L , 
i.e., ( ( ))x t   and ( ( ))x t   decrease as L  increases. It has also been proven [30] that the fuzzy 

approximation errors would be bounded if the continuous functions ( ( ))N x t  and ( ( ))iN x t   are 

defined on a compact set nU  . The problems dealing with the effect of fuzzy approximation error 

can be acquisited in our previous researches [31–33]. 

By fuzzy approximation, the nonlinear stochastic dynamic network in (15) can be represented by 

the following fuzzy interpolated stochastic dynamic network:  

 
1

1

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( )

L

i i i i i
i

L

i i
i

dx t N x t x t dt B x t v t dt N x t x t dw t m x t N x t Bv t N x t dw t

y t C x t x t m x t C x t





     

 





        

   
 (21)

There are many fuzzy system identification methods to determine the local system matrices iN  , iB ,

iN  and iC  for fuzzy models [24], such as the fuzzy toolbox in Matlab. After that, we can get the 
following result. 

Theorem 3: For the nonlinear stochastic dynamic network in (21), if the following Riccati-like 
inequalities exist a positive definite symmetric solution 0P   : 

2

1
0,  1, 2,... , 1, 2,...T T T T

i j i i i i i jC C N P PN PB B P N P N i L j L
I

          (22) 

then the information transmission ability Io is bounded by I. Proof: See Appendix D. 

The Riccati-like inequalities in (22) can be considered as the local linearization of HJI in (16). In 

order to solve the above Riccati-like inequalities by the conventional LMI method, the positive definite 
matrix 1Q P  is multiplied at both sides of (22). Then the Riccati-like inequalities in (22) can be 

rewritten as:  
1

2

1
0,  1, 2,... , 1, 2,...T T T T

i j i i i i i jQC C Q QN N Q B B Q N Q N Q i L j L
I

          
(23)

By the Schur complement method [15], the Riccati-like inequalities in (23) are then equivalent to 

the following LMIs: 

2

1

0 0,  1, 2, ... , 1, 2, ...

0

T T T T
i i i i i i

j

j

QN N Q B B QC Q N
I

C Q I i L j L

N Q Q

    
 

    
  
 
 

 (24)

If the LMIs in (24) hold for 0Q  , the information transmission ability Io of the nonlinear 

stochastic dynamic network in (21) is less than or equal to I, i.e., I is the upper bound of the 

information transmission ability Io. Therefore, the information transmission ability Io of a nonlinear 

stochastic dynamic network could be obtained by solving the following LMIs-constrained  

optimization problem:  
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0
min

  (22)

o Q
I I

subject to LMIs in




 (25)

which can then be solved by decreasing I until no positive definite symmetric matrix Q is able to 

satisfy the LMIs in (24) or (25). 

Remark 6: (i) Using the fuzzy approximation method, the HJI in (16) is interpolated by a set of 

Riccati-like inequalities in (22) or (23), i.e., the Riccati-like inequalities in (22) or (23) are an 

approximation of HJI with L local systems. Similarly, the LMIs-constrained optimization problem in (25), 

describing the information transmission ability measurement of a nonlinear stochastic dynamic network, 

is also an efficient approach based on a fuzzy interpolation method to replace the very difficult 

HJI-constrained optimization problem in (17). (ii) The LMIs-constrained optimization problem for the 

information transmission ability is known as an “eigenvalue problem” [15], which can be efficiently 

solved by the LMI toolbox in Matlab. (iii) After substituting Io in (25) for Io in (22), we get:  

2

1
0,  1, 2,... , 1, 2,...T T T T

i j i i i i i j
o

C C N P PN PB B P N P N i L j L
I

          (26)

If Io is smaller, then the fourth term will be larger so that the eigenvalues of Ni would be in far left 

hand complex plane (i.e., with more negative real part or more stable (robust) for local linear networks) 

and the Riccati-like inequalities in (26) could still hold, i.e., more stable local linear stochastic 

dynamic networks will lead to small information transmission ability of nonlinear stochastic dynamic 

network in (21). If Io is larger, the fourth term in (26) become smaller, meaning the eigenvalues of Ni 

would be closer to the imaginary axis (i.e., with smaller negative real part or less stable (robust)), i.e., 

less stable (robust) local linear stochastic dynamic networks will lead to a larger information 

transmission ability of nonlinear stochastic dynamic network in (21). Further, large network 

perturbation Ni in local linear stochastic dynamic networks will lead to an overestimate of Io. 

Remark 7: If the fuzzy approximation errors ( ( ))x t   and ( ( ))x t   are considered in the 

measurement of information transmission ability, with the assumption that 1( ( ))x t   and 

2( ( ))x t   , then the Riccati-like inequality in (26) should be modified as:  

 2
1 22

1
2 0,  1, 2,... , 1, 2,...T T T T

i j i i i i i j
o

C C N P PN PB B P N P N P i L j L
I

             
(27)

Obviously, the last term due to fuzzy approximation errors will lead to an overestimate of the 

information transmission ability, i.e., the large fuzzy approximation errors 1  and 2  will make  

Io large. 

Simulation Example 

To demonstrate the procedure of our proposed measurement of information transmission ability, a 

nonlinear stochastic dynamic network example is given in the following for illustration. Consider a 

typical genetic regulatory network in Figure 2, that describing the gene, mRNA, and protein 

interactions [1,2].  
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Figure 2. Gene regulatory network comprising four genes 1 4x x , input v  and outputs 1 4y y . 

 

These genes are regulated by other genes and then expressed through transcription and translation to 

obtain their products, i.e., proteins. Then, these proteins could be as the transcription factors (TFs) of other 
genes to regulate the expressions of other genes. If we consider only the mRNA abundances 1( )x t , 2 ( )x t , 

3 ( )x t  and 4 ( )x t , we can obtain the following nonlinear stochastic gene network as follows [1,2]: 
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 
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V x t x t
dx t x t dt

x t x t

V
dx t x t

x t
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



 

 
         
 
 

  
   

 
 

 
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( ) ( ) ( ) ( ) ( )
T

v t dt x t dW t

y t x t x t x t x t




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





  

      



(28) 

where 1 , 2 , 3 , and 4  are the first-order rate constants of the degradation of 1( )x t , 2 ( )x t , 

3 ( )x t  and 4 ( )x t , respectively. 1w  denotes the constant rate of expression of gene 1( )x t , and the Hill 

term   4 4
2 4 2 4( ) ( )n nV x t x t   describes the formation of 2 ( )x t , which is activated by 4 ( )x t  with 

maximal rate 2V , dissociation constant 2 , and Hill coefficient 4n . The inhibition by 3 ( )x t  is 

expressed by the term  3

3 3 ( )n
I x t  . The formation of 3 ( )x t  is modeled with Hill expression that 

points to a threshold of the formation of 3 ( )x t  depending on the concentrations of 1( )x t  and 2 ( )x t . 

3V  and 3  are the maximal rate and the dissociation constant, respectively, and 12n  is the Hill 

coefficient. The production of 4 ( )x t  depends on the maximal rate 4V  and on the inhibition by 3 ( )x t . 

The parameters are chosen as follows [1]: 
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1 1 2 2 2

3 3 3 3 3

4 4 4 12 1 2

1; 1; 0.7144; 5; 0.1;

0.001; 4; 1; 5; 0.1;

1; 1; 1; 1; 0.48; 0.01.
I

w V

n V

V n n k k

 




     
      

     

 
 

From the simulation result of the nominal gene regulatory network (i.e., without considering the 
stochastic noise ( )W t  and input signal ( )v t ), the equilibrium point of the nominal gene regulatory 

network is at [xe1, xe2, xe3, xe4] = [1.0000, 0.5903, 1.0560, 0.5736]. Therefore, the shifted nonlinear 

stochastic gene network of (28) is obtained as follows:  
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 
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

  3 4.5093 ( ) 1.0506 ( ) 0.5736
T

x t x t  

(29)

By the fuzzy interpolation method in (19) or (20) with L = 81, and the parameters iN , iB , can be 

easily identified with the fuzzy toolbox in Matlab. By solving the LMIs-constrained optimization 

problem in (25), we obtain 0.199oI   and the corresponding positive definite symmetric matrix 
1P Q  as follows: 

0.1082 0.0016 0.0033 0.0008

0.0016 0.0880 0.0006 0.0103

0.0033 0.0006 0.1278 0.0036

0.0008 0.0103 0.0036 0.0686

P

 
   
 
  

 (30)

To confirm the information transmission ability of the proposed measurement method, let the input 

signal ( )v t  be a zero mean white noise with unit variance. Then the information transmission ability oI  

of the nonlinear stochastic gene network by Monte Carlo simulation with 1000 runs is estimated  

as follows: 

 
 

1
2

1
2

100

0

100

0

( ) ( )
0.153 0.199

( ) ( )

T

o
T

E y t y t dt
I

E v t v t dt
  




 (31)

Obviously, the information transmission ability estimated by the proposed method is larger than the 

result by unitary white noise input. There are three main reasons for this result: (i) The network 

perturbations in 2 ( )x t , 4 ( )x t  and fuzzy approximation errors will lead to an overestimate of oI , (ii) 

The information transmission ability oI  in (5) is the worst-case output/input RMS energy ratio for all 

possible finite-energy input signals. Therefore, it may get a more conservative result than an arbitrary 
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input signal. (iii) In general, we can get a conservative result by solving LMIs for 0Q   in (24) or (25) by 

LMI toolbox [28]. 

4. Conclusion 

In order to measure the information transmission ability of nonlinear stochastic dynamic network by 

experiments, it is necessary to test a large number of input signals and compute the ratio of root mean 

square (RMS) energy ratio of the output to input signals. This process requires numerous experiments 

and is not a realistic method of obtaining data. Therefore, a method that is independent of the 

measurement output and input signals is required. According to the concept of a system gain, we 

proposed a new method to measure the information transmission ability of a nonlinear stochastic 

dynamic network, which is dependent on the system characteristics of the nonlinear stochastic 

dynamic network. We found that if a stochastic dynamic network is more stable (or robust); it will lead 

to small information transmission ability, and vice versa. Further, the network perturbation will lead to 

an overestimate of information transmission ability of stochastic dynamic networks. 

In general, it is very difficult to solve HJI-constrained optimization problems to estimate the 

information transmission ability of nonlinear stochastic dynamic networks. In this study, based on 

fuzzy interpolation method, a set of LMIs are obtained to replace HJI at each local linear system, so 

that the HJI-constrained optimization problem for information transmission ability can be replaced by 

LMIs-constrained optimization problem, which can be efficiently solved with the help of the LMI 

toolbox in Matlab. From this simulation example, the measurement result of information transmission 

ability can be confirmed by the proposed method. In the future, the characterization of information 

transmission ability may have much potential application to many kinds of nonlinear stochastic 

dynamic networks. 
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Appendix A: Proof of Theorem 1 

 (A1)

By the Ito formula [16–18], we get:  

 (A2)

From the linear stochastic dynamic network in (3), we get:  

0 0
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( ) ( ) ( ) ( )
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    
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 (A3)

By the fact Edw(t) = 0: 

 (A4)

By the fact:  

 (A5)

for any matrix or vector a and b with appropriate dimension [15], we get:  

 (A6)

By the Riccati-like inequality in (8), we get:  

 (A7)

By the assumption , then 

 

Q.E.D. 

Appendix B: Proof of Remark 3 

For the linear stochastic dynamic network in (4), by Poisson point process [29], we get the 

following result: 

 (B1)

From (4), we get: 

(B2)

By (A5), we get:  

 
 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) (0) (0)

( ) ( ) ( ) ( ) ( ) ( ) ( )

f f

TT T
t tT T

T T T

x t C Cx t dt Nx t dt Bv t dt Nx t dw t Px t
E y t y t dt Ex Px E

x t P Nx t dt Bv t dt Nx t dw t x t N P Nx t dt

   
  
       

 

 
 0 0

( ) ( ) ( ) ( ) ( )
( ) ( ) (0) (0)

( ) ( ) ( ) ( ) ( )

f f

TT T
t tT T

T T T

x t C Cx t Nx t Bv t Px t
E y t y t dt Ex Px E dt

x t P Nx t Bv t x t N P Nx t

  
  
      

 

2
2

1T T T Ta b b a I a a b b
I

  

2

0 0
2

1
( ) ( )

( ) ( ) (0) (0)

( ) ( )

f f

T T T T T
t tT T

T

x t C C N P PN PBB P N P N x t
IE y t y t dt Ex Px E dt

I v t v t

            
  

 

2

0 0
( ) ( ) (0) (0) ( ) ( )

f ft tT T TE y t y t dt Ex Px I v t v t dt  
(0) 0x 

2

0 0
( ) ( ) ( ) ( )

f ft tT TE y t y t dt I v t v t dt 

0 0 0

2

2
1

( ) ( )
( ) ( ) ( ) ( ) (0) (0) ( ) ( ) ( ) ( )

1 ( ) ( )
(0) (0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( )

f f f
Tt t tT T T T T T T

f f

TL
T T T T T T T

i i
i

dx t Px t
E y t y t dt E x t C Cx t dt Ex Px Ex t Px t E x t C Cx t dt

dt

x t Px t
Ex Px E x t C Cx t dt dx t Px t x t Pdx t x t N N x t dt

x t




 
     

 
 

      


  

0

ft 
 
 



1

0 0

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (0) (0)

( ) ( ) ( ) ( ) ( ) ( ) ( )

f f

TL
T T

i i
t t iT T

L L
T T T

i i i i
i i

x t C Cx t Nx t Bv t N x t P t t Px t

E y t y t dt Ex Px E dt

x t P Nx t Bv t Nx t P t t x t N P N x t



 

        
                  


 

 



Entropy 2012, 14       

 

1667

 

 
(B3)

Remark:  denotes a symmetric positive definite matrix in Lyapunov function ; 

 denotes the Poisson (jump) process occurred at . 

Then we get:  

(B4) 

By the Riccati-like inequality in (9), we get:  

 (B5)

By the assumption , then (B5) is reduced as follows: 
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By the HJI in (16), we get:  

 (C3)

By the assumption that , then (C3) becomes:  

  

Q.E.D. 
 

Appendix D: Proof of Theorem 3 

(D1)

By the fact of (A5), we get:  

 (D2)

By the Riccati-like inequalities in (22), we get:  

 (D3)

By the assumption that ,  
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