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Abstract: In this paper, we investigate the combined effects of buoyancy force and Navier 
slip on the entropy generation rate in a vertical porous channel with wall suction/injection. 
The nonlinear model problem is tackled numerically using Runge–Kutta–Fehlberg method 
with shooting technique. Both the velocity and temperature profiles are obtained and 
utilized to compute the entropy generation number. The effects of slip parameter, 
Brinkmann number, the Peclet number and suction/injection Reynolds number on the fluid 
velocity, temperature profile, Nusselt number, entropy generation rate and Bejan number 
are depicted graphically and discussed quantitatively. 

Keywords: buoyancy force; Navier slip; porous channel; suction/injection; entropy 
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Nomenclature 

V  dimensional velocity, [ms−1] u fluid velocity, [ms−1] 
P fluid pressure, [Nm−2] x,y cartesian coordinates, [m] 
T fluid temperature, [K] g acceleration due to gravity, [ms−2] 
EG volumetric rate of entropy production, [W/m3 K] w dimensionless velocity 
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T0 temperature at y = 0, [K] Th temperature at y = h, [K] 
cρ  specific heat at constant pressure, [J/kgK] Re Reynolds number, [-] 
Pe Peclet number, [-] Br Brinkman number 

fC  skin friction, [-] Nu Nusselt number, [-] 

N1 entropy generation due to heat transfer N1 
entropy generation due to viscous 
dissipation 

Be Bejan number, [-] K pressure gradient 

Greek Letters 

μ  fluid viscosity, [Nsm−2] α  thermal diffusivity, [m2s−1] 
1 2,γ γ  slip coefficients, [m] β  volumetric expansion coefficient, [K−1] 
ρ  fluid density, [kgm−3] θ  dimensionless temperature, [-] 

1 2,β β  dimensionless slip coefficients, [-] Ω dimensionless temperature difference, [-]
φ  irreversibility ratio, [-]   

1. Introduction 

The study of fluid flow and heat transfer in a porous channel have received considerable attention 
during the last several decades due to their relevance in a wide range of biological and engineering 
settings such as ground water hydrology, irrigation, and drainage problems and also in absorption and 
filtration processes in chemical engineering. The scientific treatment of the problems of irrigation, soil 
erosion and tile drainage are the present focus of the development of porous media flow [1–3]. 
Meanwhile, the problem of the slip flow regime is very important in this era of modern science, 
technology and vast ranging industrialization. In many practical applications, the fluid adjacent to a 
solid surface no longer takes the velocity of the surface. The fluid at the surface has a finite tangential 
velocity; it slips along the surface. The flow regime is called the slip flow regime and its effect cannot 
be neglected. The effects of slip conditions on the hydromagnetic steady flow in a channel with 
permeable boundaries were discussed by Makinde and Osalusi [4]. Khalid and Vafai [5] obtained 
the closed form solutions for steady periodic and transient velocity field under slip condition. 
Watanebe et al. [6] studied the effect of Navier Slip on Newtonian fluids at solid boundary. Chen and 
Tian [7] investigated entropy generation in a micro annulus flow and discussed the influence of 
velocity slip on entropy generation. Chauhan and Kumar [8] investigated fully developed forced 
convection in a circular channel filled with a highly porous medium saturated with a rarefied gas and 
uniform heat flux at the wall in the slip-flow region, using the Darcy extended Brinkman–Forchheimer 
momentum equation and the entropy generation due to heat transfer. Meanwhile, there is continuous 
transfer of momentum and energy between the fluid and the solid boundaries, causing the fluid to 
undergo irreversible processes and therefore increase the entropy generation in the system. Since 
entropy production destroys the available energy in the system, the improvement in the energy 
utilization during the fluid convection is one of the fundamental problems in engineering processes. 
The optimal use of energy can be achieved, if the second law of thermodynamics is taken into 
consideration. Mahmud and Fraser [9] examined the flow, thermal and entropy generation fields inside 
a parallel-plate porous channel, when subjected to differentially heated isothermal wall. Chauhan and 
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Olkha [10] investigated the hydrodynamics and heat transfer of the flow of a third-grade fluid 
incorporating entropy analysis. Chauhan and Kumar [11] analyzed the heat transfer and entropy 
generation in a situation where the compressible fluid flow is caused by moving an impermeable 
wall of a composite channel partially filled with a porous medium and a clear fluid. Chauhan and 
Rastogi [12] considered an unsteady two-dimensional MHD flow and heat transfer through a porous 
medium adjacent to a non-isothermal stretching sheet. Several researchers have carried out analysis on 
second law analysis such as [13–16]. Furthermore, starting from the pioneering work of Bejan [17–18], 
several investigations on entropy generation on fluid flow under various physical situations have been 
done [19–30]. Chen [31] performed a detailed study on the effects of Reynolds number and Grashof 
number on entropy generation inside disk driven convectional flow for the first time. Chen et al. [32] 
investigated the effects of Rayleigh number, curvature of annulus and Prandtl number on the flow 
pattern, temperature distribution and entropy generation for natural convection inside a vertically 
concentric annular space. It appears that very little or no study has considered the combined effects of 
buoyancy force and velocity slip on the entropy generation in a porous channel with suction and 
injection, which is the focus of this paper. 

In this paper, the inherent irreversibility of a porous channel under the influence of velocity slip and 
buoyancy force is investigated numerically using Runge–Kutta–Fehlberg method with shooting 
technique. The solution of the resulting momentum and energy balance equations are reported for 
representative values of thermo-physical parameters characterizing the fluid convection processes.  

2. Mathematical Analysis 

The steady laminar incompressible viscous boundary layer flow through a vertical porous channel 
with non-uniform temperature, injection at the left wall and suction at the right wall under the 
combined effect of buoyancy forces and Navier slip as shown in Figure 1 below are considered. 

Figure 1. Flow configuration and coordinate system. 

 
 

The density variation due to buoyancy effects is taken into account in the momentum equation 
using Boussinesq approximation. The momentum and energy equations describing the flow can be 
written as: 
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Momentum equation: 
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where u  is the velocity of the fluid, P is the fluid pressure, μ  is the fluid viscosity, α  is the thermal 
diffusivity, ρ  is the fluid density, Pc  is the specific heat at constant pressure, T is the temperature, 

21 γγ and  are slip coefficients, β  is volumetric expansion coefficient and g is acceleration due to 
gravity. The authors introduced the following dimensionless quantities: 
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Substituting Equation (4) into Equations (1)–(3), the authors obtained: 
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(Slip parameter). 

Equations (5)–(6) together with boundary conditions (7)–(8) are coupled nonlinear boundary value 
problems which are solved numerically using Runge–Kutta–Fehlberg method with shooting technique. 
The numerical solution procedure employed to solve the model boundary valued problem in 
Equations (5)–(8) is based on shooting techniques [20,33]. It involves, transforming Equations (5)–(8) 
into a set of initial value problems. The transformed initial value problems will contain few unknown 
initial values that need to be determined. After guessing the unknown initial values, a fourth order 
Runge–Kutta iteration scheme is employed to integrate the set of initial valued problems until the 
given boundary conditions are satisfied. The computations are done by a written program which used a 
symbolic and computational computer language MAPLE. The entire procedure is implemented on 
MAPLE. The gradient of the velocity at the channel walls referring to skin fiction is equivalent to: 

hy
f dy

duS
,0=

= μ  (9) 

therefore, the skin-friction coefficient at the wall using dimensionless quantities (4) is given by: 

0,1
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The rate of heat transfer at the channels wall in dimensionless form is given by: 

1,0
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d

dNu  (11) 

3. Entropy Generation 

The convection process along a porous channel is naturally irreversible. Exchange of energy and 
momentum within the fluid and at the solid boundaries causes non-equilibrium condition, which 
therefore leads to continuous entropy generation in the porous channel. Bejan [9] gave volumetric rate 
of entropy generation in a Cartesian coordinates as: 
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 (12) 

The velocity and temperature distributions are simplified in many fundamental convection problems 
by assuming that the flow is fully developed by [1] as: 
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where the first term on the right hand side of Equation (13) is the irreversibility due to heat transfer and 
the second term is the entropy generation due to viscous dissipation. Introducing the dimensionless 
quantities defined in (4) to Equation (13), the authors obtained: 
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where 00 /)( TTTh −=Ω  is the temperature difference parameter and: 
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where 1N  represents irreversibility due to heat transfer and 2N gives entropy generation due to viscous 
dissipation. In order to have an idea whether the entropy generation due to viscous dissipation 
dominates over the irreversibility due to heat transfer or vice versa, the authors defined irreversibility 
ratio as:  

1

2

N
N

=φ  (16) 

Entropy generation due to viscous dissipation dominates if 1>φ  and if 10 <≤ φ , then irreversibility 
due to heat transfer dominates, but if 1=φ  implies that both of them contribute equally.  

The Bejan number (Be) is defined as: 

1 1
1s

NBe
N ϕ

= =
+

 (17) 

where Be = 1 is the limit at which heat transfer irreversibility dominates, Be = 0 is the limit at which 
fluid friction irreversibility dominates, and 21=Be  implies that both of them contribute equally. 

4. Results and Discussion 

The validity of boundary layer approximation for this model channel flow problem can be attributed 
to the fact that the combined effects of suction and injection on the flow system are more pronounced 
within the channel walls region [9,20]. Using appropriate parameters, the detailed discussion and 
graphical representation of the results of above equations are reported in this section. We refer to 
vertical lines at 0η =  as injection wall and at 1η =  as suction wall in this discussion. Figure 2 depicts 
the velocity profile while Grashof number (Gr) is increasing and other parameters remain constant. 
The buoyancy effect on the flow system is demonstrated by variation in parameter value of Grashof 
number (Gr). The choice of the values for Gr used in this paper is motivated by the increasing effects 
of buoyancy due to gravity and temperature difference between the channel walls. Increase in Gr, 
decreased the fluid injection toward the channel from the injection wall and increased the suction fluid 
rate at the suction wall. Consequently, the velocity increased at the injection wall and decreased at the 
suction wall. A reversal flow is noticed at the suction wall as Gr is increasing. Towards the centerline 
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of the channel, the flow attains its maximum velocity and it is asymmetric. Figure 3 shows the effect of 
increasing Reynolds number (Re). As Re is increasing, fluid injection into the channel, as well as the 
fluid suction rate is increasing. At the injection wall, the velocity decreases and the flow reversal at the 
suction wall increases. 

Figure 2. Velocity Profile, Re = 2, Br = 1, K = 1β  = 2β  = 0.1, Pe = 3. 

 

Figure 3. Velocity Profile, Gr = Br = 1, K = 1β  = 2β  = 0.1, Pe = 3. 

 
 
Figure 4 depicts the velocity profile while the pressure gradient (K) is increasing. As the pressure 

gradient is increasing, there is a little increase in velocity at the injection wall and a reversal flow at the 
suction wall is noticed. The flow attains its maximum velocity very close to the centerline of the 
channel. Figure 5 shows the velocity profile as Peclet number (Pe) is increasing. As Pe is increasing, 
the fluid injection into the channel at the injection wall increases, similarly, there is an increase in the 
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fluid suction rate at the suction wall. The velocity at injection wall decreases a little but at suction wall, 
the velocity increases. Meanwhile, at the centerline of the channel, the velocity decreases greatly.  

Figure 4. Velocity Profile, Gr = Br = 1, Re = 2, 1β  = 2β  = 0.1, Pe = 3. 

 

Figure 5. Velocity Profile, Gr = Br = 1, Re = 2, 1β  = 2β  = 0.1, K = 0.1. 

 
 

Figure 6 shows the velocity profile with increase in slip parameter ( 1β ). As 1β  is increasing, the 
flow velocity at the injection wall increases and a slight reversal flow effect at the suction wall is 
noticed. Figure 7 depicts an increase in slip parameter ( 2β ). As 2β  is increasing, the flow velocity at 
the injection wall decrease slightly but greater decrease in the velocity is noticed at the suction wall.  
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Figure 6. Velocity Profile, Gr = Br = 1, Re = 2, 2β  = 0.1, K = 0.1, Pe = 3. 

 

Figure 7. Velocity Profile, Gr = Br = 1, Re = 3, 1β  = 0.1, K = 0.1, Pe = 3. 

 
 

When each of the parameters (Gr, Re, Br, K, 1β , 2β ) varies while others remain constant for the 
temperature profile, there is no effect on both suction and injection channel walls. Figure 8 depicts the 
temperature profile as Peclet Number (Pr) is increasing. An increase in the Peclet number leads to a 
decrease in the temperature at both injection and suction channel walls. 

Figure 9 depicts the variation of Peclet number and its effect on entropy generation number. The 
graph reveals that as the Peclet number is increasing, entropy generation number has no effect on the 
injection wall but rather on the suction wall, with great increase in entropy generation. This shows that 
there are restrictive medium leading to high disorder in the fluid particle at the suction wall. 
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Figure 8. Temperature Profile, Gr = Br = 1, Re = 2, 1β  = 2β  = 0.1, K = 0.1. 

 

Figure 9. Entropy generation profile, Gr = 1, Re = 2, k = 0.1, Br = 1, 1β  = 2β  = 0.1, Ω  = 1. 

 
 
Figures 10 and 11 depict an increase in group parameter (Br 1−Ω ) and Grashof number (Gr) and 

their effects on entropy generation. As Br 1−Ω  and (Gr) are increasing in Figure 10 and Figure 11 
respectively, a slight increase in entropy generation on the injection wall and greater increase in 
entropy generation on the suction wall are noticed. This indicates that, there is little restrictive medium 
at the injection walls and more restrictive medium at the suction walls. Like Figures 10 and 11, 
Figure 12 holds the same explanation as the pressure gradient parameter K varies. Figure 13 takes into 
consideration the variation of the asymmetric slip parameter 1β  and its effect on entropy generation. 
This means that there is less restrictive medium at the injection wall but more restrictive medium at the 
suction wall. Figure 14 depicts variation in slip parameter 2β . As 2β  increased, there is an increase in 
entropy generation on both walls but with a greater increase on the suction wall. 
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Figure 10. Entropy generation profile, Gr = 1, Re = 2, k = 0.1, Pe = 0.1, 1β  = 2β  = 0.1. 

 

Figure 11. Entropy generation profile, Ω  = 1, Pe = 0.1, Re = 2, K = 0.1, Br = 1, 1β  = 2β  = 0.1. 

 

Figure 12. Entropy generation profile, Gr = 1, Re = 2, Br = 1, Pe = 3, 1β  = 2β  = 0.1, Ω  = 1. 
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Figure 13. Entropy generation profile, Pe = 0.95, Re = 2, K = 0.1, Br = 1, 2β  = 0.1, Ω  = 1, Gr = 4. 

 

Figure 14. Entropy generation profile, Re = 2, Pe = 3, K = 0.1, Br = 1, 1β  = 0.1, Ω  = 1, Gr = 2. 

 
 

Figures 15–20 show the effect of Reynolds number, Peclet number, slip parameters, group 
parameters, pressure gradient and Grashof number on the Bejan number. Figure 15 takes into account 
the variation of Reynolds number and its effect on the Bejan number. The graph shows that as 
Reynolds number is increasing, Bejan number on the injection wall is increasing while Bejan number 
on suction wall is decreasing. Hence, irreversibility due to heat transfer dominates the flow process at 
the injection wall and irreversibility due to fluid friction dominates at the suction wall. Figure 16 
considers the variation of the pressure gradient parameter (K) and its effect on Bejan number. As 
pressure gradient parameter is increasing, a decrease in the Bejan number at both walls is noticed. 
Hence, irreversibility due to fluid friction dominates at both walls. At the centerline of the channel, 
both irreversibility due to heat transfer and irreversibility due to fluid friction contribute equally. 
Figure 17 looks at increase in Peclet number and its effect on Bejan number. As the Peclet number is 
increasing, Bejan number at the injection wall is decreasing and increasing at suction wall. Therefore, 
irreversibility due to fluid friction dominates the injection channel wall and irreversibility due to heat 
transfer dominates the flow process at the suction wall, but both of them contributed equally at the 
centerline of the channel. Figure 18 takes into account the variations of group parameters and its effect 
on Bejan number. The graph shows that as the group parameter is increasing, at the injection and 
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suction channel walls, Bejan number is decreasing. This implies that irreversibility due to heat transfer 
decrease at both walls, but at the centerline of the channel both irreversibility due to fluid friction and 
irreversibility due to heat transfer contributed equally.  

Figure 15. Bejan Number profile, Pe = 3, Gr = Br 1−Ω  = 1, K = 1β  = 2β  = 0.1. 

 

Figure 16. Bejan Number profile, Re = 2, Gr = Br 1−Ω  = 1, 1β  = 2β  = 0.1, Pe = 3. 

 

Figure 17. Bejan Number profile, Re = 2, Gr = K = Br 1−Ω  = 1, 1β  = 2β  = 0.1. 
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Figure 18. Bejan Number profile, Re = 2, Gr = K = 1, 1β  = 2β  = 0.1, Pe = 1.5. 

 

Figures 19 and 20 show increase in the asymmetric slip coefficients 1β  and 2β  with their effects on 
Bejan number. The graphs show that as asymmetric slip coefficients 1β  and 2β  are increasing; Bejan 
number is decreasing at injection wall and increasing at suction wall. A flow reversal at suction wall is 
noticed as well. 

Figure 19. Bejan Number profile, Re = 2, Gr = K = Br 1−Ω  = 1, 2β  = 0.1, Pe = 2. 

 

Figure 20. Bejan Number profile, Re = 2, Gr = K = 1, 1β  = Br 1−Ω  = 0.1, Pe = 0.71. 
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5. Conclusions  

The combined effect of buoyancy forces and Navier slip on the entropy generation rate in a vertical 
porous channel with wall suction/injection was investigated. In the course of considering the effect of 
buoyancy forces (i.e., increases in Grashof number), the authors noticed a slight increase in the entropy 
generation rate at the injection wall and sporadic increase at the suction wall. Furthermore, entropy 
generation decreased at the injection wall and increased at the suction wall as slip parameter 1β  
increased. However, as the slip parameter β2 increased, the entropy generation rate at both suction and 
injection walls increased. Also, increase in both slip parameters ( 1β  and β2) resulted in a flow reversal 
in the Bejan number. 
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