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Abstract: In this paper, fault detection of networked control systems with random delays, 
packet dropout and noises is studied. The filter is designed using a minimum error entropy 
criterion. The residual generated by the filter is then evaluated to detect faults in networked 
control systems. An illustrative networked control system is used to verify the effectiveness 
of the proposed approach. 
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1. Introduction 

Major advancements in the area of communication and computer networks have made it possible to 
insert them into feedback systems to meet real time requirements. Such networked control systems 
(NCSs) have been used in various areas, such as the automotive industry, tele-autonomy, tele-operation 
of robots and automated manufacturing systems [1,2]. However, the network leads to several issues: 
time delays, data dropout and limited bandwidth due to data transmission, and information loss due to 
encoding and quantization. Consequently, compared with conventional point-to-point control systems, 
these issues make the analysis and design of NCSs much more complex. 

In recent years, some attention has been paid to fault detection of NCSs to improve their safety and 
reliability [3–6]. In [3], the network-induced delay was assumed to be a Markov chain, and fault 
detection of NCSs was investigated by combining a parity-equation approach with a fuzzy-observer-
based approach. In [4], the induced delay was assumed to be an integer multiple of the “sampling 
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piece”, a H
�
 fault detection filter was designed for the NCSs modeled by discrete Markovian jump 

systems. In [5], the influence caused by delay in a NCS was transformed into a structured modeling 
error, and an existing continuous robust fault detection method was extended to the discrete time 
domain using a reference model and filter, moreover, the proposed approach was applied to NCSs. 

Entropy has been widely used in information, communications, identification, estimation and 
control theories as a more general measure of uncertainty [7–13]. The �-entropy criterion was applied 
in system identification to search for the optimum parameter set in [11]. The proposed algorithm can 
be used to deal with coarsely quantized input-output data in digital control systems, networked control 
systems (NCS), wireless sensor networks, etc. An optimal fuzzy control system was investigated using 
the cross-entropy method and applied to a drilling process over communication networks [12]. Entropy 
was used to study the achievable sensitivity bounds for MIMO control systems, the amount of 
information that the communication signals contain was evaluated regarding the plant and the 
controller [13]. 

Recently, fault detection filters were proposed for non-linear stochastic systems with non-Gaussian 
noises using the entropy optimization principle [14–16]. However, it is difficult to extend these 
approaches to NCSs because non-Gaussian delays induced by networks cannot be modeled as noises. 

Since the characteristics of noises, delays and dropouts in NCSs are stochastic in nature, in this 
paper the fault detection method of NCSs is investigated using the entropy optimization principle. The 
main contribution resides in designing minimum error entropy filters for NCSs via an information 
theoretical learning technique. The adaptive filter is then utilized to generate the residual for detecting 
faults in NCSs. 

The rest of this paper is organized as follows: Section 2 describes the schematic diagram of fault 
detection for an NCS and formulates the problem. Section 3 designs a filter to generate residuals using 
the minimum error entropy (MEE) criterion. Section 4 introduces the rules for evaluating residuals in 
order to detect faults in the NCS. Section 5 verifies the efficiency of the proposed approach using an 
illustrative example, and the last section concludes the paper. 

2. System Description and Problem Formulation 

Filter-based fault detection approaches have been widely used in [17–19], and usually consist of 
two stages: residual generation using a filter and residual evaluation. The filter-based fault detection 
scheme for an NCS is shown in Figure 1, where the one-channel NCS with feedback has been 
commonly used to investigate the effects of delay and packet dropout in NCSs.  

Let us consider the NCS represented by:  
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where ( ) nx k R  denotes the state vector, ( ) mu k R  the control input, ( ) tz k R  the measurable output 
vector and ( ) ty k R  the output vector through network. ( ) pk R�   and ( ) qk R�   are system noise and 
measurement noise, respectively. The unknown actuator fault and sensor fault are denoted by ( ) l

af k R  
and ( ) r

sf k R , respectively. ( )sc k�  is the random delay from sensor to controller. A, B, B ,C�  and D�  are 

known matrices of appropriate dimensions.  
The following assumptions are introduced: 

� The actuators and sensors are time-driven, while the controller is event-driven; 
� The data packets are transmitted in right order; 
� The measurements and control signals are transmitted using single-packet with time-stamp; 
� A is nonsingular and (A, C) is observable. 

Figure 1. Fault detection scheme for an NCS. 
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Network

 

When a continuous-time signal is transmitted over a network, the overall delay between sampling 
and eventual decoding at the receiver can be highly variable because both the network access delays 
and the transmission delays depend on highly variable network conditions such as congestion and 
channel quality [1]. In most cases, the network induced delays are random and not necessarily Gaussian. 

Another issue in NCSs is packet dropout caused by both the transmission errors in physical network 
links and buffer overflows due to congestion. In addition, long transmission delays sometimes also 
amounts to a packet dropout if the receiver discards “outdated” arrivals [1]. In this paper, packets 
delayed by more than a given maximum delay scM�  will be regarded as dropouts. The transmission of 
data packets can be described by the following switching logic: 
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Assuming that the probability density function of the random time delay ( )sc k�  is 
sc�� , it yields: 
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where � ( 0 1�� � ) is the data packet dropout rate. 
Because the random delays induced bythe communication network and data dropouts in NCSs are 

not necessarily Gaussian, and even the system noise and measurement noise are also not Gaussian in 
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some practical NCSs, it is necessary to design a filter using higher order statistics of the filtering error. 
Ideally the filter design for this kind of stochastic system should be performed such that the shape of 
the probability density function (PDF) of the filtering error is made as narrow as possible. A narrow 
distribution can be represented by a small entropy, which generally indicates that the uncertainty of the 
filtering error is small and all the moments of PDF of the filtering error are constrained. Therefore, in 
this paper, the filter to generate residuals is designed using minimum error entropy (MEE) criterion. 

In Figure 1, the residual ( )r k  is generated by the MEE filter based on the measured input signals 
( )u k  and output signals ( )y k , and then the residual is compared with the pre-assigned threshold to 

decide whether the fault occurs or not. 

3. Design of MEE Filter 

Considering stochastic delays, data dropouts and noises in NCSs, the residual is generated utilizing 
the following filter: 

ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))
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� � � 	
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ˆ( ) nx k R  and ˆ ( ) ty k R  are the state and output estimation, respectively.  

3.1. Performance Index

The filter gain matrix n tL R �  is updated by minimizing the entropy of the filtering error between the 
measured and estimated output ˆ( ) ( ) ( )e k y k - y k� . In this paper, the quadratic Renyi entropy of filtering is 
utilized. Denote the PDF of the filtering error as ( )e� � , since minimizing quadratic Renyi entropy 

2
2 log ( )( ) e dH e � � �

�

	�
	� �  is equivalent to maximizing the quadratic information potential 

2
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	�
� ��  (defined in [20,21]), MEE criterion can be replaced by minimizing the 

reciprocal of the quadratic information potential. 
The quadratic Renyi entropy of filtering error 2 ( )H e  is employed as the performance index for 

designing the adaptive gain of the filter. It can be estimated directly from data samples 
1 2{ ( ), ( ),..., ( )}Ne k e k e k  by utilizing Parzen windowing technique with Gaussian kernel function 
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and the quadratic information potential can be estimated as follows: 
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Although the quadratic information potential of the filtering error can be estimated using a series of 
error data, it is preferred to find a practical solution to handle on-line, recursive computation for the 
estimate 2̂ ( )V e . 

The estimate 2̂ ( )V e  starts by estimating the PDF of the filtering error recursively. Initialize the PDF 
estimate as 

0 0( )ˆ ( )e e��� � �� 	 , the PDF estimate can be updated by using the new sample ( 1)ke � [10]: 

1 1( )ˆ ˆ( ) (1 ) ( )
k ke e ke��� � � � � � �
� �� 	 � 	   

The quadratic information potential can be obtained using samples within the sliding window 
shown in Figure 2: 
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where 0 1�� !  is the forgetting factor and W  the width of sliding window. 

Figure 2. Estimation of ( )kJ  using sequences with sliding window. 
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Since minimizing quadratic Renyi entropy is equivalent to minimizing the reciprocal of the 
quadratic information potential, in this work, the following performance index is utilized to update the 
filter gain L: 

2

1( ) ˆ ( )k

J k
V e

�  (9) 

3.2. Filter Gain Design 

Denote " #1 2

n t

tL L L L R �� � , where 1n

iL R � , 1, 2, ,i t� � . The updated rule for the filter gain L 

can adopt stochastic gradient algorithm [22]. The procedure of calculating the filter gain L is presented 
as follows. 

Utilizing the chain rule and taking the derivates of performance criteria ( )J k  with respect to the 
filter gain L, it can be obtained that: 
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It can be shown from Equation (5) that: 
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Using the stochastic gradient algorithm, the updated rule of filter gain L can be then formulated 
to read: 
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where )  is the step size for adaptation. 

Theorem 1: The filter gain given by (14) will be convergent if )  satisfies the following inequality: 
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Proof: Since the information potential ( )J k  is positive, a Lyapunov function candidate can be 
selected as: 

2
2 ( ( ))
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then by performing the first order derivatives of this Lyapunov function, it can be formulated that: 
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Approximately, it can be seen that: 
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Since the filter gain can be obtained by (14), from (17), (18) and ( )( ) ( )
( )

J kJ k L k
L k
$

0 � 0
$

, it can be 

obtained that: 
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and: 
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Hence, the condition (15) can be obtained for convergence. 

Remark 1: The functional approximation capabilities of neural networks have been exploited in the 
design of neural observers or filters [23,24]. Likewise, neural networks can be utilized in 
approximating the filter gain. The weights of the neural networks which can be trained using stochastic 
gradient algorithm construct the filter gain L, the inputs can be constructed by the error 

ˆ( ) ( ) ( )e k y k - y k�  and delayed signals ( 1), , ( )e k e k W	 	�  of the neural networks. The output is a linear 
combination of the inputs. 

Remark 2: In the extreme case, one might select a single sample in Equation (8), corresponding to 
1W � . The size of window W  usually should be selected to contain the dynamic characteristics of the 

plant, delays and packet dropouts. Increasing the window width results in smaller estimation variance 
and the speed of convergence is not affected by variations in this parameter [21]. The accuracy of the 
estimation increases while more storage space of convergence is required for holding the previous 
samples in memory. Thus, there is a tradeoff between the accuracy of estimation and the memory 
requirements. 

Remark 3: The error of the filter is taken into account in a probabilistic framework, moreover, the 
filter is designed by data-driven strategy, the probability distribution functions of delays, packet losses 
and noises in NCSs are not needed.  

In this contribution, the generated residual can be constructed as: 

ˆ( ) ( ) ( )r k = y k y k	  (21) 

where the error ( )r k  between the real NCS output and the filter output is called the residual signal used 
to detect faults in the NCS. 

4. Fault Detection 

The generated residual will be evaluated to detect faults in NCSs. The residual evaluation scheme is 
selected as: 

( ) ,

( ) ,
th
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where 
1

2( ) { ( ) ( )}T
k

i k L

J k r i r i
� 	

� �  is the evaluation function to judge the status of the system, L  the width 

of residual estimation window. The threshold thJ  should be selected to not only distinguish the noise 

and the fault but also decrease the false alarm, generally the threshold should be the maximal value of 
the evaluated output ( )J k  in the nominal operating state (fault-free). In this work, the threshold thJ  is 

pre-assigned according to prior knowledge.  

Remark 3: In order to achieve small false alarm rate with an acceptable sensitivity to faults, robust 
residual valuation strategies can be investigated and applied, such as statistical data processing, data 
reconciliation, correlation, pattern recognition, fuzzy logic or adaptive thresholds. 

5. An Illustrative Example 

In order to show the applicability of the proposed fault detection method for NCSs, let us consider 
the following NCS, which consists of the plant represented by: 

0 1 1 1 1
( 1) ( ) ( ) ( ) ( )

1 0.25 0.01 0 0ax k x k u k f k k�� � � � �
	 	
� � � � � � � �
� � � � � � � �
� � � � � � � �

 

" #( ) 1 0.01 ( ) ( ) ( )sz k = x k + f k + k�  
(23) 

The PDF of the induced delay ( )sc k�  is shown in Figure 3. Both uniformly distributed noises ( )k�  
and ( )k�  lie in [�0.005, 0.005]. The kernel size and the forgetting factor used to estimate the 
information are experimentally set to 0.1� �  and 0.02� �  respectively. The width of sliding window is 

100W � , the width of residual estimation window 20L � , the learning rate 0.0001) �  and the sampling 
period 1T s� . The threshold is selected to 1.9thJ � according to prior knowledge. The fault is imposed 

as follows: 

0, 150
( )

1, 150 200s
t s

f k
s t s
!


� � ! !�
 (24) 

Figure 3. PDF of the induced delay sc� .
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Assume that the control input is: 

" #( ) 0.05 0.25 ( )u k x k� 	 	  (25) 
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where the state transmitted to controller is: 
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Moreover, the output arrived at controller is: 
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and the initial filter gain is set to [ 0.1 0.15]TL � 	 	 . 
The simulation results are shown in Figures 4–7. Figure 4 shows the increasing information 

potential of the MEE filter, in which the entropy of the filtering error deceases with time. Figures 5 
and 6 indicate the evolution of two state errors respectively. The convergent state errors demonstrate 
better performance of the filter. Figure 7 shows the evolution of the evaluation function 

1
2( , ) { ( ) ( )}T

k

i k L
J r k r i r i

� 	

� �  for both the fault case and fault-free case, and it can be seen that fault detection 

can achieve good performance despite existing delays, packet dropout and noises in the NCS. 

Figure 4. Information potential of filter error. 

 

Figure 5. Estimation error of state 1. 
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Figure 6. Estimation error of state 2. 

 

Figure 7. Evolution of ( , )J r k . 

 

6. Conclusions 

This paper presents a filter-based fault detection scheme for NCSs with network-induced delays, 
packet dropout and noises. In most cases, the random delays and noises may not obey Gaussian 
distribution, and packet dropout occurs stochastically. The filter under entropy framework is designed 
to generate residuals. The adaptive filter gain is updated using a stochastic gradient algorithm and can 
be implemented by neural networks. A time-variant threshold is employed to detect faults. Simulations 
demonstrate the effectiveness of the proposed fault detection scheme. However, the extension of this 
approach to generally non-linear NCSs calls for further investigation. 
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