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Abstract: This paper presents a supervised variable selection method applied to regression

problems. This method selects the variables applying a hierarchical clustering strategy

based on information measures. The proposed technique can be applied to single-output

regression datasets, and it is extendable to multi-output datasets. For single-output datasets,

the method is compared against three other variable selection methods for regression on

four datasets. In the multi-output case, it is compared against other state-of-the-art method

and tested using two regression datasets. Two different figures of merit are used (for the

single and multi-output cases) in order to analyze and compare the performance of the

proposed method.
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1. Introduction

Variable selection aims at reducing the dimensionality of data. It consists of selecting the most

relevant variables (attributes) among the set of original ones [1]. This step is crucial for the design of

regression and classification systems. In this framework, the term relevant is related to the impact of the

variables on the prediction error of the variable to be regressed (target variable).

The relevant criterion can be based on the performance of a specific predictor (wrapper method), or

on some general relevance measure of the variables for the prediction (filter method). Wrapper methods
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may have two drawbacks [2]: (a) they can be computationally very intensive; (b) their results may vary

according to initial conditions or other chosen parameters. In the case of variable selection for regression,

several studies have applied different regression algorithms attempting to minimize the cost of the search

in the variable space [3,4]. Others studies have assessed a noise variance estimator known as the Delta

test that considers the differences in the outputs of the relevant variable associated with neighboring

points [5]. This estimation has been applied to obtain the relevance of input variables.

Filter methods allow sorting variables independently of the regressor [6,7]. Eventually, embedded

methods try to include the variable selection as a part of the training process. Such strategies have been

used in classification problems. In order to tackle the combinatorial search problem to find an optimal

subset of variables, the most popular variable selection methods intend to avoid having to perform an

exhaustive search by applying forward, backward or floating sequential schemes [8,9].

Research work has mainly focused on single-output (SO) regression datasets. However, multi-output

(MO) regression is becoming more and more important in areas such as biomedical data analysis, where

experiments are conducted on several individuals belonging to a specific population. In this case, the

individual responses share some common variables whereby data from a subject may help assess the

responses associated to other patients. Multi-output (MO) regression is based on the assumption that

several tasks (outputs) share certain structures, and therefore tasks can mutually benefit form these shared

structures. In fact, some works [10] suggest that most single classification and regression real-world

problems should be reasonably treated as multi-output by nature, and the assessment would improve due

to the improvement in the generalization performance of the learning strategy.

This paper focuses on filter strategies by proposing a measure based on information theory as a

criterion to determine the relevance between variables. A variable clustering-based method aimed at

finding a subset of variables that minimizes the regression error is proposed. The conditional mutual

information will be estimated to define a criterion of distance between variables. This distance has

already been used in [11] for variable selection in classification tasks. The contributions of this paper are

two-fold: (a) to establish a methodology to properly solve the estimation of this distance for regression

problems where the relevant variable is continuous, through the assessment of the conditional mutual

information between input and output variables; and (b) to show the extension of this methodology to

multi-output regression datasets. Some preliminary results were presented in [12], where the method

was applied only to single-output regression datasets. In addition, the work presented here introduces

an information theoretic framework for the distance used in the clustering-based feature selection

process in regression tasks, when using continuous variables. This methodology is also extended here

to multi-output regression problems and an extensive experimentation is also included to validate the

proposed approach.

The organization of the rest of this paper is as follows: Section 2 describes the theoretical foundations

rooted in information theory for variable selection when using continuous relevant variables, and

proposes a methodology to estimate the conditional mutual information. Section 3 describes the

experiments carried out, including the datasets used and the variable selection methods in regression

used in the comparison. Section 4 presents and discusses the regression results obtained. Finally, some

concluding remarks are drawn in Section 5.
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2. Variable Selection for Single and Multi-Output Continuous Variables

The approach presented here is based on a previous work in which information theory was used to

propose a filter variable selection method for classification tasks [11]. In this section, this approach is

adapted and extended for single and multi-output regression tasks. In order to achieve this, two main

issues must be solved: to assess the possibility of applying the same information theoretic criteria when

using continuous relevant variables, and to establish a way to estimate the conditional mutual information

for continuous variables.

In Section 2.1 it will be analyzed if it is possible to justify under certain conditions an upper boundary

of the regression error through an information theory expression. This is necessary if a variable selection

algorithm for regression is going to be applied for the case of continuous relevant variables. As will be

seen in Section 2.1, the conclusions drawn will be valid for the case when the relevant output variable

is countably infinite. Besides, in Section 2.1 a set of concepts such as entropy, conditional entropy

and mutual information are used. These concepts are defined, when using a training set in the learning

process, at the beginning of Section 2.2.

In Section 2.2, a method to estimate the probability density function for continuous relevant variables

is introduced, for the single-output and multi-output cases. In addition, the optimization strategy used to

obtain the method parameters is also explained.

2.1. Variable Selection Criterion for Regression

Let a dataset be represented in a variable space denoted, in principle, by a random variable, usually

multivariate X = (X1, . . . , Xd), where d is the dimension of this variable space, and where Y is a

continuous variable that we want to predict. In terms of information theory, let us suppose that Y

represents the random variable of messages sent through a noisy communication channel denoted by

(Y, p(x|y),X), where X is the random variable representing the values at the receiver. We denote p(x|y)
as the conditional probability of observing the output x ∈ X when sending y ∈ Y . In this framework, the

goal is to decode the received value X, and recover the correct Y . That is, we will perform a decoding

operation, Ŷ = f(X) considering it as an estimation problem using a regressor function f(). Therefore,

in regression tasks, Y is the original (unknown) relevant variable and f is the predictor function that

estimates the different values of the relevant variable. For regression problems the variable Y is usually

a real continuous variable and therefore should be characterized as countless and infinite. To approximate

this variable through a probability distribution, and to apply some of the concepts of information theory,

let us consider Y as a countably infinite variable.

Given a variable Y , taking values on a possible countably infinite alphabet Y , given a random variable

X, and given a function f() to predict the values Ŷ = f(X), an upper bound of the error ε̂ can be obtained

in terms of the conditional entropy H(Y |X) [13]:

ε̂ ≤ 1

2
[H(Y |X)] (1)

where ε̂ = minf :X→Y P [Y �= f(X)] is the minimum error probability when estimating Y given X. In the

variable selection context, we define I(X;Y ) as the mutual information between X and Y , i.e., a quantity

that measures the knowledge that two random variables share [14]. If we have a subset of variables
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X̃ ∈ X, where X̃ = (X̃1, . . . , X̃m) represents a subset of variables from the original representation with

size m < d, the following inequality holds

I(X̃;Y ) ≤ I(X;Y )

Using the above relationship and Equation (1), and taking into account that mutual information

between two variables is always non negative, the following upper bound for ε̂ is obtained:

ε̂ ≤ 1

2
[H(Y |X)] =

1

2
[H(Y )− I(X;Y )] ≤ 1

2

[
H(Y )− I(X̃;Y )

]
(2)

where H(Y ) is the entropy of Y .

Note that the higher the value of I(X̃;Y ), the more the error ε̂ decreases, which also leads to the subset

of selected variables that better represents the original set with respect to the target variable Y . This is

the underlying principle in criterion Equation (2) that has motivated different approaches in supervised

variable selection for classification problems under the so-called Max-Dependency Criterion [15,16].

Since the relationship Equation (2) still holds for countable infinite target variables we may

approximate it for continuous variables and use it in regression tasks, applying the same metric as

in [11] and using a clustering-based algorithm based on a Ward’s linkage method [17], extrapolating

this distance for continuous target variables in regression problems. Ward’s linkage method has the

property to generate minimum variance partitions between variables. Thus, the algorithm begins with

n initial clusters and, at each step, it merges the two most similar groups to make a new cluster. The

number of clusters decreases at each iteration until the number of m clusters is reached.

For practical purposes, it can be shown that the expectation of the Hamming distortion measure is

equal to the generic probability of error ε [18]. Therefore, during the experimental results, the error

ε̂ will be approximated using the Root Mean Squared Error (RMSE) to validate the different subsets

of variables selected for the regressor, since RMSE is equivalent to the expectation of the square-error

distortion measure, Ed(Y, Ŷ ).

The square-error distortion measure can be considered as an approximation of the Hamming distortion

measure, when estimating the true value of the variable Y by the value Ŷ using a square error distance

d(y, ŷ) = (ŷ − y)2. This type of distortion is an example of a normal distortion measure and allows for

Y to be reproduced with zero distortion, that is, the probability of error is zero when the true Y and the

estimated Ŷ values are the same.

2.2. Estimation of the Conditional Mutual Information for Continuous Regression Variables

Given a set of N samples of a dataset in a d−dimensional variable space (xk, yk), k = 1, . . . , N

defined by a multivariate random variable X = (X1, . . . , Xd) where a specific regressor yk = f(xk) can

be applied, the conditional differential entropy H(Y |X) can be written as [14]:

H(Y |X) = −
∫

p(x, y) log p(y|x)dxdy (3)

Analogously, the entropy H(Y ) and the mutual information I(X;Y ) are defined as:

H(Y ) = −
∫

p(y) log p(y)dy (4)
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and

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (5)

Let us consider that the joint probability distribution, p(x, y) can be approximated by the empirical
distribution as [19]

p(x, y) =
1

N
·

N∑
k=1

δ(x− xk, y − yk)

where δ(x − xk, y − yk) is the Dirac delta function. Considering the following property of the Dirac

delta function: ∫ ∞

−∞
f(x, y)δ(x− xk, y − yk)dxdy = f(xk, yk) (6)

valid for any continuous compactly supported f function and substituting p(x, y) into Equation (3),

we obtain:

H(Y |X) = − 1

N
·

N∑
k=1

log p(yk|xk) (7)

From the previous Equation (7), we can estimate the conditional entropies for one and for all pairs of

two variables Xi, Xj . According to [11], given two variables Xi and Xj , the following metric distance

can be defined:

DCMI(Xi, Xj) = I(Xi;Y |Xj) + I(Xj;Y |Xi)

= H(Y |Xi) +H(Y |Xj)− 2 ·H(Y |Xi, Xj)
(8)

The conditional mutual information terms I(Xi;Y |Xj) and I(Xj;Y |Xi) represent how much

information variable Xi can predict about the regression variable Y that variable Xj cannot and vice

versa, respectively. Substituting Equation (7) into Equation (8), a dissimilarity matrix of distances

DCMI(Xi, Xj) can be built.

2.2.1. Single-Output Regression

The assessment of p(y|x) in Equation (7) is usually called Kernel Conditional Density Estimation

(KCDE). This is a relatively recent active area of research that basically started with the works by

Fan et al. [20] and Hyndman et al. [21]. One way to obtain p(y|x) is to use a (training) dataset (xk, yk)

and a Nadaraya-Watson type kernel function estimator, as in [22], considering only the yk training values

that are paired with values xk:

p̂(y|x) =
∑

k Kh1(y − yk) ·Kh2(‖x− xk‖)∑
k Kh2(‖x− xk‖) (9)

where Kh is a compact symmetric probability distribution function, for instance, a gaussian kernel. Note

that there are two bandwidths h1 for the Kh1 kernel and h2 for the Kh2 kernel. The Nadaraya-Watson

estimator is consistent provided h1 → 0, h2 → 0, and Nh1h2 → ∞, as N → ∞ [21].

In this work, the Parzen window function is used, where h is the window width and Σ is a covariance

matrix of a d-dimensional vector x:

Kh(x) =
1

(2π)
d
2hd|Σ| 12

· exp
(
−xTΣ−1x

2h2

)
(10)
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The performance in the estimation of the conditional density functions is dependent on a suitable choice

of the bandwidths (h1 and h2). A data-driven bandwidth score previously used in the KCDE literature is

the Mean Integrated Square Error (MISE) in the following form [23]:

MISE(h1, h2) =

∫
[p(y|x)− p̂(y|x)]2 dyp(x)dx (11)

However, the cross-validated log-likelihood defined in [22] will be used here because of its lower

computational requirements:

L(h1, h2) =
1

N

∑
k

log(p̂(−k)(yk|xk) · p̂(−k)(xk)) (12)

where p̂(−k) means p̂ evaluated with (xk, yk) left out. p̂(x) is the standard kernel density estimate over x

using the bandwidth h2 in Equation (9). Maximizing the KCDE likelihood is equivalent to minimizing

the MISE criterion. When substituting the Nadaraya-Watson type kernels into L(h1, h2), the following

result follows [22]:

L(h1, h2) =
1

N

∑
k

log

[(∑
j �=k Kh1(yk − yj)Kh2(‖xk − xj‖)∑

j �=k Kh2(‖xk − xj‖)

)
·
(∑

j �=k

Kh2(‖xk − xj‖)
N − 1

)]

=
1

N

∑
k

log

(∑
j �=k Kh1(yk − yj)Kh2(‖xk − xj‖)

N − 1

) (13)

2.2.2. Multi-Output Regression

This strategy can be applied to regression datasets with more than one output. We can consider the

relevant variable Y = (Y1, . . . , Yl) as a multivariate variable where each instance xk of the training set

has l outputs yk = (y1, . . . , yl). In this way, we can calculate the conditional entropies for a single

variable Xi and for all pairs of two variables Xi, Xj and for the multivariate output variable Y. The

conditional probability, the conditional entropy and the L(h1, h2) function would be given considering

the following formulae, respectively:

p̂(y|x) =
∑

k Kh1(‖y − yk‖) ·Kh2(‖x− xk‖)∑
k Kh2(‖x− xk‖) (14)

H(Y|X) = − 1

N
·

N∑
k=1

log p(yk|xk) (15)

and

L(h1, h2) =
1

N

∑
k

log

(∑
j �=k Kh1(‖yk − yj‖)Kh2(‖xk − xj‖)

N − 1

)
(16)

2.2.3. Optimization Strategy

In order to obtain the maximum of L(h1, h2), a method to perform optimization with constraints

is applied. This method starts with an approximation of the Hessian of the Lagrangian function

of the minimization method using a quasi-Newton updating method. The Lagrangian equation is

translated into a Karush-Kuhn-Tucker (KKT) formulation. Constrained quasi-Newton methods guarantee
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their convergence by accumulating second-order information regarding the KKT equations using a

quasi-Newton updating procedure. These methods are commonly referred to as Sequential Quadratic

Programming (SQP) methods, since a QP subproblem is solved at each major iteration. The (h1, h2)

pair could be obtained taking into account that:

(h1, h2) = argmax
h1,h2

(L(h1, h2)) = − arg min
h1,h2

(L(h1, h2)) (17)

Therefore, assume the general minimization problem minh1,h2 L(h1, h2), subject to:

gi(h1, h2) = 0 i = 1, . . . ,me

gi(h1, h2) ≤ 0 i = me + 1, . . . ,m
(18)

where me is the number of equality constraints, and m is the total number of equality and inequality

constraints. Using the following auxiliary Lagrangian function:

C(h1, h2, λ) = L(h1, h2) +
m∑
i=1

λigi(h1, h2) (19)

the KKT conditions can be written as:

∇(h1,h2)C(h1, h2, λ) = 0 (20)

λigi(h1, h2) = 0 i = 1, . . . ,me

λi ≥ 0 i = me + 1, . . . ,m
(21)

A Quadratic Programming (QP) iterative subproblem can be defined as:

min
d∈Rd

1

2
dT ·Hk · d+∇L([h1, h2]k)

T · d (22)

subject to:

∇gi([h1, h2]k)
T · d+ gi([h1, h2]k) = 0 i = 1, . . . ,me

∇gi([h1, h2]k)
T · d+ gi([h1, h2]k) ≤ 0 i = me + 1, . . . ,m

(23)

where d would be the new direction to be accumulated to the solution, and H the Hessian of C(h1, h2, λ).

In order to solve this Quadratic Programming (QP) problem, a projection method [24] is adopted. The

iterative rule would be expressed as:

(h1, h2)k+1 = (h1, h2)k + αk · dk (24)

where αk is a constant.

2.2.4. Summary of the Methodology and Algorithmic Structure

The method proposed in this paper is based on the application of a hierarchical clustering strategy

based on Ward’s linkage method [17] to find clusters of variables using the metric distance between

pairs of variables: DCMI(Xi, Xj) [Equation (8)]. In order to use this distance, the conditional entropies

H(Y|Xi) and H(Y|Xi, Xj) have to be assessed. The conditional entropies are estimated using
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Equation (15), where p(yk|xk) is obtained using a Nadaraya-Watson type kernel function estimator, as

can be seen in Equation (14). Each one of these kernels is defined by a bandwidth, h1 for the multi-output

continuous relevant variable Y, and h2 for the multivariate random variable X. The best (h1, h2) pairs

are obtained maximizing Equation (16). An algorithmic structure of the methodology presented in this

paper for the multi-output case follows (this structure is identical for the single-output case):

(1) Kernel width estimation. Obtain, for each (Y;Xi) and (Y;Xi, Xj) tuples, the pair of parameters

(h1, h2) that maximize L(h1, h2) [Equation (16)].

(2) Kernel density estimation. Obtain the Nadaraya-Watson type Kernel Density estimators

Kh1(‖y − yk‖) and Kh2(‖x− xk‖) applying Equation (10)

(3) Assessment of the posterior probabilities. Estimate p̂(y|x) using Equation (14)

(4) Estimation of the conditional entropies. Obtain, for each variable Xi and every possible

combination (Xi, Xj) the conditional entropies using Equation (15).

(5) Dissimilarity matrix construction. The distance DCMI(Xi, Xj) for the multi-output relevant

variable Y is assessed.

(6) Clustering. Apply a hierarchical clustering strategy based on Ward’s linkage method to find

clusters using DCMI(Xi, Xj). The number of clusters is determined by the number of variables

to be selected.

(7) Representative selection. For each cluster Ci, select the variable X̃i ∈ Ci so that:

X̃i = max [I(Xl;Y)] ; ∀Xl ∈ Ci, that is, the variable with the highest mutual information with

respect to Y.

3. Experimental Validation

The proposed method, hereafter called CMIDist, has been compared against other state-of-the-art

single-output and multi-output methods, as described below.

3.1. Methods for Single-Output Datasets

Three methods were considered in this case. Among the many single-output variable selection

methods for regression available in the literature, FSR and EN are the most commonly used and are

a obliged reference in the field. However, both methods FSR and EN assume a linear regression model,

which may be a disadvantage in a general scenario. The third method (PS-FS) is particularly useful when

the dimensionality of the input space is high, and it does not assume any particular regression model for

the selection process, as in the case of the method proposed herein.

• The Monteiro et al. method [25] based on a Particle Swarm Optimization (PSO) strategy [26]

(Particle-Swarms Variable Selection, PS-FS). It is a wrapper-type method to perform variable

selection using an adaptation of an evolutionary computation technique developed by Kennedy

and Eberhart [26]. For further details, see [25].

• Forward Stepwise Regression (FSR). Consider a linear regression model. The significance of each

variable is determined from its t-statistics with the null hypothesis that the correlation between Y

and Xi is 0. The significance of factors is ranked using the p-values (of the t-statistics) and with

this order a series of reduced linear models is built.
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• Elastic Net (EN). It is a sparsity-based regularization scheme that simultaneously does regression

and variable selection. It proposes the use of a penalty which is a weighted sum of the l1−norm

and the square of the l2−norm of the coefficient vector formed by the weights of each variable. For

further details, see [27].

3.2. Methods for Multi-Output Datasets

The method proposed by Mladen Kolar and Eric P. Xing [28] was used for comparison in the case

of multi-output regression datasets. This method is based on the Simultaneous Orthogonal Matching

Pursuit (S-OMP) procedure for sparsistant variable selection in ultra-high dimensional multi-task

regression problems. We will call this method MO-FSR hereafter. Although there are some multi-output

selection methods for regression, most of them provide a given number of variables selected with

a limited possibility of extracting a ranking or variable subsets of different sizes [29]. The method

proposed in this paper allows this possibility. This property can be useful when obtaining (or analyzing

the effect of) a particular degree of dimensionality reduction. The method proposed in [28] also allows

a predefined number of variables to be selected.

3.3. Dataset Description

Six datasets were used to test the variable selection methods, four of them with only one output and

two of them of a multi-output nature. Two of the single-output datasets are of hyperspectral nature

corresponding to a remote sensing campaign (SEN2FLEX, [30]).

3.3.1. Single-Output Datasets

• CASI-THERM. It consists of the reflectance values of image pixels that were taken by the Compact

Airborne Spectrographic Imager (CASI) sensor [30]. Corresponding thermal measurements for

these pixels were also made. The training set is formed by 402 data points. The testing set is

formed by 390 data points. The CASI sensor reflectance curves are formed by 144 bands between

370 and 1049 nm.

• CASI-AHS-CHLOR. It consists of the reflectance values of image pixels that were taken by the

CASI and the Airborne Hyper-spectral Scanner (AHS) [30] sensors. Corresponding chlorophyll

measurements for these pixels were also performed. The training set is formed by 2205 data points.

The testing set is formed by 2139 data points. AHS images consist of 63 bands between 455 and

2492 nm. Therefore, the input dimensionality of this set is 207 (the sum of the bands corresponding

to the CASI and AHS sensors).

• Bank32NH. It consists of 8192 cases, 4500 for training and 3692 for testing, with 32 continuous

variables, corresponding to a simulation of how bank customers choose their banks. It can be found

in the DELVE Data Repository [31].

• Boston Housing. Dataset created by D. Harrison et al. [32]. It is related to the task of

predicting housing values in different areas of Boston. The whole dataset consists of 506 cases

and 13 continuous variables. It can be found in the UCI Machine Learning Repository [33].
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The total number of training and testing samples as well as the input number of variables are given

in Table 1.

Table 1. Number of training and testing samples, and number of input variables for the

single-output regression datasets

Dataset � Training samples � Test samples � Input variables

CASI-THERM 402 390 144

CASI-AHS-CHLOR 2,205 2,139 207

Bank32NH 4,500 3,692 32

Boston Housing 506 - 13

3.3.2. Multi-Output Datasets

• Parkinson. The objective is to predict two Parkinson disease symptom scores (motor UPDRS
and total UPDRS) for patients, based on 19 bio-medical variables, one of them being the label

associated to the patient number.

• Tecator. The data consists of 215 near-infrared absorbance spectra of meat samples, recorded on a

Tecator Infratec Food Analyzer. Each observation consists of a 100-channel absorbance spectrum

in the wavelength range [850,1050] nm, and the content of water, fat and protein. The absorbance is

equal to the − log10 of the transmittance measured by the spectrometer. The three (output) contents,

measured in percentage, are determined by analytic chemistry.

The total number of training and testing samples as well as the input and output number of variables are

provided in Table 2.

Table 2. Number of training and testing samples, and number of input and output variables

for the multi-output regression datasets.

Dataset � Training samples � Test samples � Input variables � Output variables

Parkinson 1,198 300 18 2

Tecator 172 43 100 3

4. Results and Discussion

In order to validate the subsets of variables selected by the different considered methods, the

ε−Support Vector Regression (ε−SVR) regressor was used, with a radial basis function, because it

has already been developed for single output [34] as well as for multi-output [35] datasets. In order

to estimate the best values for the parameters of the regressor, an exhaustive grid search using equally

spaced steps in the logarithmic space of the tuning parameters was performed.
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4.1. Single-Output Regression Datasets

In order to assess the kernel bandwidths (h1, h2) for the estimation of the conditional probabilities, the

optimization strategy methodology explained in Section 2.2.3 was applied. The starting values were fixed

at: h1,0 = h2,0 =
1

2 log(N)
, as in [36], and the lower and upper bounds at [hi,m, hi,M ] = [0.1 ·hi,0, 10 ·hi,0],

i = 1, 2.

For the assessment of p(y/x), the covariance matrix considered was diagonal: Σ = diag(σ2
i , σ

2
j ),

where σ2
i and σ2

j are the variance value of variables i and j, respectively, for the training set.

For the CASI-THERM, CASI-AHS-CHLOR and Bank32NH datasets, there was no further partition

because the training and testing sets were already given. For the Boston Housing dataset, a 10-fold

cross-validation strategy was used to obtain the Root Mean Squared Error (RMSE).

Figure 1 represents the dissimilarity matrix DCMI as a gray level image from the CASI-AHS-CHLOR
hyperspectral dataset, with 207 bands. Figure 1 shows the existence of intervals with similar

values of the dissimilarity measure that determine families of variables in different regions of the

electromagnetic spectrum.

Figure 1. Dissimilarity matrix of a hyperspectral dataset with 207 input bands.

Figures 2 and 3 show the RMSE error given by the ε−SVR method for the four single-output datasets

and the first 20 variables selected (13 variables for the case of Boston Housing) by each of the variable

selection methods tested. The decision to select a maximum of K = 20 variables for the plots is

determined based on the fact that from this number the error decreases very slowly. The x-axis represents

the subset of variables selected, whereas the y-axis plots the RMSE error in each selection method.
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Figure 2. RMSE Error using SV R for the CASI-AHS-CHLOR and CASI-THERM
datasets, respectively.
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Figure 3. RMSE Error using SV R for the Boston Housing and Bank32NH datasets,

respectively. The first point in the (1 : i) line for Boston Housing is not shown because

it is of the order of ∼2000.
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In general, the variation of RMSE depends on whether the selected variables are sufficiently

representative for a good estimate of the regressor, and the complexity of the signal variable output. In

most cases, using a selection algorithm reduces the RMSE error, with respect to choosing the variables

ordered consecutively (1 : i). This has a relative importance, particularly in the case of hyperspectral

data where the order of variables (bands) has a physical significance. In addition, the (CMIDist), Elastic

Net (EN) and PS-FS methods have performed well in the choice of the variable subsets, for all datasets.

Table 3 shows the RMSE error over the first 5, 10, 15 and 20 variables (13 variables for Boston
Housing) for all the methods and datasets selected. Results in rows K = 5, K = 10, K = 15 and

K = 20 show the average RMSE in the ranges from 1 to 5, from 1 to 10, from 1 to 15, and from 1 to

20 variables, respectively. These four intervals of subsets of variables have been considered to be the

approximated transitory period to reach a stable reduction of error for most of the datasets and regression

algorithms used. The transitory zone in RMSE reduction with respect to the number of selected variables

can be considered to be the most critical stage, and it is where the variable selection algorithms show

their potential to really select relevant variables.

Table 3. Average RMSE over different subsets of original variables obtained with different

variable selection algorithms in regression tasks.

CASI-AHS-CHLOR dataset

Variables CMIDist PS−FS FSR EN Friedman Test Quade Test

K = 5 2.916 3.126 4.563 3.352 6.53 (+) 7.24 (+)

K = 10 2.397 2.544 4.150 2.815 28.04 (+) 20.73 (+)

k = 15 2.196 2.292 3.782 2.549 49.13 (+) 30.43 (+)

k = 20 2.060 2.138 3.428 2.368 84.40 (+) 26.42 (+)

CASI-THERM dataset

Variables CMIDist PS−FS FSR EN Friedman Test Quade Test

K = 5 3.326 3.389 3.642 3.438 0.08 (−) 0.02 (−)

K = 10 3.191 3.286 3.358 3.250 1.17 (−) 0.93 (−)

K = 15 3.205 3.277 3.302 3.230 2.17 (−) 1.68 (−)

K = 20 3.202 3.291 3.283 3.241 5.64 (+) 3.05 (−)

Bank32NH dataset

Variables CMIDist PS−FS FSR EN Friedman Test Quade Test

K = 5 0.096 0.095 0.095 0.095 0.48 (−) 1.03 (−)

K = 10 0.093 0.091 0.091 0.091 4.14 (−) 6.21 (+)

K = 15 0.092 0.090 0.090 0.090 1.21 (−) 7.71 (+)

K = 20 0.092 0.090 0.090 0.090 4.83 (+) 13.08 (+)
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Table 3. Cont.

Boston Housing dataset

Variables CMIDist PS−FS FSR EN Friedman Test Quade Test

K = 5 4.427 4.370 4.801 4.625 1.43 (−) 1.44 (−)

K = 10 4.203 4.326 4.702 4.875 6.73 (+) 5.98 (+)

K = 13 4.317 4.516 4.799 4.949 7.84 (+) 8.08 (+)

In order to analyze the statistical significance of the results from all the methods used in the

comparison, Friedman and Quade Tests [37] were applied on the results with a confidence level of

p = 0.005. These kinds of techniques measure the significance of the statistical difference of several

algorithms that provide results on the same problem, using rankings of results obtained by the algorithms

to be compared. For each subset of variables, the different errors are ranked from one to the number of

methods. In this case the comparison is made over four methods. The approach with lower error will

have rank 1, while the worst approach will have rank 4. In the case where two or more methods have the

same value, an average of the ranks is assigned to them.

The Quade test conducts a weighted ranking analysis of the results [37]. Both statistical methods use

the Fisher distribution to discern the statistical significance of results. The Fisher distribution critical

value was estimated for the four methods and over the first K = 5, K = 10, K = 15 and K = 20

variables. The Fisher distribution follows (NM − 1) and (NM − 1) · (NB − 1) degrees of freedom,

where NM is the number of methods, and NB the number of variable subsets on which the ranking is

applied. Therefore, for different rows in the table (K = 5, K = 10, K = 15 and K = 20), we obtain the

values F (3, 12) = 7.20, F (3, 27) = 5.36 , F (4, 42) = 4.92, and F (3, 57) = 5.06. The table shows the

statistical significance being positive (+) when the value of the test is greater than the Fisher distribution,

and negative (−) otherwise.

From the rest of the results in the experiments, other interesting points deserve our attention:

• In Table 3 we see that the proposed method CMIDist obtains better performance with respect

to the rest of methods for all the cases (5, 10, 15 and 20 variables) for the CASI-AHS-CHLOR
and CASI-THERM datasets and for two out of the three (10 and 13 variables) for the Boston
Housing dataset.

• In CMIDist the clustering process plays an important role, which can be interpreted as a global

strategy to obtain subsets of variables with high relevance in the estimation of the relevant variable

Y obtained by the ε−SVR algorithm. The dissimilarity space built from the conditional mutual

information distances allows to find relationships between variables.

• The PS-FS method is the second best one in most cases followed by the EN method. PS-FS is a

wrapper-type method based on a Neural Network regressor to make an optimal search where the

error of the regressor acts as the search criteria.

• FSR is the worst method in all the cases, with the exception of K = 10 and K = 13 for Boston
Housing. For the Bank32NH dataset, all methods provide similar results.
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• In two out of the four single-output regression datasets that appear in Table 3, when the dimension

of the input variable space increases, the performance of the regression methods nevertheless

decreases. One reason could be given by the Hughes phenomenon (the curse of dimensionality).

Noise and variables considered as noisy may also degrade the quality of the regression.

• Table 4 shows the average RMSE over the four datasets for different sizes of the variable subsets

selected. CMIDist provides the best results for all cases, while the PS-FS method is the second

best method.

Table 4. Average RMSE error over the four datasets and the first 5, 10, 15 and 20 variables.

Boston Housing has 13 variables and it is not considered for the case of K = 20.

Variables CMIDist PS−FS FSR EN

K = 5 2.691 2.745 3.275 2.877

K = 10 2.471 2.562 3.075 2.758

K = 15 2.451 2.543 2.995 2.705

K = 20 1.784 1.839 2.267 1.899

The differences in RMSE ranked for the four methods are not significant for the first 5 variables,

but they are significant when selecting 10 to 15 variables. Thus, the difference between the methods

increases with the number of selected variables, although in the case of the CASI-THERM dataset the

statistical tests suggests that there are not significant differences among the methods.

The selection of the first variable and the first two variables is better when using CMIDist as compared

to the rest of the methods. In this case, the clustering strategy plays an important role in the formation of

different groups of variables, obtaining better results than a greedy selection algorithm as is the case of

the FSR. In the case of the PS-FS and EN methods, the advantage of the CMIDist method consists of a

proper adjustment of the parameters from the Nadaraya-Watson function estimator and its use through a

distance metric in the variable space that takes into account the internal relationships between variables.

4.2. Multi-Output Regression Datasets

Sánchez et al. showed in [35] that SVR can be generalized to solve the problem of regression

estimation for multiple (output) variables (hereafter, called MO-SVR). In fact, the use of a

multidimensional regression tool helps in exploiting the dependencies between variables and makes

the retrieval of each output variable less vulnerable to noise and measurement errors. Treating all

the variables together may allow estimating each of them accurately if scarce data is available. The

minimization of Equation (25) (Root-Mean Sum of Squares of the Diagonal, RMSSD) was used as a

criterion to select the parameters of the MO-SVR regressor [38]:

RMSSD =

√
1

N
· trace([Y −Yp]T · [Y −Yp]) (25)

where Yp is the output predicted matrix in the multi-output case, Y the corresponding original output

matrix, trace is the trace of the matrix [Y −Yp]
T · [Y −Yp] and N is the number of data points.
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Figure 4 shows the RMSSD Error of the proposed method against the method by Kolar and Xing

in [28]. Comparison results for different subsets of variables can be seen in Table 5. In this case,

the Fisher distribution takes the values F (1, 4) = 31.32, F (1, 9) = 13.61, F (1, 14) = 11.06, and

F (1, 19) = 10.07. The table shows the statistical significance as positive (+) when the value of the test

is greater than the Fisher distribution and negative (−) otherwise. From Table 5, we can also see that:

• The CMIDist method outperforms MO-FSR for the Parkinson dataset, while MO-FSR outperforms

CMIDist in the Tecator dataset. These experiments show that our method is comparable to

MO-FSR.

• The CMIDist method does not assume that the input and output data are linearly related, whereas

MO-FSR does. Therefore, the performance of the selector may depend on the relationship between

the input and output values for the datasets.

• The CMIDist method outperforms MO-FSR for the first three selected variables in the Parkinson

dataset, whereas there is no difference for the rest of the selected variables, as can be seen in the

Friedman and Quade tests in Table 5. However, in the case of the Tecator dataset (see Figure 4b),

the MO-FSR outperforms the CMIDist up to variable 10, and tends to become equal afterwards.

Figure 4. Error for the Parkinson and Tecator multi-ouptut regression datasets.
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Figure 4. Cont.
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Table 5. Average RMSSD Error over different subsets of original variables for the

multi-output regression datasets.

Parkinson dataset

Variables CMIDist MO−FSR Friedman Test Quade Test
K = 5 2.611 3.749 0.17 (−) 0.87 (−)

K = 10 2.283 2.801 1.71 (−) 0.02 (−)

K = 15 2.191 2.515 7.87 (−) 1.18 (−)

K = 18 2.156 2.424 7.59 (−) 2.36 (−)

Tecator dataset

Variables CMIDist MO−FSR Friedman Test Quade Test

K = 5 4.531 4.417 7.11 (−) 9.92 (−)

K = 10 4.421 4.326 38.37 (+) 28.10 (+)

K = 15 4.325 4.268 1.07 (−) 3.80 (−)

K = 20 4.268 4.217 4.82 (−) 6.22 (−)
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5. Conclusions

This paper presents a filter-type variable selection technique for single and multi-output regression

datasets, using a distance measure based on information theory. The main contributions of the paper are:

(a) the variable selection method proposed in [11] for classification has been extended to single-output

and multi-output regression problems involving selection of variables; (b) information theoretic criteria

have been applied to extend the variable selection methodology to continuous variables; (c) a method to

estimate the conditional entropy for single and multi-output continuous variables has been defined.

The proposed method outperforms the other methods used in the comparison in the case of

single-output regression datasets, and it is also competitive in the case of the multi-output datasets

considered. Therefore, the method proposed in this paper has a high generalization capability to apply

the strategy to more than one output variable, because the conditional entropy can be directly extended

for multivariate output datasets.

Variable selection in multi-output regression is a novel area of research that requires a deeper

understanding in terms of the development of new selection techniques as well as in terms of the analysis

of the inner structure of the datasets involved.
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