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Abstract: In a curved surface design, the overall shape features that emerge from 
combinations of shape elements are important. However, controlling the features of the 
overall shape in curved profiles is difficult using conventional microscopic shape 
information such as dimension. Herein two types of macroscopic shape information, 
curvature entropy and quadrature curvature entropy, quantitatively represent the features of 
the overall shape. The curvature entropy is calculated by the curvature distribution, and 
represents the complexity of a shape (one of the overall shape features). The quadrature 
curvature entropy is an improvement of the curvature entropy by introducing a Markov 
process to evaluate the continuity of a curvature and to approximate human cognition of 
the shape. Additionally, a shape generation method using a genetic algorithm as a 
calculator and the entropy as a shape generation index is presented. Finally, the 
applicability of the proposed method is demonstrated using the side view of an automobile 
as a design example. 

Keywords: curves; information theory; shape generation 
 

1. Introduction 

In curved surface designs, the overall shape features that emerge due to combinations of shape 
elements are important because humans tend to perceive the overall shape features macroscopically 
[1–5]. Unfortunately, controlling the overall shape features in curved profiles is difficult using 
conventional microscopic shape information, such as dimension, and consequently depends on the 
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experience and intuition of the designers. In studies on microscopic shape information, shapes have 
been classified quantitatively using microscopic shape information [6], but the relationship between 
microscopic shape information and macroscopic features remains unclear. On the other hand, research 
on the representation of a curved line shape has proposed a method for pattern matching, which is 
robust for changes in rotation and scale [7–10], but the relationship between representation and 
macroscopic features has not been discussed. Although research on the relationship between curvature, 
which is utilized as representation, and cognition has been conducted [11–13], in previous works the 
relationship between curvature and macroscopic features generated by combination of curve segments 
has not been clarified. Therefore, in curved surface designs, a design support system to represent the 
overall shape features from macroscopic shape information is desired. 

The objective of this study is to propose macroscopic shape information to represent the overall 
shape features in curved profiles and to confirm its effectiveness. Section 2 describes the proposed 
entropy as macroscopic shape information of a curved profile. In previous research on the texture and 
pattern of the cell structure [14,15], entropy in information theory has been used as an index to 
represent macroscopic features. Herein the concept of entropy is improved to represent the 
macroscopic features of curves. Section 3 describes the characteristic analyses of the shape 
information, including the proposed entropy, while Section 4 improves the proposed entropy in an 
effort to evaluate the continuity of a curve and to analyze the difference between the two proposed 
entropies. Based on our previous study [16], Section 5 describes a shape generation method using a 
genetic algorithm and the entropy as a calculator and shape generation index, respectively. Then to 
examine the availability of the method and index, this method is applied to the side view design 
of an automobile, which is expressed by a three-dimensional Bézier curve, and a cognition 
experiment using the generated shapes is conducted to confirm if the entropy adequately represents the 
cognition information. 

2. Definition of Macroscopic Shape Information 

In information theory, the information source outputs a series of source symbols [17,18]. The 
information content I� is defined using the occurrence probability of source symbol s� in a series of 
source symbols p� as: 

( )][log2 ττττ sPppI =−=  (1) 

where P[A] is the feasibility of event A occurring. 
The average information content H is a measure of the average uncertainty and is defined as: 
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where � is the number of the source symbols. In information theory, H is called entropy because the 
equation is identical to that used in thermodynamics. In the present study, a curved line is assumed to 
be the information source, and the macroscopic shape information is the entropy, expected angle 
variation, and curvature variation of the curve. These values are described below.  
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2.1. Angle Variation 

The entropy and expected angle variation are calculated in the following manner. First, a curved 
profile is divided by sampling points into N equivalent curve units (Figure 1a), and the angle variation 
in each curve unit �n is calculated (Figure 1b). N is assumed to be 25, 50, 100, 200, or 400. Each angle 
variation �n corresponds to source symbol sg, and a series of source symbols is constructed. As shown 
in Figure 1c, the range of angle variation is set from 0 to 180 degrees in one degree increments  
(i.e., the number of source symbols T is set to 180). Finally, the occurrence probability of source 
symbol pg is calculated (Figure 1d). The angle entropy HA is calculated using the following equations: 

)10(log
log

1
1

2
2

≤≤−= �
=

A

T

g
ggA Hpp

T
H  (3) 

To ensure that the variation range is between 0 and 1, HA is divided by the maximum entropy log2T. 

Figure 1. Extraction of the angle variation distribution. (a) Sampling point and a curve 
unit; (b) Sampling of the angle variation; (c) Quantization based on the angle variation; 
(d) Calculation of the occurrence probability. 
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Source symbol sg corresponds to �Sg (the angle variation at source symbol sg) according to the 
following equation:  

 
2

12 −= g
gSϕ

 
(4) 

Thus, the expected angle value (the expected angle variation) EA is calculated as: 

�
=

=
T

g
gSgA pE

1
ϕ (5) 

2.2. Curvature Variation 

Entropy and the expected curvature variation are calculated using the following procedure. First, 
the curved profile is divided by sampling points into N equivalent curve units to curvature � 
(Figure 2a). Then the curvature variation in each curve unit ��n is calculated (Figure 2b) as: 

1−−= nnn� ρρρ  (6) 

Each curvature variation ��n corresponds to the source symbol sh, and a series of source symbols is 
constructed. In reference to a conventional study [11–13], the range of log10(��n L) is set from �2 to 3 
where L is the total length of a curved profile, while the number of source symbols U is set to 100 
(Figure 2c). Finally, the occurrence probability of source symbol ph is set (Figure 2d). The curvature 
entropy HC is calculated using the following equation:  
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HC is divided by the maximum entropy for the same reason as the angle entropy. 
Source symbol sh corresponds to ��Sh (the curvature variation at source symbol sh), which is 

expressed as:  

L
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(8) 

Then, the expected curvature value (the curvature variation) EC is calculated as: 

�
=
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U

h
hShC �pE

1
ρ

 
(9) 

For example, when a very small interval is used to calculate the index of the shape described in 
Figure 3, the proposed index increases upon changing the microscopic curvature in Figure 3a. 
Although the shape in Figure 3b has the same macroscopic features, the index greatly differs. 
Therefore, the points should be set at adequate intervals after considering the influence of noise. 
Incidentally, we have conducted a study on the removal of this influence [19]. 
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Figure 2. Extraction of the curvature variation distribution. (a) Sampling point and a curve 
unit; (b) Sampling of the curvature variation; (c) Quantization based on the curvature 
variation; (d) Calculation of the occurrence probability. 

 

Figure 3. Influence of noise. (a) Large variation in the curvature; (b) Small variation in the curvature. 
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3. Characteristic Analysis of Shape Information in Basic Curved Profiles 

3.1. Description of Basic Curved Profiles 

To create basic curved profiles based on standard polygonal profiles, we selected some polygonal 
profiles from the 90 polygonal profiles used in the “Aesthetic Measure” by Birkhoff, who is a pioneer 
in employing an experimental psychology approach in the field of “aesthetics” [20]. We classified 90 
polygonal profiles on the basis of similarity, and extracted 20 polygonal profiles to represent each 
similarly shaped group using the KJ method [21] (Figure 4). Among the 20 polygonal profiles, cluster 
analysis in which the microscopic shape information is used as a variable, is performed. Table 1 shows 
the microscopic shape information used in the analysis. This information can be applied to curved 
profiles and serve as variables for quantitative classification in a conventional study [6]. Consequently, 
the polygonal profiles are classified into three clusters (Figure 5). We selected shapes 2, 13, and 17 as 
basic polygonal profiles (Figure 6). 

In the present study, a three-dimensional Bézier curve is used to describe basic curved profiles. 
Various curved profiles can be constructed by connecting several three-dimensional Bézier curves 
[22,23]. As illustrated in Figure 7, P0 and P3 are defined as connection points, P1 and P2 are defined as 
control points, and 0 1P P

�����
 and 3 2P P

�����
 are defined as tangent vectors. The position of the connection point, 

the direction of a tangent vector, and the size of a tangent vector are defined as curve control variables. 

Figure 4. Polygonal profiles. 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20  

Table 1. Microscopic shape information.  

1. Circumference 6. Average width 
2. Area 7. Inclusiveness length 
3. X maximum width 8. Maximum radius vector 
4. Y maximum width 9. Minimum radius vector 
5. Roundness 10. Average radius vector 
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Figure 5. Cluster analysis result.  
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Figure 6. Basic polygonal profiles. 
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Figure 7. Illustration of a three-dimensional Bézier curve. 
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The general equation of a three-dimensional Bézier curve can be expressed as: 

3
3

2
2

1
2

0
3 )1(3)1(3)1()( PPPPP ttttttt +−+−+−=  (10) 

where Pi is a position vector of point Pi. 
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A condition to describe a smooth curved profile is necessary when the curved profile is expressed 
as a connection of several curve segments. The condition is defined such that P3(Q0) is located on P2 
Q1, as shown in Figure 8. In other words, a three-dimensional Bézier curve with a continuous and 
differentiable connection point satisfies the following equation:  

)0(2310 >−= mm PPQQ  (11) 

Figure 8. Connection of a three-dimensional Bézier curve. 
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Figure 9 shows a method to express a basic curved profile by a three-dimensional Bézier curve. 
First, circles with radii r1 through r7 are drawn to select the positions of the connection points. The 
intersection points between the edges of the circles and the polygonal profile J1 thorough J12 are 
assumed to be the connection points. To improve the smoothness of a curved profile, radii r1 through 
r7 are defined as: 

{ }
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{ }
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1 1
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4
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k k k k k
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− +

	 =



 = =�



 =
�

 (12) 

Then each segment J1 J2 through J12 J1 is interpolated by a three-dimensional Bézier curve 
(Figure 9). Considering the continuity of the curve, the size of each tangent vector � is set to 1/3 of the 
interval length of the connection point, and using the tangent vector size, the positions of control 
points C1 through C24 are preliminarily set on the polygonal profile. When the direction of a tangent 
vector changes, the two tangent vectors always satisfy Equation (11). 

Changes in the direction and the size of the tangent vector are defined as the parameters to 
generate the profiles, and the number of their level is set to five. Therefore, as shown in Figure 10,  
25 curved profiles are made from each basic polygonal profile. To prevent the curved profile from 
possessing both a cross point and a nondifferentiable point, the parameter for the directional change of 
the tangent vector An and the parameter for the size change of the tangent vector Le are defined in the 
following equations: 
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where � is the angle at the top of the polygonal line that connects basic points and � is the size of the 
basic tangent vector.  

Figure 9. Description of a curved profile. 
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Figure 10. Basic curved profiles. (a) Curved profiles based on shape 2; (b) Curved profiles 
based on shape 13; (c) Curved profiles based on shape 17.  
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3.2. Cognition Experiment of the Curved Profile 

To analyze the relationship between shape information and cognition information of a curved 
profile, we implemented a cognition experiment. Cognition information, which is an evaluation value 
of the macroscopic features, is derived using the semantic differential method. The cognition 
experiment is performed as follows: 

(1) Method: semantic differential method (7 stages) 
(2) Samples: 75 samples (basic curved profiles shown in Figure 10) 
(3) Evaluation items: 6 items (refer to Table 2) 
(4) Examinees: 12 students in their early 20s 

According to our previous study [24], six evaluation items are important to represent the macroscopic 
features in a curved profile. Figure 10 shows the samples displayed on a PC monitor.  

Table 2. Evaluation items.  

1. Complex 4. Light 
2. Rectilinear 5. Fresh 
3. Beautiful 6. Hard 

3.3. Analysis 

3.3.1. Relationship between Microscopic and Macroscopic Shape Information 

The relationship between microscopic (conventional) and macroscopic (proposed) shape 
information in the curved profile is analyzed. To classify the shape information characteristics, each 
shape information value of the basic curved profile (Figure 10) is calculated and analyzed using 
principal component analysis as follows. First, the values of shape information, which includes the 
microscopic shape information shown in Table 1, angle entropy, and curvature entropy, are calculated 
according to the 75 basic shapes. Next, the values are divided by the value of each basic shape to 
derive the variance-covariance matrix. Finally, the principal component (eigenvector) and contribution 
ratio are calculated from the matrix (Table 3). The angle entropy and expected angle value are 
effective in the first principal component. The curvature entropy and expected curvature value, are 
effective in the third principal component, and are independent of other shape information. 
Consequently, macroscopic shape information, which is calculated by the distribution of curvature 
variation, may have characteristics that differ from the microscopic shape information.  
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Table 3. Principal components of shape information.  

Shape-information 
1st principal 
component 

2nd principal 
component 

3rd principal 
component 

4th principal 
component 

5th principal 
component 

Maximum radius vector 0.981 0.065 �0.028 �0.065 �0.106 
Inclusiveness length 0.954 0.229 �0.052 �0.103 �0.130 
Angle expected value �0.950 �0.219 0.136 0.119 0.027 
Circumference �0.947 �0.181 0.060 �0.108 0.021 
Average width 0.846 0.502 �0.081 �0.090 0.006 
Roundness 0.829 0.524 �0.099 �0.073 �0.042 
Angle entropy �0.786 �0.408 0.352 0.020 �0.073 
X maximum width 0.265 0.913 �0.099 0.208 0.185 
Minimum radius vector 0.435 0.863 �0.112 0.194 0.075 
Y maximum width 0.430 0.685 �0.022 �0.452 0.254 
Curvature expected value 0.058 �0.074 �0.963 �0.127 �0.066 
Curvature entropy �0.182 �0.271 0.910 �0.082 �0.034 
Average radius vector �0.075 0.161 0.053 0.937 0.242 
Area �0.165 0.223 0.036 0.223 0.928 
Contribution ratio (%) 57.5 16.1 12.3 7.0 3.9 
Accumulation 
contribution ratio (%) 

57.5 73.6 85.9 92.9 96.8 

3.3.2. Relationship between the Tangent Vector and Shape Information 

The relationship between shape information and the changes in size and direction of the tangent 
vector in curved profiles is analyzed. We performed a multiple regression analysis in which the 
changes in the size and direction of the tangent vector are explanatory variables, and the shape 
information is set as a variable (Figure 11). The multiple correlation coefficient exceeds 0.8 for all of 
the purpose variables, which have significance levels below 1%. Moreover, for the microscopic shape 
information, the standard partial regression coefficient for the change in the size of tangent vector 
(CLe) tends to be larger than that for the change in the direction of tangent vector (CAn). On the other 
hand, for the macroscopic shape information, CAn tends to be larger than CLe. Consequently, as 
mentioned in Section 3.3.1, macroscopic shape information differs from the microscopic shape 
information in basic curved profiles.  

3.3.3. Relationship between Shape Information and Cognition Information 

The relationship between shape information and cognition information in curved profiles is 
analyzed using multiple regression analysis. In the analysis, evaluation items are set as purpose 
variables, and the five principal components in shape information are set as explanatory variables. The 
multiple correlation coefficient exceeds 0.7 for the evaluation item of “complex”, but the coefficients 
of the other items are less than 0.7 (Figure 12).  
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Figure 11. Standard partial regression coefficient of shape information. 
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Figure 12. Standard partial regression coefficient of the principle component.  
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The levels of significance are less than 0.01. Moreover, the standard partial regression coefficient of 
the third principal component (Table 3) is approximately 0.5 for the “complex” evaluation item, but is 
higher for the other items. Consequently, the macroscopic shape information is confirmed to represent 
the complexity of a shape, which is the feature of the overall shape in basic curved profiles. 

4. Improvement of the Macroscopic Shape Information 

In conventional research on human cognition of a curve segment [11], the relationship between the 
change process in the curvature and cognition is suggested. This means humans can recognize not only 
the curvature but also the linkage of curvature. To consider the change process in the curvature, 
the proposed curvature entropy is improved by introducing a Markov process. An improved 
curvature entropy has the potential to adequately represent macroscopic shape information based on 
human cognition. 

4.1. Definition of the Quadratic Curvature Entropy 

In an actual series of source symbols such as sentences, the connection between source symbols is 
often constrained [17,18]. In such cases the occurrence probability of a source symbol is the transition 
probability, which depends on the previous state (or the previous series of source symbols). This 
stochastic process is called a Markov process. The information source to generate such a series of 
source symbols is called a Markov source. Information content I	,� is defined as: 

( )][log ,,2, νττντντν ssPqqI =−=  (14) 
where s� and sv are source symbols and q	,� is the transition probability that a source symbol transits 
from s� to sv. 

The entropy in a Markov source is defined as: 

����
Λ

=

Λ

=

Λ

=

Λ

=

−==
δδ

ν τ
τντνν

ν τ
τντνν

1 1
,2,

1 1
,, log qqqIqqHm  (15) 

where q	 is the occurrence probability of a state, 
 is the number of the source symbols within a state, 
and � is the number of source symbol types. A curved line is assumed to be a Markov source, and the 
macroscopic shape information (curvature entropy based on the Markov process) is calculated in the 
following manner. First, a curved profile is divided by sampling points into N equivalent curve units 
(Figure 13a), and the curvature �n in each sampling point is calculated (Figure 13b). Next, the 
curvature �n is divided by the standard deviation of curvature �, and the values (�n/�) correspond to 
source symbol sj in order to construct a series of source symbols. Then, as illustrated in Figure 13c, the 
range of �n/�, for example, is set from �1.5 to 1.5, and the number of source symbols V is eight. 
Finally, qi (the occurrence probability of state Si) and qi,j (the transition probability of state Si to source 
symbol sj) are set (Figure 13d). d denotes the number of source symbols that constitute a state, and in 
this study is set to one. The curvature range, number of correspondence source symbols, and number 
of source symbols that constitute a state are assumed to be parameters and are set to specific levels so 
the curvature entropy is highly correlated with the complexity of the basic curved profiles. According 
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to information theory, the above-mentioned entropy is called quadratic entropy. The quadratic 
curvature entropy HQC is calculated using the following equation:  

)10(log
log

1
1 1

,2,
2

≤≤−= ��
= =

QC

V

i

V

j
jijiiQC Hqqq

V
H

d

 (16) 

where HQC is divided by the maximum entropy for the same reason as the curvature entropy. 

Figure 13. Extraction of curvature distribution (a) Sampling point and a curve unit; 
(b) Sampling of the curvature; (c) Quantization based on the curvature; (d) Calculation of 
the transition probability. 

 
4.2. Relationship between Microscopic Shape Information and Quadratic Curvature Entropy 

The relationship between microscopic shape information and quadratic curvature entropy in the 
curved profiles is analyzed using principal component analysis and in Section 3.3. Due to this analysis, 
up to the fourth principal components are included in the microscopic shape information whose 
absolute value of the principal loading exceeds 0.6 (Table 4). The fifth principal component is only 
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included the quadratic curvature entropy. This means that curvature entropy is independent and 
probably differs from other microscopic shape information. 

Table 4. Principal components of shape information. 

Shape-information 1st principal 
component 

2nd principal 
component 

3rd principal 
component 

4th 
principal 
component 

5th 
principal 
component 

Circumference �0.948 0.119 �0.039 0.094 0.221 
Maximum radius vector 0.878 �0.083 0.317 �0.273 �0.191 
Inclusiveness length 0.866 0.003 0.341 �0.296 �0.203 
Average width 0.788 0.118 0.517 �0.243 �0.179 
Roundness 0.780 0.048 0.510 �0.300 �0.191 
Minimum radius vector �0.041 0.973 �0.080 �0.113 �0.034 
X maximum width �0.430 0.817 �0.193 0.315 0.019 
Y maximum width 0.466 0.790 0.308 0.075 �0.207 
Average radius vector �0.354 0.100 �0.867 0.256 0.185 
Area �0.366 0.080 �0.275 0.869 0.152 
Quadratic curvature 
entropy �0.488 �0.179 �0.254 0.190 0.793 

Contribution ratio (%) 41.374 21.130 16.141 11.767 8.418 
Accumulation contribution 
ratio (%) 41.374 62.504 78.645 90.412 98.830 

4.3. Relationship between Shape Information, Including Quadratic Curvature Entropy, and Cognition 
Information 

Similar to the evaluation in Section 3.2, the relationship between shape information and cognition 
information in curved profiles is evaluated by correlation analysis. The quadratic curvature entropy is 
highly correlated with the evaluation item of “complex”; the correlation coefficient is higher than that 
of the curvature entropy (Figure 14).  

Figure 14. Relationship between macroscopic shape information and cognition information. 
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Therefore, the quadratic curvature entropy represents the complexity of a shape in basic curved 
profiles, and is suitable for shape cognition compared to the curvature entropy. This also means that 
the continuity of the curvature, which can be evaluated by the quadratic curvature entropy, is important 
to express macroscopic shape information. 

5. Shape Generation Method 

5.1. Description of the Initial Shape 

In the shape generation method, a three-dimensional Bézier curve is used to describe the initial 
shape. Herein the side view of an automobile is generated based on conventional studies [25,26]. The 
side view can be expressed as a polygonal profile consisting of eight basic points (Figure 15a).  

Figure 15. Description of the initial shape; (a) Basic points; (b) Connection points; 
(c) Interpolation by a three-dimensional Bézier curve; (d) Movable range of basic points; 
(e) Ruggedness of curve segments; (f) Movable range of a tangent vector. 
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During shape generation, points F1 and F8 are fixed, while points F2 through F7 are movable. The 
basic point transfer vector is defined to begin from the basic point toward the deformed points 
(Figure 15d). The movable ranges of points F2 through F7 are defined as circles with radii R2 through 
R7 (Figure 15d). The radii are defined by the following equation:  

{ } ( )7,...,3,2,min
2
1

11 == +− kFFFFR kkkkk  (17) 

This equation prevents shape generation from generating a cross point in a polygonal profile 
(Figure 16). 

Figure 16. Polygonal profile with a cross point. 
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The circles with radii r2 through r7 are used to determine the positions of the connection points 
(Figure 15b). The intersection points between the edges of the circles and the polygonal profile J1 
through J12 are used as the connection points. To improve the smoothness of a curved profile, radii r2 
through r7 are defined as: 

{ } ( )7,...,3,2,min
4
1

11 == +− kFFFFr kkkkk  (18) 

Each segment (F1 J1, J1 J2, …, J12 F8) is then interpolated using a three-dimensional Bézier curve 
(Figure 15c). 

For shape generation, the initial shape is set to that of the Nissan Bluebird ('99), and the curve 
control variables (the position of the connection point, direction of a tangent vector, and size of a 
tangent vector) are set so as to describe this automobile. In the shape generation method, which is 
illustrated in Figure 15e, the ruggedness (convex or concave) of a curve segment is defined. This 
means, two control points Cm are placed on the same side of each curve segment for shape generation. 
To prevent excessive deformation from the initial shape, only the ruggedness of segments F1 J1, 
J10 J11, and J12 F8 are selected. 

The movable range in the angle of the tangent vector at each connection point is defined as follows 
(refer to Figure 15f). For differentiable connections, J1, C2, and C3 always form a line, and J1 C3 is 
linked to J1 C2. Here, ∠C3 J1 J2(<�/2) is calculated as follows when C2 is on the same side as F2 : 

)(
2
10 2213 θπ −<∠< JJC  (19) 

If nothing is present on the same side as F2, ∠C3 J1 J2(< �/2) is calculated:  

2
)(

2
1

2132
πθπ <∠<− JJC  (20) 
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These two definitions prevent shape generation from generating a curved profile with a swell, 
which can occur in an individual curve segment (Figure 17a) or near a connection point (Figure 17b). 
The ruggedness of a curve segment is limited by swell prevention (in an individual curve segment) 
measures, whereas the movable range in the angle of the tangent vector is limited by the swell 
prevention (around a connection point) measures. 

The maximum size of a tangent vector is set to half the length of the segment. This definition 
prevents shape generation from generating a curved profile with a cross point (Figure 17c). To prevent 
generating a curved profile with a nondifferentiable connection point, the minimum size is set to 1/3 of 
the maximum value (Figure 17d). 

Figure 17. Swell, cross point, and nondifferentiable point; (a) Swell in an individual 
segment; (b) Swell around a connection point; (c) Curved profile with cross point; 
(d) Curved profile with a nondifferentiable point. 

 
5.2. Coding in a Genetic Algorithm 

A genetic algorithm is applied to the shape generation method. The curve control variables (the 
position of the connection point, direction of a tangent vector, and size of a tangent vector) are defined, 
and the chromosome for the genetic algorithm is composed of an arrangement of real numbers nreal  
(0 < nreal < 1), which adjust the curve control variable as described below. 

(1) Position of basic point:  

)2cos( realreal nRwnxx kIkk π+=  (21) 
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)2sin( realreal nRwnyy kIkk π+=  (22) 

where w is a degree of freedom in shape generation. xk and yk are x and y directional components of the 
basic point transfer vector, respectively, and xIk and yIk are x and y coordinates of the basic point in the 
initial shape, respectively. 

(2) Ruggedness of a curve segment: 
If 0 � nreal < 0.5, the curve segment is convex. Otherwise (0.5 � nreal � 1:) the curve segment is 

concave. 

(3) Angle of a tangent vector: 
nreal is used as the ratio for the movable range of the angle (i.e., an angle of the tangent vector is 

calculated as the product of the range and nreal).  

(4) Size of a tangent vector: 
nreal is used as the ratio for the movable range of the size (i.e., a size of the tangent vector is 

calculated as the product of the range and nreal).  

The chromosome, which is composed by real numbers nreal noted above and used for genetic 
algorithm, is summarized (Figure 18). 

Figure 18. Chromosome. 
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Fitness A is defined as:  

( )CCICD �HHHA +−=  (23) 

where HCI is the curvature entropy of the initial shape, HCD is the curvature entropy of the phenotype 
(shape after deformation), and �HC is the variation in the curvature entropy set by the designer. A 
shape with fitness A < 0.01 is derived as a design candidate. 

Using the quadratic curvature entropy, Equation (23) is transformed into the following equation: 

( )QCQCIQCD �HHHA +−=  (24) 

where HQCI is the quadratic curvature entropy in the initial shape, HQCD is the quadratic curvature 
entropy in the phenotype, and �HQC is the target variation of the quadratic curvature entropy. The 
crossover and mutation are conducted in the same manner described in a conventional study [27]. The 
random weighted mean of the real number variable is used for the crossover and mutation rate is set 
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to 20%. The elite saving strategy and tournament selection are used for the selection. The population 
size (number of the combination of chromosomes) is set to 20. Figure 19 shows the flow of the 
search algorithm. 

Figure 19. Search algorithm.  
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6. Application of Shape Generation Method 

6.1. Description of the Initial Shape and Conditions in the Genetic Algorithm 

The degree of freedom in the shape generation w is set to three (0.5, 0.75, and 1). To search an 
adequate number of curve units N, the curvature entropy of the initial shape HCI with respect to the 
change in the number of curve units is calculated (Figure 20).  

Figure 20. Relationship between the curvature entropy and the number of curve units. 
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Consequently, the curvature entropy peaks at N = 200 (i.e., N should be set to 200 for the higher 
degree of freedom in the shape generation). 

The shape generation method is executed using each of the three aforementioned constraints, and 
the variation ranges of the curvature entropy HC and quadratic curvature entropy HQC are calculated as 
the average of 10 shape generations. As shown in Figure 21, the variation range for each is 
approximately 0.12. To compare shape generation under the same conditions, the variations of 
curvature entropy �HC and quadratic curvature entropy �HQC are set ±0.12 and ±0.06. 

Figure 21. Variation ranges of the curvature entropy and quadratic curvature entropy. 
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6.2. Shape Generation and Cognition Experiment 

Figure 22 shows examples of the generated shapes. The specifications of a cognition experiment 
using the generated shapes as samples are as follows: 

Figure 22. Examples of the generated shapes.  
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(1) Method: semantic differential method (5 stages) 
(2) Samples: generated shapes (10 samples for each condition-type of macroscopic shape information, 

w, and �H) 
(3) Evaluation item: “complex” 
(4) Examinees: 13 students in their early 20 s  

As shown in Figure 23, samples are presented on a PC monitor. The generated shapes with either 
variation in the curvature entropy �HC (= �0.12, �0.06, +0.06 or +0.12) or quadratic curvature entropy 
�HQC (= �0.12, �0.06, +0.06 or +0.12) are randomly placed, except the initial shape, which is in 
the center.  

Figure 23. Presentation of the samples. 

 

6.3. Relationship between Macroscopic Shape Information and Cognition Information 

The correlation between the cognition information (as a purpose variable) and the curvature entropy 
(as an explanatory variable) is analyzed. As shown in Figure 24, the correlation coefficient between 
the quadratic curvature entropy and cognition information (complexity) exceeds 0.8 regardless of the 
degree of freedom in the shape generation. On the other hand, the correlation coefficient between the 
curvature entropy and complexity decreases according to the degree of freedom of shape generation. 
The significance levels for all conditions are less than 0.01. 

Figure 24. Relationship between the degree of freedom in shape generation and the 
correlation coefficient. 
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The results demonstrate that the curvature entropy and quadratic curvature entropy represent 
complexity not only in a basic curved profile, but also in the shape of the products, such as the side 
view of an automobile. Moreover, in case of a higher degree of freedom in shape generation, the 
correlation coefficient between complexity and curvature entropy decreases, which is likely due 
to the fact that the continuity of curvature is not considered. Therefore, consideration of the 
curvature continuity in the definition of macroscopic shape information in adjustable shape cognition 
is important. 

7. Conclusions 

This study defines macroscopic shape information (curvature entropy) to provide a useful design 
index for curved surface designs. For a basic curved profile, curvature entropy can represent the 
complexity of a shape, which is difficult to represent with conventional microscopic shape 
information. In addition, the introduction of the Markov process, which effectively approximates the 
evaluation of human cognition, to consider the curvature continuity improves the curvature entropy. 
The improved curvature entropy (quadratic curvature entropy) is confirmed to represent the 
complexity and to favorably approximate the human cognition compared to the curvature entropy. 

A shape generation method using curvature entropy and quadratic curvature entropy is developed 
and applied to the side view design of an automobile. The macroscopic shape information can 
represent the complexity of an automobile. Moreover, the quadratic curvature entropy based on a 
Markov process is effective regardless of the parameter in the shape generation method. In other words, 
the quadratic curvature entropy may accommodate various applications. 

Figure 25 shows an image of a curved surface design support system based on the knowledge 
acquired in the present study. The flow of shape generation in this system is described below. First 
designers describe the initial shape based on a conventional side view of an automobile (Figure 25a). 
Then this system automatically generates a shape based on the variation of entropy set by the designers. 
Finally, the designers select one of the generated shapes after considering other factors (Figure 25b) 
and generate a three-dimensional model based on the selected shape (Figure 25c). Because the 
designers can control the complexity of the generated shape, the shape generation method described 
herein can support designers during the early stage, which is when the designers must decide the 
overall impression of the design.  

Future tasks include:  

(1) Validating the method constructed in this study for other shapes such as natural/geometric shapes 
and not just basic curved profiles.  

(2) Evaluating the relationship between the cognition of the complexity and scale dealt with in the 
field of CSS (Curvature Schale Space). 

(3) Comparing the genetic algorithm to other methods that search for curved profiles by changing the 
curved control variables. 



Entropy 2012, 14  
 

 

556

Figure 25. Curved surface design support system. (a) Description of the initial shape; 
(b) Shape generation and selection; (c) Generation of the three-dimensional model. 
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