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Abstract: An original multivariate multi-scale methodology for assessing the complexity 
of physiological signals is proposed. The technique is able to incorporate the simultaneous 
analysis of multi-channel data as a unique block within a multi-scale framework. The basic 
complexity measure is done by using Permutation Entropy, a methodology for time series 
processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally 
robust to noise and artifacts, computationally very fast, which is relevant for designing 
portable diagnostics. Since time series derived from biological systems show structures on 
multiple spatial-temporal scales, the proposed technique can be useful for other types of 
biomedical signal analysis. In this work, the possibility of distinguish among the brain 
states related to Alzheimer’s disease patients and Mild Cognitive Impaired subjects from 
normal healthy elderly is checked on a real, although quite limited, experimental database. 

Keywords: complexity; permutation entropy; multi-scale entropy; multivariate permutation 
entropy; Alzheimer’s Disease; biomedical signal analysis  

 

OPEN ACCESS



Entropy 2012, 14 1187 
 

 

1. Introduction 

The concept of entropy has achieved a large consensus as an indicator of complexity of nonlinear 
signals [1]. A number of variants of this notion have been proposed in the literature which show 
different degrees of flexibility, relevance to different problems, efficiency in their computation, as well 
as theoretical foundations [2]. The information processing in the brain manifests itself through its 
global electrical activity, measured by the electroencephalogram (EEG): from an information 
processing viewpoint this is a multidimensional, non-stationary, nonlinear time series. This assumption 
is at the basis of the study of EEG through entropy which aims to extract information useful to 
distinguish among different brain states. In particular, there are variation of EEG related to normal 
aging and some other aging pathologies that can be detected by means of a complexity analysis. This 
supports the complexity loss theory for system under stress, for instance, through aging and related 
diseases [3,4]. In this work, the potential of complexity analysis of multidimensional EEG as indicator 
of AD onset through multi-scale entropic modeling is investigated. This problem has been already 
faced by several researchers worldwide [5,6]. However, the relevance of the complexity of EEG 
fluctuations with regard to the dynamical changes of the Alzheimer’s Disease (AD) patients has not 
yet been definitely clarified as possible precursor of the onset of AD, although different studies tend to 
prefigure this as a practical possibility. This would be extremely important since EEG is a cheap, 
reproducible way to program a screening and a follow-up of population at risk with clear advantages 
for the sanitary systems. Thus, further studies are certainly needed and should be encouraged. 

Being the EEG a multidimensional signal extracted from a number of correlated channels, it is of 
high potential interest to be able to exploit its multidimensional nature through techniques that can 
make inter-channel relations emerge [7,8]. 

The reminder of the paper is organized as follows. In Section 2, the concept of Permutation Entropy 
(PE) and the effects of frequency and noise on PE calculation are discussed. In Section 3, the concept 
of Multi-Scale analysis is applied to PE; in Section 4, a multivariate version of PE is introduced.  
In Section 5, an original multivariate extension of multi-scale PE is developed. Section 6 reports some 
simulation results. Concluding remarks are finally provided in Section 7. 

2. Permutation Entropy (PE) 

PE has been introduced as a fast and robust method for extracting information from a time series, 
with special regard to its complexity [1]. With this algorithm, the one-dimensional dynamical 
recording corresponding to the time series is analyzed from a pure ordinal viewpoint [9]. PE is based 
on the counting of ordinal patterns (hereafter called “motifs”) that describe the up-and-down in the 
dynamical signal. The concept of PE is based on the measure of the relative frequencies of the 
different motifs. Since just ordinal patterns are considered, the amplitude of the signal is actually not 
relevant, thus yielding a structural robustness to noise. As an interesting by-product, in the study of 
biological signals (e.g., EEG), this also implies the independence on the choice of the reference 
electrode [10]. Accordingly, there is no need of the usual normalization pre-processing step. As an 
invariant measure, PE is expected to quantify the complexity of the system generating the time series, 
by discerning the relative change of complexity from limited amount of data. On the other hand, PE 
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reflects just one aspect of the ordinal structure of the signal, thus, some additional investigations are 
advisable to fully understand both its advantages and limitations [11]. 

PE combines the concept of Shannon Entropy to the ordinal pattern analysis through the estimation 
of the relative frequencies of the ordinal patterns extracted from time series. PE represents an 
alternative way of measuring similarity among patterns with respect to other types of complexity 
measurements, like Approximate Entropy and Sample Entropy. In a regular time series, there are lots 
of similar ordinal patterns; on the contrary, the presence of different patterns occurring with similar 
relative frequency is indicative of high complexity [12]. PE is dependent on two-parameters: an 
embedding dimension, d, and a time-lag, τ. Given a scalar time series, y = {y1, …yi, …yN}, an 
embedding procedure forms data segments where d is the number of samples belonging to the 
segment, and τ represents the distance between the sample points spanned by each section of the motif 
as depicted in Figure 1. To compute the PE of the time series, y, first the series of vectors of length d, 
vd(n) = [yn, yn+1, …, y(n+d−1)] is derived from the signal samples yj. Then, vd(n) is arranged in increasing 
order of magnitudes: [yn+j1−1, yn+j2−1, …, yn+jn−1]. For d different samples, there will be d! possible 
ordinal patterns, π, which are also called “motifs”. For each single motif πj, let f(πj) denote its 
frequency of occurrence in the time series. The relative frequency is thus:  

( )
( )
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j
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N d
π

π =
− +

 (1) 

For fixed embedding dimension d > 2, and fixed time-lag τ = τ , PE is defined as: 
!
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τ π π
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where the sum runs over all d! motifs π. The maximum value of H(d) is log2(d!), which implies that all 
motifs have equal probability. The smallest value of H(d) is zero, which implies the time-series is very 
regular, i.e., it is a mere repetition of the same basic motif.  

Figure 1. Extraction of ordinal patterns from the signal by varying the time-lag τ (d = 3).  
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For convenience, we normalize H(d, τ ) by its maximum value log2(d!): 

2
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log ( !)
H d

d
τ

≤ ≤  (3) 

A pictorial description of the PE computation is given in Figure 2. A 30 s segment extracted from 
the original EEG time recording for one channel is reported in Figure 2(a). The time evolution of PE is 
reported in Figure 2(b); the six motifs corresponding to d = 3 are depicted in Figure 2(c) while the 
relative distribution of p(π) for a selected window is drawn if Figure 2(d). A similar representation has 
been proposed in [13].  

Figure 2. (a) A sample EEG recording extracted from the database; (b) PE time evolution; 
(c) The six possible motifs for d = 3; (d) Motifs frequency distribution.  
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2.1. Frequency Dependence of PE  

For different choices of the time-lag, τ, PE shows a varying dependence on frequency. To illustrate 
this effect, we simulate a sequence of pure sine waves time series and then we calculate PE for each of 
them. The results are reported in Figure 3(a). As it can be observed, with τ = 1, the PE is 
monotonically decreasing with decreasing frequency. This yields, in principle, a real advantage for 
using PE to analyse AD EEG data. In particular, this kind of dependence may reflect the observed 
“slowing” effect in AD. Early stages of AD (even preclinical) are indeed typically associated with 
slowing down of resting alpha rhythms, namely, a decrease of the individual alpha frequency peak in 
power density. This peak is defined as the frequency associated with the strongest EEG power at the 
alpha range.  
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Figure 3. (a) Frequency dependence of PE. The two distributions for τ = 1 and τ = 2  
(d = 3, fs = 128 Hz) are reported. The minimum value of PE for τ = 2 is at 32 Hz; (b) The 
effect of adding white noise on PE calculation (d = 3, τ = 1 and fs = 128 Hz). It is evident 
the effect on very low frequencies. However, the frequency range of the lowest band 
considered in EEG signal processing (δ band) is within 2–4 Hz. 
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PE can explicitly incorporate this kind of behavior. The frequency dependence of PE with τ = 2 is 
markedly different and more difficult to interpret. In Figure 3(a), it is also possible to observe that the 
PE function has a minimum for a frequency that is a fraction of the sampling frequency, fs. More 
generally, the time evolution behaviour of the PE for τ = 1, and 2, can be different based on the 
presence of special signal components. For example, in an EEG signal rich in spindle-like activities, 
the curves of PE for τ = 1, 2 are very different. Since we are selecting PE as an invariant measure that 
may capture the “slowing” effect on EEG of AD, in this paper, we limit our simulations to the case of  
τ = 1. Some authors decided to define a suitably averaged composite PE index that is able to 
incorporate both the cases, this way exploiting the above described effect [13]. 

2.2. Effect of Noise on PE Calculation  

The effects of noise on PE have been originally discussed in [1]. As a consequence of the invariant 
transformation property of PE, there is a discontinuity near the constant time series. In this case, PE 
zeroes, since just one motif is represented. If this series is perturbed by noise, the PE value strongly 
increases. Thus, for some added white noise of sufficient power, the value of PE tends to its maximum 
at very low frequencies. Figure 3(b) shows the effect of adding white noise to the simulated sine-wave 
time series. It is worth noting that, as correctly claimed in [1], the added noise leaves undisturbed the 
PE curve after a frequency threshold. This threshold level depends on the power of the noise.  
The Multi-Scale analysis proposed in this paper can reduce the limitations posed by the described 
effect, since the coarse-graining procedure has a smoothing effect on the time series. This is relevant in 
order to leave unaffected the frequency portions of the signals where the “slowing” effect is measured. 
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3. Multi-Scale Permutation Entropy (MSPE) 

The technique of measuring the complexity of a time series through the concept of entropy implies 
that random sequences attain maximal complexity. In contrast, the complexity analysis can be faced 
from a “structural” viewpoint: the complexity should not be maximum neither for completely regular 
nor for completely random sequences. In biological and physiological time series, there are often 
evident or underlying structural correlations over multiple spatial-temporal levels (scales). Among 
many other measures, Multi-Scale Entropy (MSE), proposed in 2002 by Costa et al. [14] has been 
shown to be one of the most effective methods that explicitly accounts for such structural effects at 
multiple time scales present in complex real data. MSE yields a systematic procedure to associate to 
both fully predictable and uncorrelated random signals a small value of complexity. In contrast, 
correlated processes show high complexity over different scales. MSE is a method of measuring the 
complexity of finite length time series that can be appropriately used with different types of entropic 
measures [15,16]. In [14], the Sample Entropy formulation has been used. Here, we propose to use 
MSE for evaluating at multiple scales the previously introduced PE. We will limit our analysis from 
single scale to scale four because of the limited size of the available recordings. As a matter of fact, for 
PE, a possible way to explore correlations among different scales could be the proper variation of the 
time lag parameter, τ. However, it is our opinion that the MSE procedure is easier to interpret with 
respect to the direct variation of τ, that implies a fictitious frequency dependence on the sampling 
frequency. Thus, the usual coarse-graining procedure is implemented, as follows: 

(1) From the original time series, we derive multiple successive coarse-grained versions by averaging 
the time data points within non-overlapping time slice of increasing length, ε, referred to as the 
scale factor. Each element of the coarse-grained time series, yj(ε), is calculated as: 
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i j
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ε

ε

εε = − +

= ∑  (4) 

The length of each coarse-grained time series is ε times shorter than the original one. For ε = 1, we 
get the original series; 

(2) For each scaled series, the PE is calculated. The averaged PE can be plotted as a function of the 
scale factor, ε. 

The selection of different time-lags also implies working on different scales of the time series; we 
decided to work on a fixed time-lag (τ = 1) in order to avoid unknown cross-effects between the two 
approaches. In the literature, two papers report on a different way of taking into account time scale 
variations with reference to PE: a composite index is there derived from two or three different levels.  
In [13] the index takes into account two values of the time-lag, τ, used as a scale factor; in [11], the 
authors calculate a multiple scale parameter by considering three successive scales. 

4. Multivariate Permutation Entropy (MPE) 

The previously discussed MSPE is suitable for single channel time series. Thus, for multiple 
channel signals, each time series should be considered separately. This kind of procedure may be 
acceptable just for set of signals that are at least uncorrelated. It is, thus, not the case of scalp EEG, where 
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the volume conduction introduces an integration (correlating) effect at least at a region (lobe) level. 
Furthermore, the analysis of single channels inevitably implies an information loss related to relevant 
cross-channel variability. 

In this work, a multivariate extension of MSPE is proposed. It implies a suitable definition of PE 
for multivariate signals, like EEG, and, then, its evaluation over different time scales. A similar 
concept has been recently introduced by Mandic [7,8] for Sample Entropy (MMSE). The method here 
proposed is quite new and somewhat refers to the original seminal paper of Keller and Laufer [17]; 
however, they didn’t take into account variation over multiple scales.  

Consider a time window of size T (seconds) of an EEG channel whose sampling frequency is  
fs = 1/T; each window will thus include (fsT) samples, i.e., data points. For each channel i  [1, m] and 
for each j  [1, n = d!] (i.e., for each “motif”), count all times s  [1, fsT − d] for which the channel-
time pair (i,s) provides the motif j. The relative frequencies pi,j, obtained after dividing the counts by 
mT, are the entries of a matrix Pt (m,n) = { },i jp  reflecting the distribution of the motifs in the time 

slice of length T. It holds 
!

,
1 1

1
m d

i j
i j

p
= =

=∑∑ . According to this procedure, the original multivariate time 

series is transformed into a time dependent matrix from which the relevant statistics and entropies can 
be easily extracted. In particular, it is easy to compute the marginal relative frequencies describing the 

distribution of the motifs, as: ,
1

m

j i j
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p p
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= ∑  for j = 1, …, d! 

The cross-channels complexity, representing the Multivariate PE (MPE), can be calculated as the 
permutation entropy (PE) of pj: 
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Through the same matrix, it is also possible to compute the single channel PE, as: 
!

, 2 ,
1

( , ) log ( )
d

E i j i j
j

H i s mp mp
=

= −∑ , for i = 1, …, m (6) 

Figure 4 pictorially represents the procedure of MPE computation. A very interesting quantity that 
can be computed is the Mean Squared Difference between the MPE and the curve obtained by 
averaging the m single-channel PE. This quantity is called contingency. It is vanishing if and only if 
the single channel distributions coincide. If they are highly “similar”, the overall complexity of the 
time series at time s is the sum of two terms: the mean complexity of the channels and a rest dependent 
on the inhomogeneity between the channels. A thorough analysis of the impact of contingency on 
MPE is, however, beyond the scope of the present work. 

PE is a measure robust to noise (particularly with respect to high frequency noise): being the MPE 
substantially a slight variation of an average operation, it can help in absorbing some uncertainties of 
data acquisition. 

MPE can be useful in EEG signal processing since if it is computed on “distant” channels, i.e., on 
different hemispheres and/or different areas, it may be able to extract cross-channel regularities by 
highlighting long-range spatial (nonlinear) correlations.  
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Figure 4. A pictorial representation of the Multivariate Permutation Entropy (MPE) 
algorithm. Three different channels and the relative motifs distribution are considered.  
On the left, the multivariate motifs distribution occurrence.  

 

5. Multi-Scale Multivariate Permutation Entropy (MMSPE)  

The multivariate multi-scale permutation entropy (MMSPE) algorithm is implemented according to 
the two following steps: 

(1) Different time scales of increasing length are defined by coarse-graining the original multivariate 
time series, i.e., {xi,t}, for i = 1,…, m, where m denotes the number of considered channels, and 
for t = 1, …,N, where N is number of samples in each time series. For a scale factor ε, the 
elements of the multivariate coarse-grained time series can be derived as:  

, ,
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1 j

i j i t
t j

y x
ε

ε
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= ∑ , for i = 1, …,m, and, 1 Nj
ε
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(2) Calculate the multivariate permutation entropy, MPE, for each coarse-grained multivariate yεi,j, 
and plot MPE as a function of the scale factor ε. 

In practice, an ensemble of m electrodes are selected according to some predefined criterion  
(e.g., the ones on frontal area); then, the MPE is computed keeping simultaneously into account the m 
related channels. From the relative frequency matrix, it is also possible to estimate the marginal single 
channel relative frequencies (channel PE). The MPE is evaluated on the different time scales by 
processing the coarse-grained time series, dependent on the scale factor ε. The use of the multi-scale 
approach coupled with the simultaneous treatment of different channels facilitates the assessment of 
the dynamical properties of the complex underlying system. In the EEG of AD, this is associated with 
the reduced ability of the brain to focus on cognitive activities, as histologically determined by cortical 
atrophy, intracellular deposition of neurofibrillary tangles, and extracellular deposition of senile 
plaques, particularly in the hippocampus and the cerebral cortex [18]. These evolving events of 
multiple damages is believed to slowly but surely impact on the integrative multi-scale functionality 
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and spatial organization of the brain [4]: this is interpreted by varying entropy values, namely, 
complexity, across increasing time scales. In a healthy subject, the complexity is expected to be  
non-decreasing with scale, as it is with noise, because of the presence of multiple levels time 
correlated cross-channel and within channel interactions [8,19,20]. One peculiar advantage of 
multivariate PE with respect to the recently introduced multivariate Sample Entropy is that it is not 
necessary to normalize multi-channel data. The other possible advantage is its robustness to noise and 
artifacts [21]. In this work, this aspect is not investigated since the EEG data we process have been 
cleared from artifacts in advance and filtered in a suitable frequency range. 

6. Complexity Analysis of Different Brain States: Simulation Results 

The characterization of brain electrical activities in terms of complexity of the EEG can be a useful 
tool in different contexts. For example, the time evolution of PE shows evident changing complexity in 
the transition between inter-ictal and ictal states in the epileptic brain [10]. In this study, we tested the 
above discussed algorithms by analyzing the EEG of three different groups of subjects (male and aged 
between 60–75 years): mild cognitive impaired (MCI) patients, Alzheimer’s Disease (AD) patients and 
age-matched healthy elderly control (HC). AD is a progressive and irreversible brain disorder of 
unknown etiology. It is the main cause of dementia in western countries, and it affects 1% of the 
population aged 60–64 years, but its prevalence increases exponentially with age, so around 30% of 
people over 85 years suffer from this disease [15,20]. Clinically, this disease manifests as a slowly 
progressive impairment of mental functions whose course lasts several years. Although diagnosing AD 
definitely can only be done by necropsy, a differential diagnosis with other kinds of dementia, possibly 
at an early stage, should be attempted. MCI often precedes evident dementing illness: the cognitive 
impairments of MCI are often not severe enough to exceed standard clinical criteria for AD but in 
most cases progress toward a clear AD condition. This renders early diagnosis a relevant worldwide 
emergent question. However, discriminating MCI from HC is generally difficult. The inclusion criteria 
for enrollment of patients for statistical analysis are mainly standard and at the first lever are based on 
Mini Mental State Examination (MMSE). The database analyzed in the present study is, however, 
quite limited: just three cases per category are available. The patients underwent neuro-physical tests 
that revealed objective evidence of memory impairment. The nine EEG registrations have been 
collected according to the sites defined by the standard 10–20 international system, at a sampling rate 
of 200 Hz. The data are band-pass filtered between 0.5 and 32 Hz, so including the relevant bands for 
AD diagnosis. In the course of the experimental activity, EEG was recorded in rest condition with 
closed eyes (under vigilance control). The EEG database has been provided by the IRCCS Centro 
Neurolesi of Messina, Italy, through a cooperation agreement. A preliminary clinical inspection of the 
data has been carried out by neurologists of the center for ensuring absence of artifacts and in order to 
make any relevant clinical observations.  

It is quite difficult to carry out any statistical considerations on the basis of the limited available 
database, for example about the specificity of the diagnosis; however, a statistical validation has been 
performed in order to quantify the discrimination ability of the different techniques which have been 
applied to the database of EEG multivariate signals concerning the diagnosis of AD. Some additional 
information on the problem can be found in [22]. The PE is previously calculated for each channel. 
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The results are averaged over the three subjects per category. Then, the impact of the scale on the 
calculation is assessed. More detailed results on the effect of scales on complexity measures are 
reported elsewhere [16,21,23]. MSPE has been shown to be suitable for single channel time series 
[21]. The relevance of a multivariate analysis is here assessed within the multi-scale framework.  

The analysis has been carried out by making use of MatLab code which is in part freely available 
on the Internet. Minor modifications have been implemented for generating the MMSPE curves and 
for statistical analysis of the data.  

Figures 5–7 illustrate the time evolution of PE over three channels versus the window number. Each 
window refers to a segment of the time series of 3 seconds duration. Three different subsets of 
channels have been considered for the three groups (HC, MCI, AD). The time evolution of the MPE is 
also reported. One can see that, as expected, the complexity of the signals generally decreases with the 
severity of the illness, particularly between HC and AD. This is more easily seen looking at the MPE 
curves. MPE partitions the electrode ensembles in two parts, this way possibly indicating the areas or 
the subsets of electrodes that may favor a correct diagnosis. 

Figure 5. Time evolution of the computed PE value vs. window number for (a) three 
frontal electrodes (Fp1, Fp2, F3); (b) three occipital electrodes (O1,O2,Oz); and (c) three 
electrodes of different area (F3,Cz,O2) compared to the corresponding multivariate PE (MPE); 
(d–f) for the healthy elderly subjects. Each window spans 3 s of the original time series. 
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Figure 6. Time evolution of the computed PE value vs. window number for (a) three 
frontal electrodes (Fp1, Fp2, F3); (b) three occipital electrodes (O1,O2,Oz); and (c) three 
electrodes of different area (F3,Cz,O2) compared to the corresponding multivariate PE (MPE); 
(d–f) for mild cognitive impaired subjects. Each window spans 3 s of the original time series. 
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Figure 7. Time evolution of the computed PE value vs. window number for (a) three 
frontal electrodes (Fp1, Fp2, F3); (b) three occipital electrodes (O1,O2,Oz); and (c) three 
electrodes of different area (F3,Cz,O2) compared to the corresponding multivariate PE 
(MPE); (d–f) for subject with Alzheimer’s disease. Each window spans 3 s of the original 
time series. 
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Figure 7. Cont. 
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Figure 8 shows an example of the Multivariate Permutation Entropy for the three different categories of 
subjects. It is clear that, at scale one, the discrimination is difficult at the single window level. 

Figure 8. Multivariate Permutation Entropy for three different categories of subjects: HC 
(Healthy elderly Control), MCI (Mild Cognitive Impaired patients), and AD (Alzheimer 
Disease patient). Electrodes (Fp1, Fp2, F3).  
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Figures 9–11 show the results obtained by applying a Multi-Scale analysis to three different 
electrodes for the three groups. It is worth noting that the complexity increases with scale in any case, 
in contrast to uncorrelated noise. 

Figures 12–14 illustrate the results achieved by applying the proposed methodology (MMSPE), 
with respect to the average values of multivariate PE, at four different scale factors, to the three 
categories of subjects. Two different brain regions (frontal and occipital electrodes) have been selected 
along with a different mix of electrodes. Each curve allows for a comparison among complexities, also 
including the error bars of the estimations. The complexity curves are similar to the ones for the 
univariate case: AD patients exhibit lower complexity than either MCI or HC subjects and the 
complexity grows with scale. Since we limited our analysis to scale 4, it is not possible to determine at 
which scale the curves start to decrease, as reported in other studies [20,23,24]. Unfortunately, because 
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of the limited size of the database, higher scales cannot be tested. One relevant consideration on the 
MMSPE curves, as compared to univariate MSE, is the sensible reduction of the standard deviation of 
the complexity estimation. The discrimination between MCI and HC, as well as between AD and HC 
is quite good and improves with scale. MCI and AD groups are hardly separable. The discrimination 
among brain states seems more easy when considering electrodes not belonging to the same areas. This 
appears as a not previously noted advantage of the multivariate approach: in particular, the MMSPE 
differentiates better from the mere average of the three electrodes MSE curves. In other words, it is 
possible to hypothesize that in this fictitious “mixed” area, MMSPE helps to capture not  
trivial correlations.  

Figure 9. Multi-Scale PE for three different electrodes (F3, frontal; O2, occipital; Cz: 
central) for normal healthy elderly subjects. 
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Figure 10. Multi-Scale PE for three different electrodes (F3, frontal; O2, occipital; Cz: 
central) for Mild Cognitive Impaired subjects. 
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Figure 11. Multi-Scale PE for three different electrodes (F3, frontal; O2, occipital; Cz: 
central) for subject with Alzheimer’s disease. 
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Figure 12. Multivariate Multi-Scale Permutation Entropy (MMSPE) computation for  
three channels time series referring to the frontal area (Fp1, Fp2, F3) for three different  
subject categories. 
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Figure 13. Multivariate Multi-Scale Permutation Entropy (MMSPE) computation for  
three channels time series referring to the occipital area (O1,O2,Oz) for three different subject 
categories. 
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Figure 14. Multivariate Multi-Scale Permutation Entropy (MMSPE) computation for three 
channels time series referring to the mixed area (F3,Cz,O2) for three different subject 
categories. 
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7. Conclusions  

PE has been recently introduced for the processing of AD EEG data, being a complexity measure 
that is also able to capture someway the well-known “slowing” effect related to the disease. This is 
because of the above discussed frequency dependence of PE at different time lags. As shown in 
previous papers, the MSPE is able to cater for within-channel correlations over multiple scales. 
Finally, the MPE appears able to also incorporate a measure of synchronization over multiple 
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channels. The EEG of AD patients is in fact analyzed also from the viewpoint of modified synchrony 
among channels (electrodes). Accordingly, our complexity measure based on the concept of PE, in its 
multivariate multi-scale variant, may serve as a complementary synthetic parameter for cumulatively 
embodying the various experimented effects of AD on EEG.  

Further work is needed to understand how these combined effects impact on the calculation of PE. 
In particular, additional work is needed to manage the contrasting effects of multi-scaling, which is 
biased toward the coarser scales [25] and the structural properties of PE, that, in absence of noise, 
attributes lower values of complexity at low frequency signals. 

Unfortunately, our conclusions are at present not supported from the availability of a large 
database: this clearly reduces the reliability of any statistical analysis. We explicitly note that a larger 
dataset will be needed before the proposed approach can be statistically validated. However, in the 
near future a large database will be made available to us. In conclusion, our findings seem to highlight 
the potential utility of MMSPE as a complementary approach for making the assessment of aging 
processes in AD. 
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