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Abstract: The application of the Maximum Entropy (ME) principle leads to a minimum of 
the Mutual Information (MI), I(X,Y), between random variables X,Y, which is compatible 
with prescribed joint expectations and given ME marginal distributions. A sequence of sets 
of joint constraints leads to a hierarchy of lower MI bounds increasingly approaching the 
true MI. In particular, using standard bivariate Gaussian marginal distributions, it allows 
for the MI decomposition into two positive terms: the Gaussian MI (Ig), depending upon 
the Gaussian correlation or the correlation between ‘Gaussianized variables’, and a 
non-Gaussian MI (Ing), coinciding with joint negentropy and depending upon nonlinear 
correlations. Joint moments of a prescribed total order p are bounded within a compact set 
defined by Schwarz-like inequalities, where Ing grows from zero at the ‘Gaussian manifold’ 
where moments are those of Gaussian distributions, towards infinity at the set’s boundary 
where a deterministic relationship holds. Sources of joint non-Gaussianity have been 
systematized by estimating Ing between the input and output from a nonlinear synthetic 
channel contaminated by multiplicative and non-Gaussian additive noises for a full range 
of signal-to-noise ratio (snr) variances. We have studied the effect of varying snr on Ig and 
Ing under several signal/noise scenarios. 
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non-Gaussian noise 
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1. Introduction 

One of the most commonly used information theoretic measures is the mutual information (MI) [1], 
measuring the total amount of probabilistic dependence among random variables (RVs)—see [2] for a 
unifying perspective and axiomatic review. MI is a positive quantity vanishing iff RVs are independent. 

MI is an effective tool for multiple purposes, namely and among others: (a) Blind signal separation [3] 
and Independent Component Analysis (ICA) [4], both of which look for transformed and/or lagged 
stochastic time series [5] which minimize MI; (b) Predictability studies, Predictable Component 
Analysis [6] and Forecast Utility [7], all of which are focused on the analysis and decomposition of the 
MI between probabilistic forecasts and observed states.  

Analytical expressions of MI are known for a few number of parametric joint distributions [8,9]. 
Alternatively, it can be numerically estimated by different methods, such as Maximum Likelihood 
estimators, Edgeworth expansion, Bayesian methods, equiprobable and equidistant histograms, 
kernel-based probability distribution functions (PDFs), K-nearest neighbors technique—see [10,11] 
and references therein for a survey of estimation methods and scoring comparison studies.  

In the bivariate case, treated here, the MI ( , )I X Y , between RVs ,X Y is the Kullback–Leibler (KL) 
divergence: ( ) ( )( , ) || log( / ( )) 0

XYXY X Y p XY X YI X Y D p p p E p p p≡ = ≥ , between the joint probability 
function XYp  and the product of marginal probability distributions X Yp p  where XYpE  is the 
expectation operator over the measure XYp . The MI is invariant for smooth invertible transformations 
of ,X Y . 

The goal is the determination of theoretical lower MI bounds under certain conditions or, in other 
words, the minimum mutual information (MinMI) [12] between two RVs ,X Y , consistent, both with 
imposed marginal distributions and cross-expectations assessing their linear and nonlinear 
covariability. Those lower bounds can be obtained due to the application of the Maximum  
Entropy (ME) method to distributions [13] and to the inequality: ( ) ( )|| ||MED p q D p q≤ .  
Here, MEp  is a Maximum Entropy probability distribution (MEPD) with respect to q, say 

( )arg min ( || )ME pp D p q∈Ω= , where Ω is a PDF class verifying a given set of constraints [1]. 
Therefore, by using the joint MEPD XY MEp p −=  and X Yq p p= , the lower MI bound is obtained: 
( ) ( )|| || ( , )XY ME X Y XY X YD p p p D p p p I X Y− ≤ ∈Ω ≤ . Finding of the bivariate XY MEp −  is straightforward 

if the marginal distributions are themselves well defined ME distributions. We solve that by 
transforming the single variables ,X Y  into others with imposed ME probability mass distributions 
through the so called ME-anamorphoses [14].  

The joint ME probability distribution XY MEp −  is derived from the minimum of a functional in terms 
of a certain number of Lagrange parameters. The properties of multivariate ME distributions have been 
studied for various ME constraints, namely: (a) imposed marginals and covariance matrix [15]; 
(b) generic joint moments [16]. Abramov [17–19] has developed efficient and stable numerical 
iterative algorithms for computing ME distributions forced by sets of polynomial expectations. Here 
we use a bivariate version of the algorithm of [20], already tested in [21]. 

By taking a sequence of encapsulated sets of joint ME constraints we obtain an increasing hierarchy 
of lower MI bounds converging towards the total MI.  

We particularize this methodology to the case where ,X Y  are standard Gaussians, issued from 
single homeomorphisms of an original pair of variables ˆ ˆ,X Y  by Gaussian anamorphosis [14]. Then 
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we get the MI ˆ ˆ( , ) ( , )I X Y I X Y= , which is decomposed into two generic positive quantities, a 
Gaussian MI Ig and a non-Gaussian MI Ing [21], vanishing under bivariate Gaussianty. The Gaussian 
MI is given by 2( ) 1/ 2log(1 )g g gI c c≡ − − , where ˆ ˆ( , ) ( , )gc X Y cor X Y≡

 is the Pearson linear correlation 
between the Gaussianized variables. As for the non-Gaussian MI term Ing it relies upon imposed 
nonlinear correlations between the single Gaussian variables. The MI reduces to ( )g gI c

 when only 
moments of order one and two are imposed as ME constraints. We will note that, for certain extreme 
non-Gaussian marginals, ˆ ˆ ˆ ˆ( ( , )) ( , )gI c cor X Y I X Y= > , thus showing that ( )gI c

 [22] is not a proper MI 
lower bound in general. 

The correlation gc , hereafter called Gaussian correlation [21] is a nonlinear concordance measure 
like the Spearman rank correlation [23] and the Kendall τ, which, by definition are invariant for 
monotonically growing smooth marginal transformations. These measures have the good property of 
being expressed as functionals of the copula density functions [24], uniquely dependent on the cross 
dependency between variables. 

The non-Gaussian MI Ing holds some interesting characteristics. It coincides with the joint 
negentropy (deficit of entropy with respect to that of the Gaussian PDF with the same mean, variance 
and covariance) in the space of ‘Gaussianized’ variables, which is invariant for any orthogonal or 
oblique rotation of them. In particular for uncorrelated rotated variables, it coincides with the 
‘compactness’, which measures the concentration of the joint distribution around a lower-dimensional 
manifold [25] which is given by ( )||XY SGD p p , i.e., the KL divergence with respect to the spherical 
Gaussian SGp  (Gaussian with an isotropic covariance matrix with the same trace as that of XYp , say 
the total variance). 

We also show that Ing comprises a series of positive terms associated to a p-sequence of imposed 
monomial expectations of total even order p (2,4,6,8…). The higher the number of independent 
constraints, the higher the order of terms that are retained in that series and the more information is 
extracted from the joint PDF.  

We have shown that the possible values of the cross-expectations lie within a bounded set obtained 
by Schwarz-like inequalities. We illustrate the range of Ing values within those sets as function of third 
and fourth-order cross moments. Near the set’s boundary, Ing tends to infinity where a deterministic 
relationship holds and the ME problem functional is ill-conditioned.  

In order to better understand the possible sources of joint non-Gaussianity and non-Gaussian MI, 
we have used the preceding method for computing Ig and Ing between the input and the output of a 
nonlinear channel contaminated by multiplicative and non-Gaussian noise for a full range of the 
signal-to-noise (snr) variance ratio. We put in evidence that sources of non-Gaussian MI arise from the 
nonlinearity of the transfer function, multiplicative noise and additive non-Gaussian noise [26].  

Many of the results of the paper are straightforwardly generalized to the multivariate case with three 
or more random variables.  

The paper is then organized as follows: Section 2 formalizes the Minimum Mutual Information 
(MinMI) principle from maximum entropy distributions, while Section 3 particularizes that principle 
to the MI decomposition into Gaussian and non-Gaussian MI parts. Section 4 addresses the 
non-Gaussianity in a nonlinear non-Gaussian channel. The paper ends with conclusions and 
appendices with theoretical proofs and the numerical algorithm for solving the ME problem. This 
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paper is followed by a companion one [27] on the estimation of non-Gaussian MI from finite samples 
with practical applications. 

2. MI Estimation from Maximum Entropy PDFs 

In this section we present the basis of the MI estimation between bivariate RVs, through the use of 
joint PDFs inferred by the maximum entropy (ME) method (ME-PDFs for short) in the space of 
transformed (anamorphed) marginals into specified ME distributions. We start with preliminary 
general concepts and definitions.  

2.1. General Properties of Bivariate Mutual Information  

Let ( ),X Y  be continuous RVs with support given by the Cartesian product 2
X YS S S= ⊗ ⊆ , and 

let the joint PDF ,X Yρ
 be taken absolutely continuous with respect to the product of the marginal PDFs 

Xρ  and Yρ . The mutual information (in nat) between X  and Y  is a non-negative real functional of 
,X Yρ  expressed in different equivalent forms as: 

( ) ( ) ( )
( ) ( ) ( ),

,

,
, , log || 0

X Y XY

X Y
X Y XY X Y

X YS

x y
I X Y x y dxdy D H H H

x y ρ ρ ρ

ρ
ρ ρ ρ ρ

ρ ρ
⎛ ⎞

≡ = = + − ≥⎜ ⎟⎜ ⎟
⎝ ⎠

∫ , (1) 

in terms both of a KL divergence and Shannon entropies. The MI equals zero iff the RVs X  and Y  are 
statistically independent, i.e., iff ( ) ( ) ( ), , , ,X Y X Y X Yx y x y x S y Sρ ρ ρ= ∀ ∈ ∈ , except possibly in a 

zero-measure set in S . Under quite general regularity conditions of PDFs, statistical independence of 
X  and Y  is equivalent to the vanishing of the Pearson correlation between any pair of linear and/or 
nonlinear mapping functions ( )X X  and ( )Y Y . Then, linearly uncorrelated non-independent variables 
have at least a non-zero nonlinear correlation. The MI between transformed variables ( )X X  and ( )Y Y , 
differentiable almost everywhere, satisfies the ‘data processing inequality’ ( ) ( )( ), ( ) ,I X X Y Y I X Y≤  [1] 

with equality occurring if both X  and Y  are smooth homeomorphisms of X  and Y  respectively. 

2.2. Congruency between Information Moment Sets 

Definition 1: Following the notation of [28], we define the moment class ΩT,θ  of bivariate PDFs XYρ  
of ( , )X Y , as: 

[ ]{ }:XY EρρΩ = =T,θ T θ
 

(2) 

where Eρ  is the ρ-expectation operator, ( )1,...,
T

JT T=T  is a J-dimensional vector composed of J 

absolutely ( , )X Y  integrable functions with respect to ρXY, and ( )1,...,
T

Jθ θ=θ  is the vector of function 

expectations of T . Here and henceforth, ( ),T θ  is denoted as an information moment set. 
The PDF ρ∈ΩT,θ  that maximizes the Shannon entropy or the ME-PDF verifying the constraints 

associated to ( ),T θ , hereby represented by *ρT,θ , must exist since Hρ  is a concave function in the 
non-empty convex set ΩT,θ . The form and estimation of the ME-PDF is described in Appendix 1. The 

ME-PDF satisfies the following Lemma [1]: 
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Lemma 1: Given two information encapsulated information moment sets: ( ) ( )1 1, ,⊆T θ T θ  i.e., with 

1T  including more constraining functions than T , the respective ME-PDFs * *,ρ ρ
Τ,θ 1 1T ,θ , if they exist, 

satisfy the following conditions: 

* * *
1 1

* * *log log logE E E Hρ ρ ρ ρ
ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦T ,θ T,θ T,θ

T,θ T,θ T,θ  
(3a) 

* *
1 1 1 1

* *
1 1 1 1log logE E Hρ ρ ρ

ρ ρ⎡ ⎤ ⎡ ⎤− = − =⎣ ⎦ ⎣ ⎦T ,θ T ,θ
T ,θ T ,θ  (3b) 

This means that any ME-PDF log-mean is unchanged when it is computed with respect to a more 
constraining ME-PDF. As a corollary we have ( ) * *

1 1

* *|| 0D H H
ρ ρ

ρ ρ = − ≥
1 1 Τ,θ T,θ T ,θ

T ,θ , i.e., the ME 

decreases with the increasing number of constraints. This can be understood bearing in mind that the 
entropy maximization is performed in a more reduced PDF class, since 

1 1
Ω ⊆ΩT ,θ T,θ . 

Definition 2: If two information moment sets ( )1 1,T θ , ( )2 2,T θ  are related by linear affine 

relationships, then the sets are referred to as “congruent”, a property hereby denoted as 
( ) ( )1 1 2 2, ,

PDF
≅T θ T θ , and consequently both PDF sets are equal, i.e., 

1 1 2 2
Ω =ΩT ,θ T ,θ  [15]. A stronger 

condition than ‘congruency’ is the ME-congruency, denoted as ( ) ( )1 1 2 2, ,
ME
≅T θ T θ , holding when both 

the associated ME-PDFs are equal. For example, both the univariate constraint sets ( )2
1 1, 1X= =T θ  

and ( )2 4
2 2( , ) , (1,3)T TX X= =T θ  for X ∈  lead to the same ME-PDF, the standard Gaussian N(0,1). 

Consequently both information moment sets are ME-congruent but not congruent since 
2 2 1 1

Ω ⊂ ΩT ,θ T ,θ . 

This is because the Lagrange multiplier of the ME functional (see Appendix 1) corresponding to the 
fourth moment is set to zero without any constraining effect. The congruency implies ME-congruency 
but not the converse.  

2.3. MI Estimation from Maximum Entropy Anamorphoses 

We are looking for a method of obtaining lower bound MI estimates from ME-PDFs. For that 
purpose we will decompose the information moment set as: ( ) ( ) ( )ind ind cr cr= ∪T,θ T ,θ T ,θ , say into a 
marginal or independent part ( , ) ( , ) ( , )ind ind X X Y Y= ∪T θ T θ T θ  of single X and Y independent moments 
on ,X YS S , and a cross part ( )cr crT ,θ  on X YS S⊗ , made by moments of joint ( ),X Y  functions not 

expressible as sums of single moments. For example, by taking ( )2( , ) ( , ), (0,1)X X X X=T θ , 

( )2( , ) ( , ), (0,1)Y Y Y Y=T θ  and ( )( , ) ,cr cr XY c=T θ  for 2( , )X Y ∈  leads to a ME-PDF which is the 

bivariate Gaussian with correlation c  and standard Gaussians as marginal distributions.  
The joint ME-PDF associated to the independent part ( )ind indT ,θ  is the product of two independent 

ME-PDFs related to ( )X XT ,θ  and ( )Y YT ,θ , with the joint entropy being the sum of marginal 

maximum entropies, as in the case of independent random variables [15]. The KL divergence between 
the ME-PDFs associated to ( )T,θ  and those associated to ( )ind indT ,θ  is a proper MI lower bound or, 

expressed in other terms, a constrained mutual information. We denote it as:  

( ) ( ) * * * * *
* *, : ( ), ( ) || 0

ind ind ind ind X X Y Y
ind indI X Y D H H H H H

ρ ρ ρ ρ ρ
ρ ρ≡ = − = + − ≥

Τ ,θ T ,θ T,θ T ,θ T ,θ T,θ
T,θT,θ T ,θ

 
(4) 
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Its difference with respect to ( ),I X Y  is given by: 

( ) ( ) ( ) ( ) ( )* * *, , : ( ), ( ) || || ||
X X Y Yind ind XY X YI X Y I X Y D D Dρ ρ ρ ρ ρ ρ⎡ ⎤− = − +⎣ ⎦Τ ,θ Τ ,θT,θT,θ T ,θ  (5) 

which can be negative. However, the positiveness is ensured when marginal distributions are set to the 
ME-PDFs constrained by *( ) ( ),

X XX x x xρ ρ= ∀
Τ ,θ  

and *( ) ( ),
Y YY y y yρ ρ= ∀

Τ ,θ
, which results in KL 

divergences vanishing with respect to the marginal PDFs in Equation (5). This procedure is quite 
general because ( , )X Y  can appropriately be obtained through an injective smooth maps 

ˆ ˆ( ( ), ( ))X X X Y Y Y= =  from an original pair of RVs ˆ ˆ( , )X Y preserving the MI, i.e., ˆ ˆ( , ) ( , )I X Y I X Y= . 
Those maps are monotonically growing homeomorphisms, the hereby called ME-anamorphoses, 
which are obtained by equaling mass probability functions of the original variable 

X̂ρ  to those of the 

transformed variable Xρ  (equally for 
Ŷ
ρ  and Yρ ) as: 

ˆ ˆ ˆ ˆ( ) ( )* *
ˆ ˆ( ) ( ) ; ( ) ( )

X X Y Y

X X X Y Y Y

X Yu du u du u du u duρ ρ ρ ρ
−∞ −∞ −∞ −∞

= =∫ ∫ ∫ ∫Τ ,θ Τ ,θ
 (6) 

The moments in ( )ind indT ,θ  are invariant under the transformation, ˆ ˆ( , ) ( , )X Y X Y→ , i.e., they are 

the same for both original and transformed variables: [ ] [ ]
ˆ XX X X XE Eρ ρ= =T T θ  (idem for Y ). 

Therefore, in the space of ME-anamorphed variables the ME-based MI (4) gives the minimum MI 
(MinMI), compatible with the cross moments ( )cr crT ,θ .  

Thanks to Lemma 1, a hierarchy of ME-based MI bounds is obtainable by considering successive 
supersets of the ME constraints on the ME-anamorphed variables, which is justified by the theorem below. 

Theorem 1: Let ( , )X Y  be a pair of single random variables (RVs), distributed as the ME-PDF 
associated to the independent constraints ( ( , ), ( , ))ind X Y ind X Y= =T T T θ θ θ . Both variables can be 
obtained from previous ME-anamophosis. Let 1 1 1 1 1 1( ) ( )cr ind cr ind= ∪ ∪T ,θ T T ,θ θ  be a subset of 

2 2 2 2 2 2( ) ( )cr ind cr ind= ∪ ∪T ,θ T T ,θ θ , i.e., 1 2cr cr⊆T T  and 1 2ind ind ind⊆ ⊆T T T , such that all independent 
moment sets are ME-congruent (see Definition 2), i.e., 1 1 2 2( ) ( ) ( )ind ind ind ind ind indME ME

≅ ≅T ,θ T ,θ T ,θ , 

i.e., such that the independent extra moments in 2 2( )T ,θ  are not further constraining the ME-PDF. 
Each marginal moment set is decomposed as ( ( , ), ( , )) , ( 1, 2)ind j Xj Yj ind j Xj Yj j= = =T T T θ θ θ . For 

simplicity of notation, let us denote ( ) ( ), ; : ( ), ( ) ( 1,2)j j ind j ind jj
I X Y I X Y j≡ =T ,θ T ,θ . Then, the 

following inequalities between constrained mutual informations hold: 

( ) ( ) ( ) ( )*, , || , ( 1,2)
j jXYj

I X Y I X Y D I X Y jρ ρ= − ≤ =T ,θ  (7a) 

( ) ( ) ( ) * *2 2 1 1 1 1 2 2

* *
2 1

, , || 0I X Y I X Y D H H
ρ ρ

ρ ρ− = = − ≥
T ,θ T ,θ

T ,θ T ,θ  (7b) 

The proof is given in Appendix 2. The Theorem 1 justifies the possibility of building a 
monotonically growing sequence of lower bounds of ( ),I X Y  from encapsulated sequences of cross-
constraints 1 1... ...cr cr j cr j+⊆ ⊆ ⊆T T T  and independent constraints 1 1... ...ind ind ind j ind jT T T T +⊆ ⊆ ⊆ ⊆ ⊆ . 

In the sequence, the entropy associated to independent constraint sets is always constant due to the 
ME-congruency, while the entropy of the joint ME-PDF decreases, thus allowing the MinMIs to grow. 
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Therefore, ( ),
j

I X Y  is the part of MI due to cross moments in cr jT  and the positive difference 

( ) ( )1
, ,

j j
I X Y I X Y

+
−

 
is the increment of MI due to the additional cross moments in 1 /ind j ind j+T T , 

while marginals are kept as preset ME-PDFs (e.g., Gaussian, Gamma, Weibull).  

3. MI Decomposition under Gaussian Marginals  

3.1. Gaussian Anamorphosis and Gaussian Correlation 

In this section we explain how to implement the sequence of MI estimators detailed in Section 2.3 
for the particular case where X  and Y  are standard Gaussian RVs. Our aim is to estimate the MI 
between two original variables ˆ ˆ( , )X Y  of null mean and unit variance with real support. Those 
variables are then transformed through a homeomorphism, the Gaussian anamorphosis [14], into 
standard Gaussian RVs, respectively ~ (0,1)X N  and ~ (0,1)Y N , given by: 

( ) ( )ˆ ˆ1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ; ( ) ( ) ( )

x y

X X Y YX x u du G x Y y u du G yρ ρ− −

−∞ −∞
= Φ = = Φ =∫ ∫  (8) 

where Φ is the mass distribution function for the standard Gaussian. If ˆ ˆ( , )X Y  are marginally 
non-Gaussian, then the Gaussian anamorphoses are nonlinear transformations. In practice, Gaussian 
anamorphoses can be approximated empirically from finite data sets by equaling cumulated histograms. 
However, for certain cases, it is analytically possible to construct bivariate distributions with specific 
marginal distributions and the knowledge of the joint cumulative distribution function [29]. 

In the case of Gaussian anamorphosis, the information moment set ( )ind indT ,θ  of Theorem 1 
includes the first and second independent moments of each variable: 2 2[ ] [ ] 0; [ ] [ ] 1E X E Y E X E Y= = = = . 
Then, following the proposed procedure of Section 2.3, we will consider a sequence of cross-constraint 
sets for determining the hierarchy of lower MI bounds.  

The most obvious cross moment to be considered is the XY  expectation, equal to the Gaussian 
correlation ˆ ˆ( , ) ( , )g X Yc cor G G cor X Y≡ =  between the ‘Gaussianized’ variables ( , )X Y . The difference 

between gc and the linear correlation ˆ ˆcor( , )c X Y=  is easily expressed as: 

( )( )ˆ ˆ
ˆ ˆ

g X Yc c E G X G Y⎡ ⎤− = − −⎣ ⎦  (9) 

The signal of the factor ˆ
ˆ

XG X−  in Equation (9) roughly depends on the skewness 3ˆ ˆ( ) [ ]sk X E X=  

and excess of kurtosis 4ˆ ˆ( ) [ ] 3kur X E X= −  through the rule of thumb, stating that ˆ
ˆsgn( )XG X−  is 

approximated by ˆsgn( ( ))sk X−  and ˆ ˆsgn( ( ))sgn( )kur X X− , respectively for a skewed X̂  PDF and a 
symmetric X̂  PDF (idem for Ŷ ). Therefore, gc  can result in an enhancement of correlation c  or in the 

opposite effect, as shown in [21] for the RV pair of meteorological variables ( X̂  = North Atlantic 
Oscillation Index, Ŷ  = monthly precipitation). The Gaussian correlation is a concordance measure like 
the rank correlation and Kendall τ, being thus invariant for a monotonically growing smooth 
homeomorphism of both X̂ and Ŷ . Those measures are expressed as functionals of the bivariate 

copula-function ( )1 2

1 2 1 2 1 21 2 1 2[ ( ) , ( ) ] ( , ) / ( ) ( )
X X

X X X X X Xc u x dx v y dy X X X Xρ ρ ρ ρ ρ
−∞ −∞

= = =∫ ∫ , which is 

uniquely dependent on the cumulated marginal probabilities and equal to the density ratio, 
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independently from the specific forms of marginal PDFs [24]. In particular, the Gaussian correlation is 
given by: 

1 1 1 1

0 0
[ , ] ( ) ( )gc c u v u v du dv− −= Φ Φ∫ ∫  (10) 

3.2. Gaussian and Non-Gaussian MI 

The purpose of this sub-section is to express which part of MI comes from joint non-Gaussianity. If 
the ‘Gaussianized’ variables ( , )X Y  are jointly non-Gaussian, then the original standardized variables 

ˆ ˆ( , )X Y , obtained from ( , )X Y  by invertible smooth monotonic transformations, are jointly non-Gaussian 
as well. However, the converse is not true. In fact, any nonlinear transformation ˆ ˆ( , )X Y  of jointly 
Gaussian RVs ( , )X Y  leads to non-Gaussian ˆ ˆ( , )X Y  with the joint non-Gaussianity arising in a trivial 
way. Therefore, the ‘genuine’ joint non-Gaussianity can only be diagnosed in the space of Gaussianized 
variables ( , )X Y . When the marginal PDFs of ˆ ˆ( , )X Y  are non-Gaussian then gc c≠  in general. In 

particular, if the correlation c  is null as it occurs when ˆ ˆ( , )X Y  are principal components (PCs), then 

gc  can be non-null, leading to statistically dependent PCs since they are non-linearly correlated. 

The MI between Gaussianized variables ( , )X Y  or ˆ ˆ( , )X Y  is expressed as 
ˆ ˆ( , ) ( , ) 2

XYgI X Y I X Y H Hρ= = − , where 1/ 2 log(2 )gH eπ≡  is the Shannon entropy of the standard 

Gaussians X , Y  and 
XY

Hρ  is the ( , )X Y joint entropy, associated to the joint PDF XYρ . Given the 

above equality, the MI is decomposed into two positive terms: ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )g ngI X Y I X Y I X Y= + . The 

first term is the Gaussian MI [21] given by 2ˆ ˆ( , ) ( , ) 1/ 2log(1 ) ( ) 0g g g g gI X Y I X Y c I c= = − − ≡ ≥ , as a 
function of the Gaussian correlation gc  (see its graphic in Figure 1), and the second one is the  

non-Gaussian MI ˆ ˆ( , ) ( , )ng ngI X Y I X Y= , which is due to joint non-Gaussianity and nonlinear statistical 

relationships among variables.  
The MI ˆ ˆ( , )I X Y  is related to the negentropy ˆ ˆ( , )J X Y , i.e., to the KL divergence between the PDF 

and the Gaussian PDF with the same moments of order one and two. That is shown by: 

Theorem 2: Given ˆ ˆ ˆ ˆ( , ) ( , )T T
r rX Y A X Y= , a pair of rotated standardized variables (A being an invertible 

2 × 2 matrix), one has the following result with proof in Appendix 2: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( ( , ))
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( ( , ))

g

r r r r r r g r r

J X Y J X J Y I X Y I cor X Y

J X Y J X J Y I X Y I cor X Y

= + + − =

= = + + −
 (11) 

A simple consequence is that in the space of uncorrelated variables (i.e., ˆ ˆ( ( , )) 0gI cor X Y = ), the 

joint negentropy is the sum of marginal negentropies with the MI, thus showing that there are intrinsic 
and joint sources of non-Gaussianity. One interesting corollary is derived from that. 

Corollary 1: For standard Gaussian variables ( , )X Y  and standardized rotated ones ( , ) ( , )T T
r rX Y A X Y= , 

we have 

( , ) ( , ) ( , ) ( ) ( ) ( , ) ( ( , ))ng r r r r r r g r rI X Y J X Y J X Y J X J Y I X Y I cor X Y= = = + + −  (12) 
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For the proof it suffices to consider Gaussian variables ˆ ˆ( , ) ( , )T TX Y X Y=  in (11). Their  
self-negentropy vanishes by definition and the correlation term is the Gaussian MI. 

Negentropy has the property of being invariant for any orthogonal or oblique rotations of the 
Gaussianized variables ( , )X Y . However, this invariance does not extend to ( , )ngI X Y . From (12), in 

particular when ( , )r rX Y  are uncorrelated (e.g., standardized principal components of ( , )X Y  or 

uncorrelated standardized linear regression residuals), the negentropy equals the KL divergence 
between the joint PDF and that of an isotropic Gaussian with the same total variance. That KL 
divergence is the compactness (level of concentration around a lower-dimensional manifold), as 
defined in [25]. This measure is invariant under orthogonal rotations. The last term of (12) vanishes 
due the fact that the null correlation allows one to decompose of ( , )ngI X Y  into positive contributions: 
the self-negentropies of uncorrelated variables ( , )r rX Y  and their MI ( , ) ( , ) ( , )r r r r g r r ngI X Y I X Y I X Y= + . 
These variables can be ‘Gaussianized’ and rotated, leading to further decomposition of ( , )r r ngI X Y  
until the possible “emptying”/depletion of the initial joint non-Gaussianity into Gaussian MIs and 
univariate negentropies. The PDF of the new rotated variables will be closer to an isotropic spherical 
Gaussian PDF. Since it is algorithmically easier to compute univariate rather than multivariate 
entropies, the above method can be used for an efficient estimation of MIs. 

The search for rotated variables maximizing the sum of individual negentropies ( ) ( )r rJ X J Y+  
in (12) with minimization of ( , )r rI X Y  or their statistical dependency is the goal of Independent 
Component Analysis (ICA) [4].  

A natural generalization of the MI decomposition is possible when ( , )X Y  is obtained from a 
generic ME-anamorphosis by decomposing the MI into a term associated to correlation, under the 
constraint that marginals are set to given ME-PDFs (the equivalent to Ig), and to a term not explained 
by correlation (the equivalent to Ing). There is however no guarantee that this decomposition is unique 
as in the case of non-Gaussians, since there is no natural bivariate extension of univariate prescribed 
PDFs with a given correlation [30]. 

By looking again at Equation (12), we notice that when original variables are correlated 
( ( , ) 0)r rc cor X Y= ≠ , the sum of marginal negentropies is not necessarily a lower bound of the joint 

negentropy ˆ ˆ( , )J X Y , because in some cases ˆ ˆ( , ) ( )gI X Y I c−  can be negative. This means that ( )gI c  is 

not generally a proper lower bound of the MI. An example of that is given by the following discrete 
distribution with support on four points: ˆ ˆ( , ) (1,1), (1, 1), ( 1,1), ( 1, 1)X Y = − − − − , with mass probabilities 

ˆ ˆXY
P , respectively of (1 + c)/4, (1 + c)/4, (1 − c)/4 and (1 − c)/4. This 4-point distribution has X̂  and Ŷ  

zero means, unit variances and Pearson correlation c . The PDF is made of four Dirac-Deltas. In this 
case, the mutual information ˆ ˆ( , )I X Y  is easily computed from the 4-point discrete mean of 

ˆ ˆ ˆ ˆlog( / ( ))XY X YP P P  while the marginal mass probabilities are ˆ ˆ ˆ ˆ(1) (1) ( 1) ( 1) 1/ 2X Y X YP P P P= = − = − = . 

After some lines of algebra the MI becomes: 
1 | | 1 | |

2 2

4
1 | | 1 | |( , ) log 2 ( )

2 2

c c

d
c cI X Y I c

+ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤+ −⎛ ⎞ ⎛ ⎞⎢ ⎥= ≡⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎣ ⎦

 (13) 
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The MI is bounded for any value of c and 4 ( ) log(2)dI c → <∞  as (| | 1)c → . The graphic of 4 ( )dI c  
is included in Figure 1, showing that 4( ) ( )g dI c I c>  for about | | 0.45c > . This behavior is also 

reproduced by finite discontinuous PDFs (e.g., replacing the Dirac-Deltas by cylinders of probability) 
as well as continuous PDFs. We test it by approximating the discrete PDF by the weighted 
superposition of 4 spherical bivariate Gaussian PDFs, all of which have a sharp isotropic standard 
deviation σ = 0.001 and are centered at the 4 referred centroids. Figure 1 depicts successively growing 
MI lower bounds for each value of c, using the maximum entropy method (labels, gI , ,4g ngI I+ ,

,6g ngI I+ , ,8g ngI I+ , see Section 3.3 for details), showing the convergence to the asymptotic value log(2). 

Figure 1. Semi-logarithmic graphs of ( )gI c  (black thick line), 4 ( )I c , (grey thick line) and 
of the successive growing estimates of 4 ( )I c : gI , ,4g ngI I+ , ,6g ngI I+  and ,8g ngI I+  (grey 

thin lines). See text for details. 
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3.3. The Sequence of Non-Gaussian MI Lower Bounds from Cross-Constraints 

In order to build a monotonically increasing sequence of lower bounds for ( , )I X Y  (cf. Section 2.3), 
we have considered a sequence of encapsulated sets of functions whose moments will constrain the 
ME-PDFs. Those functions consist of single (univariate) and combined (bivariate) monomials of the 
standard Gaussians X and Y. The numerical implementation of joint ME-PDFs constrained by 
polynomials in dimensions d = 2, 3 and 4 was studied by Abramov [17–19], with particular emphasis 
on the efficiency and convergence of iterative algorithms. Here, we use the algorithm proposed in [21] 
and explained in the Appendix 1. Let us define the information moment set pT  as the set of bivariate 

monomials with total order up to p: 

( )2
0: 1 , ( , ) ,i j

p X Y i j p i j N p N≡ ≤ + ≤ ∈ ∈T  (14) 

This set is decomposed into marginal (independent) and cross monomials as ( ),p p ind p cr≡T T T  
with 

the corresponding vector of expectations ( , ) ( [ ], [ ])p p ind p cr p ind p crE E≡ =θ θ θ T T  referring respectively 
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to 2p and p(p − 1)/2 independent and cross moments. The components of pθ  are of the form

, [ ],1i j
i jm E X Y i j p≡ ≤ + ≤ , where the independent part is set to the moment values of the standard 

Gaussian: [ ] 0p
gE X =  for an odd p and [ ] ( 1)!! ( 1)( 3)...p

gE X p p p= − = − −  for an even p (idem for 
Y), where gE denotes expectation with respect to the standard Gaussian. The cross moments are 

bounded by a simple application of the Schwartz inequality as 2 2 2
,( ) [ ] [ ]i j

i j g gm E X E Y≤ . The 
monomials of pT  are linearly independent and space-generating by linear combinations, thus forming 

a basis in the sense of vector spaces. 
For an even integer p and constraint set pT  there exists an integrable ME-PDF with support in , 

of the form *( , ) exp( ( , ))pX Y C P X Yρ = , where ( , )pP X Y  is a pth order polynomial given by a linear 
combination of monomials in pT  with weights given by Lagrange multipliers and C being a 

normalizing constant. That happens because | ( ) | ( ), , ,1 ,i j p pX Y O X Y X Y i j p≤ + ∀ ∈ ≤ + ≤ thus 
allowing for ( , )pP X Y →−∞  as | |,| |X Y →∞ , leading to convergence of ME-integrals [18]. For odd p, 

those integrals diverge because the dominant monomials ,p pX Y  change sign from positive to negative 
real and therefore the ME-PDF is not well defined.  

In order to build a sequence of MI lower bounds and use the procedure of Section 2.3, we have 
considered the sequence of information moment sets of even order 2 2 4 4 6 6( , ),( , ),( , ),...T θ T θ T θ  with 

any pair of consecutive sets satisfying the premises of Theorem 1, i.e., all independent moment sets are 
ME-congruent. This will lead to the corresponding monotonically growing sequence of lower bounds 
of MI, denoted as ,2 ,4 ,6( , ) ( , ) ( , ) ...g g gI X Y I X Y I X Y≤ ≤ ≤ , where the subscript g means that 
variables are marginally standard Gaussian. The first term of the sequence is the Gaussian MI 

,2 ( , ) ( , )g gI X Y I X Y≡ , dependent upon the Gaussian correlation. The difference between the 
subsequent terms and the first one leads to the non-Gaussian MI of order p defined as 
( ) ( ) ( ) ( ), , ,2

, , , ,
ng p g p g ng

I X Y I X Y I X Y I X Y≡ − ≤ , which increases with p and converges to ( ),
ng

I X Y
 

as p→∞ , under quite general conditions [15].  
In the same manner as stated in (12), the lower bound ( ) ,

,
ng p

I X Y  of ( ),
ng

I X Y
 
is also a lower bound 

for the joint negentropy, which is invariant for any affine transformations ( , ) ( , )T T
r rX Y A X Y= , i.e.,  

( ) 2 2,
, ( , ) ( , ) ( , ) ( , )p r r r r png p

I X Y H X Y H X Y H X Y H X Y= − = −  (15) 

where ( , ) pH X Y  is the bivariate ME associated to ( , )p pT θ  and 2( , ) 2 ( , )g gH X Y H I X Y= − . The 

successive differences ( ) ( ), 2 ,
, ,

ng p ng p
I X Y I X Y

+
−  are non-negative, with the extra MI being explained 

by moments of orders p + 1 and p + 2, while not explained by lower-order moments. 
There is no analytical closed formula for the dependence of non-Gaussian MI on cross moments. 

However, under the scenario of low joint non-Gaussianity (small KL divergence to the joint Gaussian), 
the ME-PDF can be approximated by the Edgeworth expansion [31], based on orthogonal 
Hermite polynomials and Ing approximated as a polynomial of joint bivariate cumulants: 

[ , ] [ ] [ ] [ ]i j i j i j
r r g r g rk E X Y E X E Y≡ − , i + j > 2, of any pair of uncorrelated standardized variables 

( , ) ( , )T T
r rX Y A X Y= . Cross-cumulants are nonlinear correlations measuring joint non-Gaussianity [32], 
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vanishing when ( ),X Y  are jointly Gaussian. For example ( ) , 4
,

ng p
I X Y

=
 is approximated as in [13] by 

the sum of squares: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2[2,1] [1,2] [3,0] [0,3]
( , 4)

2 2 2 2 2[4,0] [3,1] [2,2] [1,3] [0,4]

4 2 2[3,0] [3,0] [2,1] [3,0] [1,2] [2,1] [2,1] [0,3] [2,1] [1,2] [1

1( , ) 3 3
12

1 4 6 4
48

1 2 25 30 9 6 9 6
72 3 3

ng Ed pI X Y k k k k

k k k k k

k k k k k k k k k k k

=
⎡ ⎤≡ + + +⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + + +⎢ ⎥⎣ ⎦

⎡ + + + + +⎢⎣ ( )

( ) ( ) ( ) ( )

2,2]

2 2 4[3,0] [0,3] [2,1] [1,2] [1,2] [0,3] [0,3] 3/21 2 18 30 5 ( , )
2 ng eqk k k k k k k I X Y O n −

+

⎤+ + + = +⎥⎦

 (16) 

where ( , )X Y  is assumed to be the arithmetic average of an equivalent number neq of independent and 
identically distributed (iid) bivariate RVs. Therefore, from the multidimensional Central Limit 
Theorem [33], the larger neq is, the closer the distribution is to joint Gaussianity, and the smaller the 
absolute value of cumulants become. 

3.4. Non-Gaussian MI across the Polytope of Cross Moments  

The ( , )X Y  cross moments in the expectation vector pθ  (p even) are not completely free. Rather, 
they satisfy to Schwarz-like inequalities defining a compact set pD  within which cross-moments lie. 

That set portrays all the possible non-Gaussian ME-PDFs with p-order independent moments equal to 
those of the standard Gaussian. Under these conditions ( ) ( ) ,

, ,
ng ng p

I X Y I X Y= . In order to have 

a better feel on how Ing behaves, we have numerically evaluated , 4ng pI =  along the allowed set of  

cross-moments. 
In order to determine that set, let us begin by invoking some generalities about polynomials. Any 

bivariate polynomial 2( , ) :p x y →P  of total order p is expressed as a linear combination of linearly 

independent monomials from the basis { }1 1p p≡ ∪T T , obtained from pT  including unity. Then: 

1
, ,( , ) ( , ) ,p i i p i p pi

x y aT x y T= ∈∑ TP  (17) 

If the condition 2( , ) 0, ( , )p x y x y≥ ∀ ∈P  holds i.e., ( , )p x yP  is positive semi-definite (PSD), 

then its expectation is non-negative: ,[ ( , )] 0p i i pi
E x y aθ= ≥∑P , where , ,[ ]i p i pE Tθ ≡ , thus 

imposing a constraint on the components of pθ . A sufficient condition for the positiveness is 
that ( , )p x yP  is a sum of squares (SOS) or, without loss of generality, the square of a 

certain polynomial 1
/2 /2( , ) T

p px y =b TQ  of total order p/2, where b  is a column vector of 

coefficients multiplying monomials of 1
/2pT . Then, ( , )p x yP  is written as a quadratic form 

( ) ( )2 1 1
/2 /2 /2( , ) ( , ) 0T T

p p p px y x y= = ≥b T T bP Q . By taking the expectation operator we have 

( )1 1
/2 /2[ ] 0,T T

p pE ≥ ∀b T T b b , which implies the positiveness of the matrix of moments 

( )1 1
/2 /2[ ]T

p p pE ≡T T C , which is given in terms of components of pθ . 

When p = 4 and d = 2, the case of bivariate quartics, any PSD polynomial is a SOS [34] and 
vice versa. However, for p ≥ 6 there are PSD-non-SOS polynomials (e.g., those coming from the 
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inequality between arithmetic and geometric means [35]). Therefore, a necessary and sufficient 
condition among fourth-order moments is that ( )1 1

2 2 4[ ]TE ≡T T C
 
be a PSD matrix. Let us study the 

conditions for that. 

By ordering the set ( )1 2 2
2 1, , , , ,

T
x y x y xy≡T , one has the 6 × 6 matrix 4C , written in the simplified 

form in terms of moments: 

1,2 2,1

2,1 1,2
4

2,1 2,2 3,1

1,2 2,2 1,3

2,1 1,2 3,1 1,3 2,2

(1,0,0,1,1, )

(0,1, ,0, , )

(0, 1, ,0, )

(1,0, 3, , )
(1, 0, 3, )
( , , , , , )

g

g

g

g

c

c m m

c m m

m m m
m m m

c m m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

C  (18) 

A necessary and sufficient condition for the positiveness of 4C  is given by the application of the 

Sylvester criterion, stating that the determinants d1, d2, d3, d4, d5 and d6 of the 6 upper sub-matrices of 
4C  are positive. From these, only those of orders 4, 5 and 6 lead to nontrivial relationships, given with 

help of Mathematica® [36] as: 
2 2 2 2

4 2,1 4, 1,22 2  0 ; 2 2  0g dual gd c m d c m≡ − − ≥ ≡ − − ≥  (19) 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
5 2,1 2,1 1,2 2,1 1,2 2,1 2,2 2,2 2,22  2  1  3  1  1 0g gd m m m m m m m c m m c≡ − + + − − + − + − + ≥  (20) 

( ) ( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )
( )( )

2 4 3
6 2,2 1,3 3,1 2,2 1,2 2,1 2,2

2 2
2,1 1,2 2,2 1,2 2,1 1,3 3,1 1,2 2,1 2

2 2
3,1 1,3 1,3 3,1 2,2 2,2 2,2 2,2

2 2
2,1 1,2 2,2 1,3 3,1 2,2 1,2

9 2 3   

9 2  2  

2  1 3 3 2

3 2 2
2

g g

g

d m c m m m m m m c

m m m m m m m m m
c

m m m m m m m m

m m m m m m m

⎡ ⎤≡ − + + − + +⎣ ⎦
⎡ ⎤+ − − + + +
⎢ ⎥ +
⎢ ⎥+ + − + − + +⎣ ⎦

− − − + + ( )
( )( )

( ) ( ) ( )( )( )
( ) ( )( )

2 2
3,1 2,1 1,3

2 2
1,2 2,1 1,3 3,1 2,1 1,2 2,2 2,2

3 2 2 2 2 2
2,2 2,1 1,2 2,2 2,1 1,2 1,2 2,1 1,2 2,1 1,3 3,1 2,2

2 2
1,2 2,1 1,2 3,1 2,1 1,3 1,2 2,1 1,3 3,1

  3 5 2

2 3 4  3  2

 2  6 2

g

m m m
c

m m m m m m m m

m m m m m m m m m m m m m

m m m m m m m m m m

⎡ ⎤+ +
⎢ ⎥ +
⎢ ⎥+ + − + −⎣ ⎦

− + + + + − + + − + +

− + + + + + ( )
( ) ( ) ( ) ( )

4 4
2,1 1,2

2 22 2 2 2
2,1 1,2 1,3 3,1 1,3 3,1 1,3 2,1 3,1 1,2

0

3 2 2    

m m

m m m m m m m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥+ + ≥⎢ ⎥
⎢ ⎥
− + − + − + +⎢ ⎥⎣ ⎦  

(21) 

In Equation (22), the inequality for 4d  has a dual relationship (d4,dual), its sign being reversed by 
swapping the two indices in mi,j, whereas 5d  and 6d  are symmetric with respect to indicial swap. The 
term d6 of Equation (21) is a fourth-order polynomial of cg. The inequalities for 4d , 4duald , 5d  and 6d  

hold inside a compact domain denoted D4, with the shape of what resembles a rounded  
polytope in the space of cross moments ( 1,2 2,1 1,3 3,1 2,2,  ,  ,  ,  m m m m m ), for each value of the  

Gaussian correlation cg. The case of Gaussianity lies within the interior of D4, corresponding to 
2

1,2 2,1 1,3 3,1 2,20;  3 ; 2 1g gm m m m c m c= = = = = + , thus defining the hereafter called one-dimensional 

‘Gaussian manifold’. 
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In order to illustrate how non-Gaussianity depends on moments of third and fourth order, we have 
computed the non-Gaussian MI of order 4 ( , 4ng pI = ), along a set of 2-dimensional cross-sections of D4 
crossing the Gaussian manifold and extending up the boundary of D4. For Gaussian moments, ,4ngI  

vanishes, being approximated by the Edgeworth expansion (16) near the Gaussian manifold.  
In order to get a picture of , 4ng pI = , we have chosen six particular cross-sections of D4 by varying 

two moments and setting the remaining to their ‘Gaussian values’. The six pairs of varying parameters 
are: A (cg, m2,1), B (cg, m3,1), C (cg, m2,2), D (m2,1, m3,1) at cg=0, E (m2,1, m2,2) at cg=0 and F (m3,1, m2,2) 
at cg = 0, with the contours of the corresponding Ing field shown in Figure 2a–f. The fields are retrieved 
from a discrete mesh of 100 × 100 in moment space. The Gaussian state lies at: (cg, 0), (cg, 3cg), 
(cg, 2cg

2 + 1), (0, 0), (0, 1) and (0, 1), respectively for cases A up to F. The moment domains are 
obtained by solving inequalities for d4, d5 and d6 and applying the restrictions imposed by the crossing 
of the Gaussian manifold (e.g., m1,2 = 0, m1,3 = m3,1 = 3cg, m2,2 = 2cg

2 + 1 for case A). We obtain the 
following restrictions for cases A–F: 

Case A: ( ) ( )( )1/22 2 2 2 2 4
2,1

1 3 3 1 2 1 1 52 28
2 g g g g gm c c c c c⎡ ⎤≤ + − − − + +⎢ ⎥⎣ ⎦

 (22) 

Case B: ( ) ( )3 2 4 6 3 2 4 6
3,12 2 1 2 2 1g g g g g g g g g gc c c c c m c c c c c+ − − − + ≤ ≤ + + − − +  (23) 

Case C:  (24) 

Case D:  (25) 

Case E:  (26) 

Case F: 
3 2 2
2,2 2,2 2,2 3,12 3 2 0m m m m− − + ≤  (27) 

The analytical boundary of allowed domains is emphasized with thick solid lines in all Figure 2a–f. 
There are some common aspects among the figures. As expected, Ing vanishes at the Gaussian states, 
the Gaussian manifold, marked with G in Figures 2. Ing grows monotonically towards the boundary of 
the moment domains D4. There, 4det( ) 0=C , meaning that 4C  is singular and there is a vector 

4( 0) ( )≠ ∈b Ker C . This holds if one gets the deterministic relationship 1
/2 2( , ) 0T

p x y = =b TQ , 

leading to a Dirac-Delta-like ME-PDF along a one-dimensional curve. This in turn leads to Ing = ∞, 
except possibly in a set of singular points of D4 on which Ing is not well defined. In practice, infinity is 
not reached due to stopping criteria for convergence of the iterative method used for obtaining the 
ME-PDF. 
  

( )1/22 2 4
2,2

1 1 1 34 3
2 g g gc c c m⎡ ⎤− + + + + ≤ ≤⎢ ⎥⎣ ⎦

2 2 4
3,1 2,1 2,1 21 212 3 4 ; 1 ; 2m m m m m≤ − + ≤ ≤

( )1/22 2 2
2,1 2,2 2,1 2,11 4 2 ; 3m m m m≤ ≤ + − ≤
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Figure 2. Field of the non-Gaussian MI ,4ngI  along 6 bivariate cross-sections of the set of 

allowed moments. Two varying moments are featured in each cross-section: A (cg, m2,1), 
B (cg, m3,1), C (cg, m2,2), D (m2,1, m3,1) at cg=0, E (m2,1, m2,2) at cg = 0 and F (m3,1, m2,2) at 
cg = 0. The letter G indicates points or curves where Gaussianity holds.  

 
 
At states where |cg| = 1, Ig = ∞ and Ing has a second-kind singularity discontinuity where the 

contours merge together without a well-defined limit for Ing. In the neighborhood of the Gaussian state 
with cg = 0 in Figure 2d–f, Ing is approximated by the quadratic form (16) as is confirmed by the elliptic 
shape of Ing contours. The value of Ing can surpass Ig, thus emphasizing the fact that in some cases 
much of the MI may come from nonlinear (X,Y) correlations. 

The joint entropy is invariant for a mirror symmetry in one or both variables: X X→ −  or Y Y→− , 
because the absolute value of the determinant of that transformation equals 1. As a consequence, the 
dependence of the Gaussian and non-Gaussian MI on moments also reflects these intrinsic mirror 
symmetries. For instance, in Figure 2d, the symmetry X X→ −  leads to the dependency relations 
Ing(m2,1, m3,1) = Ing(m2,1, −m3,1), where arguments are the varying moments, while symmetry Y Y→−  
leads to Ing(m2,1, m3,1) = Ing(−m2,1, −m3,1). The symmetries corresponding to the remaining figures are: 
Ing(cg, m2,1) = Ing(−cg, m2,1) = Ing(cg, −m2,1); Ing(cg, m3,1) = Ing(−cg, −m3,1); Ing(cg, m2,2) = Ing(−cg, m22); 
Ing(m2,1, m2,2) = Ing(−m2,1, m2,2); Ing(m3,1, m2,2) = Ing(−m3,1, m2,2), respectively for Figure 2a–c, e and f. 

Near the boundary of 4D , the ME problem is very ill-conditioned. The Hessian matrix of the 
corresponding ME functional is the inverse 1

4
−M , where 4 4 4 4 4[ ] [ ] [ ]T TE E E≡ −M T T T T  is the covariance 

matrix of 4T , made by 8 independent plus 6 cross moments. The condition number CN (ratio between 

the largest and smallest eigenvalue) of 4M  (and of 1
4
−M ) tends to ∞ at the boundary of 4D  where 4M  

is singular, due to the above deterministic relationship. Therefore, the closer that boundary is, the 
closer the ME-PDF is to a deterministic relationship, the more ill conditioned the ME problem is and 
the slower the numerical convergence of the optimization algorithm becomes. 
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4. The Effect of Noise and Nonlinearity on Non-Gaussian MI 

The aim of this section is an exploratory analysis of the possible sources of non-Gaussianity in a 
bivariate statistical relationship. Towards that aim, we explore the qualitative behavior of Ig and Ing 
between a standardized signal X̂ (with null mean and unit variance) and an X̂ -dependent standardized 
response variable Ŷ  contaminated by noise. For this purpose, a full range of signal-to-noise variance 
ratios (snr) shall be considered, from pure signal to pure noise. The statistics are evaluated from 
one-million-long synthetic ˆ ˆ( , )X Y  iid independent realizations produced by a numeric Gaussian 
random generator. Many interpretations are possible for the output variable: (i) Ŷ  taken as the 
observable outcome emerging from a noisy transmission channel fed by X̂ ; (ii)  given by the direct 
or indirect observation affected by measurement and representativeness errors corresponding to a 
certain value X̂  of the model state vector [37] (iii) the outcome from a stochastic or deterministic 
dynamical system [38].  

In order to estimate ˆ ˆ( , )I X Y , the working variables ˆ ˆ( , )X Y  are transformed by anamorphosis into 
standard Gaussian variables ( , )X Y .  

We consider, without loss of generality, ˆX X= . The variable Y  is given by Gaussian 
anamorphosis ˆ

ˆ( ) ~ (0,1)YY G Y N=  as in Equation (8), with: 

2 1/2ˆ ( ) (1 ) ( , ) ; [0,1]Y s F X s n X s= + − ∈W  (28) 

where ( )F X  is a purely deterministic transfer function and ( , )n X W  is a scalar noise uncorrelated 
with ( )F X , depending in general on X  (e.g., multiplicative noise) and from a vector W  of 
independent Gaussians contaminating the signal. Both ( )F X  and ( , )n X W  have unit variance with 

( , ) 0n X =0 . The signal-to-noise variance ratio is 2 2/ (1 )snr s s= − . 
Then, the Gaussian MI Ig is computed for each value of s∈[0,1] and compared among several 

scenarios of ( )F X  and ( , )n X W . A similar comparison is done for the non-Gaussian MI, 
approximated here by Ing,p=8. Six case studies have been considered (A, B, C, D, E and F); their signal 
and noise terms are summarized in Table 1, along with the colors with which they are represented in 
Figure 3 further below. 

Table 1. Types of signal and noise in Equation (35) and corresponding colors used in Figure 3. 

Case study ( )F X ( , )n X W  Color  
A—Gaussian noise (reference) X W  Black 
B—Additive non-Gaussian independent 
noise 

X  3 / 15W  Red 

C—Multiplicative noise W X Blue 
D—Smooth nonlinear homeomorphism 3 / 15X  W  Magenta 
E—Smooth non-injective transformation 3( ) / 10X X−  Green 
F—Combined non-Gaussianity 3( ) / 10X X− 3

1 2/ 2 / 30XW W+  Cyan 

 
In Table 1, 1 2, ,W W W  are independent standard Gaussian noises. We begin with a reference case, A, 

which refers to Gaussian noise. Case B refers to a symmetric leptokurtic (i.e., with kurtosis larger than 
that of the Gaussian) non-Gaussian noise. In case C the multiplicative noise depends linearly on the 

Ŷ

X

W
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signal X. In case D, the signal is a nonlinear cubic homeomorphism of the real domain. For case E, the 
signal is nonlinear and not injective in the interval [−1, 1], thus introducing ambiguity in the 
relationship ( , )X Y . Finally, in case F all the factors—non-Gaussian noise, multiplicative noise and 
signal ambiguity—are pooled together. 

Figure 3. Graphs depicting the total MI (a), Gaussian MI (b) and non-Gaussian MI (c) of 
order 8 for 6 cases (A–F) of different signal-noise combinations with the signal weight s in 
abscissas varying from 0 up to 1. See text and Table 1 for details about the cases and their 
color code. 
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Figure 3a,b show the graphics of the total MI, estimated by Ig + Ing,8 and of the Gaussian MI (Ig) for 
the six cases (A to F). The graphic of non-Gaussian MI as approximated by Ing,8 is depicted in 
Figure 3c for five cases (B to F). In Figure 4, we show a ‘stamp-format’ collection of the contouring of 
ME-PDFs of polynomial order p = 8 for all cases (A to F) and extreme and intermediate cases of the 
snr: s = 0.1, s = 0.5 and s = 0.9. This illustrates how the snr and the nature of both the transfer function 
and noises influence the PDFs. 

For the Gaussian noise case (A), the non-Gaussian MI is theoretically set to zero since the joint 
distribution of ( , )X Y  is Gaussian. In all scenarios, both Ig and the total MI Ig + Ing grow, as expected, 
with the snr. This is in accordance to the Bruijn’s equality stating the positiveness of the MI derivative 
with respect to snr and established in the literature of signal processing for certain types of noise 
[39,40]. On the contrary, the monotonic behavior as a function of snr is not a universal characteristic 
of the non-Gaussian MI.  

By observing Figure 3a–c, the following qualitative results are worth mentioning. We begin by 
comparing the total MI in three cases (A, B and C), which share the same linear signal but feature 
noise of different kinds (Figure 3a). Both the red (B) and blue (C) lines lie above the black line (A) for 
each given s, thus indicating that the total MI is lowest when the noise is Gaussian. This means that the 
Gaussian noise is the most signal degrading of noises with the same variance [41]. The extra MI found 
in the B and C cases come, respectively, from the Gaussian MI (see case B in Figure 3c) and from the 
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non-Gaussian MI (see case C in Figure 3a), as it is also apparent by looking at ME-PDFs for cases B, 
C (s = 0.1) (Figure 4). 

We consider now the cases A, D, E, all of which have a Gaussian noise. Their differences lie in the 
signals, with the one in A being linear and the ones in D and E being nonlinear. By comparing these 
cases it is seen that Ig is highest for the linear signal, the black curve lying above the magenta (D) and 
green (E) curves for each s in Figure 3b. This indicates that the Gaussian MI, measuring the degree of 
signal linearity, is lower when the signal introduces nonlinearity (cases D and E) than when no 
nonlinearity is present (case A). 

Figure 4. Collection of stamp-format ME-PDFs for cases A–F (see text for details) and 
signal weight s = 0.1 (a), s = 0.5 (b) and s = 0.9 (c) over the [−3, 3]2 support set. 

 
 
It is worth noting that, while the signals in A and D are injective, the one in E is not, thus 

introducing ambiguity. This will imply loss of information in E, which is visible in the total MI 
depicted for each s in Figure 3a. In fact, there the green curve (case E) lies lower than the black (A) 
and magenta (D) curves for every s. The effect of nonlinearity is quite evident in ME-PDFs, in 
particular for high s value (Figure 4, cases D, E, s = 0.9). 

We focus now on the non-Gaussian MI, depicted in Figure 3c for each s. The curve representing the 
case B, with a linear signal and a state-independent noise, indicates that the non-Gaussian MI is null 
for both s = 0 and s = 1. The first zero of non-Gaussian MI (at s = 0) is justified by the noise being 
state-independent, whereas the second zero (at s = 1) is due to the signal being linear, which means 
that all the MI resides in the Gaussian MI. The non-Gaussian MI is thus positive and maximum at 
intermediate values of s. 

By looking at case C (multiplicative noise), it is seen that the non-Gaussian MI remains roughly 
unchanged for every s < 1. This holds even at s = 0 (pure noise), since the noise is state-dependent and 
thus some information is already present. At s = 1 the non-Gaussian MI is null due to the signal being 
linear (as in case B). 

By observing the cases with Gaussian noise and nonlinear signals (D and E) in Figure 3c, it can be 
seen that their non-Gaussian MI grows with s (and thus with the relative weight of the signal), due to 

A B

s=0.1

s=0.5

s=0.9
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their signals being nonlinear. This gradual behavior is also reflected in the ME-PDFs (Figure 4, 
cases D, E along the s values). 

Finally, we consider the case in which the signal is nonlinear and the noise comprises a 
multiplicative and a non-Gaussian additive component (case F). As compared with E (which differs 
from it in that the noise is Gaussian), it can been that non-Gaussian MI is always larger in F 
independently of s. This is due to the fact that in F there is information even at s = 0, due to the  
state-dependence of its noise. For all values of s, the ME-PDF exhibits quite a large deviation from 
Gaussianity. 

7. Discussion and Conclusions 

We have addressed the problem of finding the minimum mutual information (MinMI), or the least 
noncommittal MI between d = 2 random variables, consistent with a set of marginal and joint 
expectations. The MinMI is a proper MI lower bound when marginals are set to ME-PDFs through 
appropriate nonlinear single anamorphoses. Moreover, the MinMI increases as long as one increases 
number of independent cross-constraints of the bivariate ME problem. Considering a sequence of 
moments, we have obtained a hierarchy of lower MI bounds approximating the total MI value. The 
method can easily be generalized for d > 2 variables with the necessary adaptations. 

One straightforward application of that principle follows from the MI estimation from 
‘Gaussianized’ variables with real support, where the marginals are rendered standard Gaussian N(0,1) 
by Gaussian anamorphosis. This allows for the MI decomposition into two positive contributions: a 
Gaussian term Ig, which depends uniquely on the Gaussian correlation cg (Pearson correlation in the 
space of ‘Gaussianized’ variables), and a non-Gaussian term Ing depending on nonlinear correlations. 
This term is equal to the joint negentropy, which is invariant for any oblique or orthogonal rotation of 
the ‘Gaussianized’ variables and is related to the ‘compactness’ measure or the closeness of the PDF 
towards a low manifold deterministic relationship. The Gaussian MI is also a ‘concordance’ measure, 
invariant for any monotonically growing homeomorphisms of marginals and consequently expressed 
as a functional of the copula-density function, which is exclusively dependent on marginal cumulated 
probabilities. In certain extreme cases, very far from Gaussianity, the Pearson correlation among 
non-Gaussian variables is not a proper measure of the mutual information. An example of that 
situation is given.  

Cross moments under marginal standard Gaussians are bounded by Schwarz-like inequalities 
defining compact sets, the shape of which resemble a rounded polytope where cross moments live. The 
allowed moment values portray all possible joint PDFs with Gaussian marginals. Inside that set lies the 
so called one-dimensional Gaussian manifold, parametrized by cg, where joint Gaussinity holds. There, 
Ing vanishes, growing towards infinity as far as the boundary is approached, where variables satisfy a 
deterministic relationship and the ME problem is ill conditioned. This behavior is illustrated in  
cross-sections of the polytope of cross moments of total order p = 4. 

In order to systematize the possible sources of Gaussian and non-Gaussian MI, we have computed it 
in the context of nonlinear noisy channels. The MI has been computed between a Gaussian input and a 
panoply of (linear and/or nonlinear) outputs contaminated by different kinds of noise for a full range of 
the signal-to-noise variance ratio. Sources of non-Gaussian MI include: (a) the nonlinearity of the 
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signal transfer function, (b) multiplicative noise and (c) non-Gaussian additive noise. This paper is 
followed by a companion one [27] on the estimation of non-Gaussian MI from finite samples with 
practical applications. 
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Appendix 1 

Form and Numerical Estimation of ME-PDFs 

We hereby present a summary of the ME method for distributions along with the numerical 
algorithm for computing it. Let us consider an information moment set (2) ( )T,θ  comprising J 
constraints on the RVs ( , )X Y  with the support set 2.X YS S S= ⊗ ⊆  The associated ME-PDF is 

obtained from the absolute minimum of a control function:  

( ) ( )log J
i ii

L Z ηθ
=

= −⎡ ⎤⎣ ⎦ ∑η,T,θ η  

in terms of a J-dimensional vector of Lagrange multipliers: 

( )1,...,
T

Jη η=η  

where ( ) ( )1
exp ,J

i iiS
Z T x y dxdyη

=
⎡ ⎤= ⎣ ⎦∑∫∫η  [13]. The minimum of L  lies at a value of η  dependent 

on ( ),T θ , given by: ( ) ( )argmin L= ηλ T,θ η,T,θ . The corresponding L minimum is the value of the 

maximum entropy: ( )*H L
ρ

=
T,θ

λ,T,θ .  

The ME-PDF is of the form: ( ) ( ) ( )1*
1

, exp ,J
i ii

x y Z T x yρ λ−

=
⎡ ⎤= ⎣ ⎦∑T,θ λ , where ( )Z λ  is the 

normalization partition function. Except when no analytical relationship ( )λ T,θ  exists, this function 

has to be estimated by iterative techniques of minimization of ( )L η,T,θ . The numerical algorithm 

consists of a bivariate version of that presented in [20]. In practice, we have solved the ME problem 
for a finite square support set 2[ , ]rS r r= −  with r large enough in order to prevent significant boundary 

effects on the ME-PDF, thus obtaining a good estimation of the ME-PDF asymptotic limit when 
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r  ∞. By using the two-dimensional Leibnitz differentiation rule, it is easy to obtain the derivative of 
the ME *H

ρ
 with respect to r: 

* *

( , )

( , )
( , ) | |

rx y S

dH X Y
x y dl

dr
ρ ρ

∈∂
= ∫  (A1) 

where the line integral is always positive and computed along the boundary line rS∂  of rS . When 
|x|,|y| ∞, the bound of (A1) leads to the scaling of the logarithm of the ME-PDF as ( )pO r− , where p 
is the maximum total order of the constraining bivariate monomials in the information moment set 
( ),T θ . Furthermore, in order to get integrands of the order exp( (1))O  during the optimization process, 

we solve the ME problem for the scaled variables (X/r,Y/r) in the square [−1, 1]2, by taking the 
appropriate scaled constraints. Then, we apply the scaling entropy relationship: 

( ) ( )* *, / , / 2 log( )H X Y H X r Y r r
ρ ρ

= +  (A2) 

The integrals giving the functional ( )L η,T,θ  and its η-derivatives are approximated by the 
bivariate Gauss truncation rule with Nf weighting factors each in the interval [−1, 1]. In order to get full 
resolution during the minimization, and to avoid “Not-a-Number” (NAN) and infinity (INF) errors in 
computation, we subtract the polynomials in the arguments of exponentials from the corresponding 
maximum in S. Finally, the functional L  is multiplied by a sufficient high factor F in order to 
emphasize the gradient. After some preliminary experiments, we have set r = 6, Nf = 80, F = 1000. 
Convergence is assumed to be reached when one gets an accuracy of 10−6 for the gradient of L. By 
setting the first guess of Lagrange multipliers (FGLM) to zero, convergence is reached after  
about 60–400 iterations. For the optimization we have used the routine M1QN3 from INRIA [42], 
which uses the Quasi-Newton BFGS algorithm. Convergence is slower under a higher condition 
number (CN) of the Hessian of L, with the convergence time growing in general with the proximity of 
the boundary of the domain of allowed moments as well as the total maximum order p of constraining 
monomials. The convergence is faster when a closer FGLM is provided to the exact solution. This is 
possible in sequential ME problems with quite small successive constraint differences. There, one uses 
a continuation technique by setting FGLM to the optimized Lagrange multipliers from the previous 
ME problem. This technique has been used in the computation of the graphics in Figure 3. 

Appendix 2 

Proof of Theorem 1: Since X follows the ME-PDF generated by ( )X XT ,θ  and ME-congruency holds, 

we have 
1 1 2 2

* * *( || ) ( || ) ( || ) 0
X X X X X XX X XD D Dρ ρ ρ ρ ρ ρ= = =

Τ ,θ Τ ,θ Τ ,θ
 with similar identities for Y. 

Therefore, the first inequality of (7a) follow directly from (5). The second one is obtained by 
difference and application of Lemma 1 to 1 2⊆T T  (q.e.d.).  

Proof of Theorem 2: The first equality of (11) comes from Equation (1) as ( , ) 2
XYgI X Y H Hρ= −  and from 

the negentropy definition of Gaussianized variables ( , ) ( , ) 2 ( , )
XY XYg g gJ X Y H X Y H H I X Y Hρ ρ= − = + − , 

where ( , )gH X Y is the entropy of the Gaussian fit. From the entropy formula of transformed variables 

we get ( , ) ( , ) log det
X Y XYr r g r r gH H H X Y H X Y Aρ ρ− = − = , leading to the negentropy equality 
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( , ) ( , )r rJ X Y J X Y= . Finally, the last equation of (11) comes from the equality 

( ),
X Yr r X Yr r

r rH H H I X Yρ ρ ρ= + −  and the definition of negentropy, i.e., ( )
Xrr gJ X H Hρ= −  (q.e.d.). 
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