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Abstract:



Recently the identity of de Bruijn type between the relative entropy and the relative Fisher information with the reference moving has been unveiled by Verdú via MMSE in estimation theory. In this paper, we shall give another proof of this identity in more direct way that the derivative is calculated by applying integrations by part with the heat equation. We shall also derive an integral representation of the relative entropy, as one of the applications of which the logarithmic Sobolev inequality for centered Gaussian measures will be given.
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1. Introduction


Probability measures on [image: there is no content] treated in this paper are absolutely continuous with respect to the standard Lebesgue measure and we shall identify them with their densities.



For a probability measure f, the entropy [image: there is no content] and the Fisher information [image: there is no content] can be introduced, which play important roles in information theory, probability, and statistics. For more details on these subjects see the famous book [1].



Hereafter, for an n-variables function [image: there is no content] on [image: there is no content], the integral of ϕ over the whole [image: there is no content] by the standard Lebesgue measure dx=dx1dx2⋯dxn is abbreviated as


∫[image: there is no content]ϕdx=∫∫⋯∫[image: there is no content]ϕ[image: there is no content]dx1dx2⋯dxn.








that is, we shall leave out [image: there is no content] in the integrand in order to simplify the expressions.



Definition 1.1. Let f be a probability measure on [image: there is no content]. Then the (differential) entropy of f is defined by


H(f)=−∫[image: there is no content]flogfdx.








For a random variable [image: there is no content] on [image: there is no content] with the density f, we write the entropy of [image: there is no content] by H([image: there is no content])=H(f).



The Fisher information for a differentiable density f is defined by


J(f)=∫[image: there is no content]∥∇f∥2fdx=∫[image: there is no content]f∥∇(logf)∥2dx.








When the random variable [image: there is no content] on [image: there is no content] has the differentiable density f, we also write as J([image: there is no content])=J(f).



The important result for a behavior of the Fisher information on convolution (sum of independent random variables) is the Stam inequality, which was first stated by Stam in [2] and subsequently proved by Blachman [3],


1J(f*g)≥1J(f)+1J(g)



(1)




where we have the equality if and only if f and g are Gaussian.



The importance of the Stam inequality can be found in its applications, for instance, the entropy power inequality [2]; the logarithmic Sobolev inequality [4]; Cercignani conjecture [5]; the Shannon conjecture on entropy and the central limit theorem [6,7].



For [image: there is no content], we denote by [image: there is no content] the convolution of f with the n-dimensional Gaussian density with mean vector [image: there is no content] and covariance matrix t[image: there is no content], where [image: there is no content] is the identity matrix. Namely, Pt[image: there is no content] is the heat semigroup acting on f and satisfies the partial differential equation


∂∂tPtf=12ΔPtf



(2)




which is called the heat equation. In this paper, we simply denote [image: there is no content] by [image: there is no content] and call it the Gaussian perturbation of f. Namely, letting [image: there is no content] be the random variable on [image: there is no content] with the density f and [image: there is no content] be an n-dimensional Gaussian random variable independent of [image: there is no content] with mean vector [image: there is no content] and covariance matrix [image: there is no content], the Gaussian perturbation [image: there is no content] stands the density function [image: there is no content] of the independent sum [image: there is no content]+t[image: there is no content].



The remarkable relation between the entropy and the Fisher information can be established by a Gaussian perturbation (see, for instance, [1], [2] or [8]);


ddtH([image: there is no content])=12J([image: there is no content])fort>0



(3)




which is known as the de Bruijn identity.



Let f and g be probability measures on [image: there is no content] such that [image: there is no content] (f is absolutely continuous with respect to g). Setting the probability measure g as a reference, the relative entropy and the relative Fisher information can be introduced as follows:



Definition 1.2. The relative entropy of f with respect to g, [image: there is no content] is defined by


D(f∥g)=∫[image: there is no content]flogfgdx=∫[image: there is no content]flogfdx−∫[image: there is no content]floggdx,








which takes always a non-negative value.



We also define the relative Fisher information of f with respect to g by


J(f∥g)=∫[image: there is no content]f∥∇logfg∥2dx=∫[image: there is no content]f∥∇(logf)−∇(logg)∥2dx,








which is also non-negative. When random variables [image: there is no content] and [image: there is no content] have the densities f and g, respectively, the relative entropy and the relative Fisher information of [image: there is no content] with respect to [image: there is no content] are defined by D([image: there is no content]∥[image: there is no content])=D(f∥g) and J([image: there is no content]∥[image: there is no content])=J(f∥g), respectively.



In view of the de Bruijn identity, one might expect that there is a similar connection between the relative entropy and the relative Fisher information. Indeed, the gradient formulas for the relative entropy functionals were obtained in [9,10,11], where the reference measures would not be changed in their cases.



Recently Verdú in [12], however, investigated the derivative in t of D([image: there is no content]∥[image: there is no content]) for two Gaussian perturbations [image: there is no content] and [image: there is no content]. Here we should note that the reference measure does move by the same time parameter in this case. The following identity of de Bruijn type


ddtD([image: there is no content]∥[image: there is no content])=−12J([image: there is no content]∥[image: there is no content])








has been derived via MMSE in estimation theory (see also [13], for general perturbations).



The main aim in this paper is that we shall give an alternative proof of this identity by direct calculation with integrations by part, the method of which is similar to ones in [11,14]. Moreover, it will be easily found that the above identity yields an integral representation of the relative entropy. We shall also see the simple proof of the logarithmic Sobolev inequality for centered Gaussian in univariate ([image: there is no content]) case as an application of the integral representation.




2. An Integral Representation of the Relative Entropy


We shall make the Gaussian perturbations [image: there is no content] and [image: there is no content], respectively, and consider the relative entropy D([image: there is no content]∥[image: there is no content]), where the absolute continuity [image: there is no content]≪[image: there is no content] remains true for [image: there is no content].



Here, we regard D([image: there is no content]∥[image: there is no content]) as a function of t and calculate the derivative,


ddtD([image: there is no content]∥[image: there is no content])=ddt∫[image: there is no content][image: there is no content]log[image: there is no content][image: there is no content]dx=ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx−ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx



(4)




by integrations by part with help of the heat equation.



Proposition 2.1. Let [image: there is no content] be probability measures on [image: there is no content] with finite Fisher informations [image: there is no content] and [image: there is no content], and finite relative entropy [image: there is no content]. Then we obtain


ddtD([image: there is no content]∥[image: there is no content])=−12J([image: there is no content]∥[image: there is no content])fort>0.








Proof. First we should notice that the Fisher informations J([image: there is no content]) and J([image: there is no content]) are finite at any [image: there is no content]. Because, for instance, if an n-dimensional random variable [image: there is no content] has the density f and [image: there is no content] is an n-dimensional Gaussian random variable independent of [image: there is no content] with mean vector [image: there is no content] and covariance matrix [image: there is no content], then by applying the Stam inequality (1) to independent random variables [image: there is no content] and t[image: there is no content], we have that


J([image: there is no content])=J[image: there is no content]+t[image: there is no content]≤1J([image: there is no content])+1J(t[image: there is no content])−1=J([image: there is no content])1+tnJ([image: there is no content])≤J(f)<∞



(5)




where J([image: there is no content])=n is by simple calculation. We shall also notice that the function D([image: there is no content]∥[image: there is no content]) is non-increasing in t, that is, for [image: there is no content],


0≤D([image: there is no content]∥[image: there is no content])≤D(f∥g)<∞,








which can be found in [15] (p. 101). Therefore, D([image: there is no content]∥[image: there is no content]) is finite for [image: there is no content]. But by a nonlinear approximation argument in [11], we can impose a stronger assumption without loss of generality that


“the relative density [image: there is no content][image: there is no content] is bounded away from 0 and ∞ on [image: there is no content]n”



(6)







Concerning the first term in the most right hand side of (4), it follows immediately that


ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx=−12∫[image: there is no content]∥∇[image: there is no content]∥2[image: there is no content]dx



(7)




by the de Bruijn identity (3), hence, we shall concentrate our attention upon the second term.



Since the densities [image: there is no content] and [image: there is no content] satisfy the heat equation (2), the second term can be reformulated as follows:


ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx=∫[image: there is no content][image: there is no content]∂tlog[image: there is no content]dx+∫[image: there is no content]log[image: there is no content]∂t[image: there is no content]dx










=∫[image: there is no content][image: there is no content]∂t[image: there is no content][image: there is no content]dx+∫[image: there is no content]log[image: there is no content]12Δ[image: there is no content]dx










=∫[image: there is no content][image: there is no content][image: there is no content]12Δ[image: there is no content]dx+∫[image: there is no content]log[image: there is no content]12Δ[image: there is no content]dx



(8)




In this reformulation, we have changed integration and differentiation at the first equality, which is justified by a routine argument with the bounded convergence theorem (see, for instance, [16]).



Applying integration by part to the first term in the last expression of (8), it becomes


∫[image: there is no content][image: there is no content][image: there is no content]12Δ[image: there is no content]dx=−12∫[image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content]dx



(9)




which can be asserted by the observation below. As [image: there is no content] has finite Fisher information J([image: there is no content])<∞, ∇[image: there is no content][image: there is no content] has finite 2-norm in [image: there is no content] and must be bounded at infinity. Furthermore, from our technical assumption (6), [image: there is no content][image: there is no content] is also bounded. Hence if we factorize as


[image: there is no content][image: there is no content]∇[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content],








then it can be found that [image: there is no content][image: there is no content]∇[image: there is no content] will vanish at infinity.



Applying integration by part to the second term in the last expression of (8), it becomes


∫[image: there is no content]log[image: there is no content]12Δ[image: there is no content]dx=−12∫[image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content]dx



(10)




Here it should be noted that log[image: there is no content](∇[image: there is no content]) will vanish at infinity by the following observation. Similarly, we factorize it as


log[image: there is no content](∇[image: there is no content])=2[image: there is no content]log[image: there is no content][image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content].








Then the boundedness of ∇[image: there is no content][image: there is no content] comes from that J([image: there is no content])<∞, and one of [image: there is no content][image: there is no content] is by the assumption (6) same as before. Furthermore, the limit formula [image: there is no content] ensures that [image: there is no content]log[image: there is no content] will vanish at infinity.



Substitute the Equation (9) and Equation (10) into (8), it follows that


ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx=−12∫[image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content]dx−12∫[image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content]dx










=−12∫[image: there is no content]∇[image: there is no content][image: there is no content]−[image: there is no content]∇[image: there is no content]gt2·∇[image: there is no content]dx−12∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx










=−∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx+12∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx



(11)







Combining the Equation (7) and Equation (11), we have that


ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx−ddt∫[image: there is no content][image: there is no content]log[image: there is no content]dx=−12∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx+∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx−12∫[image: there is no content][image: there is no content]∇[image: there is no content][image: there is no content]·∇[image: there is no content][image: there is no content]dx=−12∫[image: there is no content][image: there is no content]∥∇[image: there is no content][image: there is no content]−∇[image: there is no content][image: there is no content]∥2dx








which means


ddtD([image: there is no content]∥[image: there is no content])=−12∫[image: there is no content][image: there is no content]∥∇(log[image: there is no content])−∇(log[image: there is no content])∥2dx=−12J([image: there is no content]∥[image: there is no content]).











Let [image: there is no content] and [image: there is no content] be n-dimensional random variables with the densities f and g, respectively, and [image: there is no content] be an n-dimensional Gaussian random variable independent of [image: there is no content] and [image: there is no content] with mean vector [image: there is no content] and covariance matrix [image: there is no content].



Since the relative entropy is scale invariant, it follows that


D([image: there is no content]+t[image: there is no content]∥[image: there is no content]+t[image: there is no content])=D1t[image: there is no content]+[image: there is no content]∥1t[image: there is no content]+[image: there is no content].








We know that both of 1tX+Z and 1tY+Z, as [image: there is no content] converge to Z in distribution. Thus, we have


lim[image: there is no content]D([image: there is no content]∥[image: there is no content])=0,








and the following integral representation for the relative entropy can be obtained:



Theorem 2.2. Let [image: there is no content] be probability measures with finite Fisher informations and finite relative entropy [image: there is no content]. Then we have the integral representation,


D(f∥g)=12∫0∞J([image: there is no content]∥[image: there is no content])dt.












3. An Application to the Logarithmic Sobolev Inequality


In this section, we shall give a proof of the logarithmic Sobolev inequality for a centered Gaussian measure in case of [image: there is no content]. Although several proofs of the logarithmic Sobolev inequality have already been given in many literatures (see, for instance, [10,17]), we shall give it here again as an application of the integral representation in Theorem 2.2.



Theorem 3.1. Let g be the centered Gaussian measure of variance [image: there is no content]. Then for any probability measure f on [image: there is no content] of finite moment of order 2 with finite Fisher information [image: there is no content], the following inequality holds:


D(f∥g)≤[image: there is no content]2J(f∥g).








Proof. It is clear that the perturbed measure [image: there is no content] is the centered Gaussian of variance [image: there is no content]+t and the score of which is given by


∂xlog[image: there is no content]=−x[image: there is no content]+t.








Then using the Stein relation (see, for instance, [15]), the relative Fisher information J([image: there is no content]∥[image: there is no content]) can be expanded as follows:


J([image: there is no content]∥[image: there is no content])=∫[image: there is no content]∂xlog[image: there is no content]−∂xlog[image: there is no content]2[image: there is no content]dx










=J([image: there is no content])+2∫[image: there is no content]∂x−x[image: there is no content]+t[image: there is no content]dx+∫[image: there is no content]−x[image: there is no content]+t2[image: there is no content]dx










=J([image: there is no content])−2[image: there is no content]+t∫[image: there is no content][image: there is no content]dx+1([image: there is no content]+t)2∫[image: there is no content]x2[image: there is no content]dx



(12)




As it was seen in (5), by Stam inequality, we have that


J[image: there is no content]≤1[image: there is no content]+t−1=1(1/α)+t



(13)




where we put [image: there is no content].



Since f has finite moment of order 2, if we put the second moment of f as [image: there is no content], then it is easy to see that the second moment of [image: there is no content] is given by


m2([image: there is no content])=∫x2[image: there is no content]dx=β+t



(14)




Substitute (13) and (14) into (12) and we obtain that


J([image: there is no content]∥[image: there is no content])≤1(1/α)+t−2[image: there is no content]+t+β+t([image: there is no content]+t)2=1(1/α)+t−1[image: there is no content]+t+β−[image: there is no content]([image: there is no content]+t)2.








Integrating for [image: there is no content], we have


12∫0∞J([image: there is no content]∥[image: there is no content])dt≤12∫0∞1(1/α)+t−1[image: there is no content]+t+β−[image: there is no content]([image: there is no content]+t)2dt=12log(1/α)+t[image: there is no content]+t−β−[image: there is no content][image: there is no content]+t0∞=12log([image: there is no content]α)+β[image: there is no content]−1.








Since [image: there is no content] is dominated as [image: there is no content] for [image: there is no content], it follows that


12∫0∞J([image: there is no content]∥[image: there is no content])dt≤12[image: there is no content]α−2+β[image: there is no content]



(15)







On the other hand, the relative Fisher information [image: there is no content] can be given as


[image: there is no content]=∫[image: there is no content]∂xlogf−−x[image: there is no content]2fdx










=∫[image: there is no content]∂xlogf2fdx−2[image: there is no content]∫[image: there is no content]fdx+1([image: there is no content])2∫[image: there is no content]x2fdx










=J(f)−2[image: there is no content]+m2(f)([image: there is no content])2=α−2[image: there is no content]+β([image: there is no content])2



(16)




Combining (15) and (16), we have


12∫0∞J([image: there is no content]∥[image: there is no content])dt≤[image: there is no content]2J(f∥g),








which means our desired inequality by Theorem 2.2.



Remark 3.2. Similar way to the proof of Theorem 3.1 can be found in the paper by Stam [2], where it is not for relative case. Namely, based on convolution inequalities and the de Bruijn identity, the isoperimetric inequality on entropy for a standardized random variable X on [image: there is no content],


[image: there is no content]



(17)




was shown. This inequality is essentially the same as the logarithmic Sobolev inequality for the standard Gaussian measure, where the left hand side in (17) is the reciprocal of the entropy power.
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