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Abstract: This article presents the computation of a set of control parameters for the 
deterministic prediction of laminar boundary-layer instabilities induced by an imposed 
unsteady shock interaction. The objective of the study is exploratory in nature by 
computing a supersonic flight environment for flow over a blunt body and the 
deterministic prediction of the spectral entropy rates for the boundary layer subjected to an 
unsteady pressure disturbance. The deterministic values for the spectral entropy rate within 
the instabilities are determined for each control parameter. Computational results imply 
that the instabilities are of a span-wise vortex form, that the maximum vertical velocity 
wave vector components are produced in the region nearest the wall and that extended 
transient coherent structures are produced in the boundary layer at a vertical location 
slightly below the mid-point of the boundary layer. 
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Nomenclature 

ai Fluctuating i-th component of velocity wave vector 
Cpf Specific heat at constant pressure for the gas mixture 
f Dimensionless stream function 
f’ First derivative of f with respect to η 
f’’ Second derivative of f with respect to η  
fr Sum of the squares of the fluctuating axial and vertical velocity wave vectors 
F Time-dependent perturbation factor 
j  Vertical station number in the boundary layer computations 
j Time data segment 
k Time-dependent wave number magnitude 
ki Fluctuating i-th wave number of Fourier expansion 
K Adjustable linearization weight factor 
m Pressure gradient parameter 
M1 Flight Mach number 
M2 Mach number downstream of the bow shock wave 
nx Axial station number in the boundary layer computations 
p Hydrostatic pressure 
p1 Static pressure ahead of the bow shock wave 
p2 Static pressure behind the bow shock wave 
Pr Power spectral density of the r-th spectral segment 
Prf Prandtl number of the gas mixture 
Rc Boundary-layer recovery factor 
sj_spent Spectral entropy rate over the j-th time data segment  
t Time 
t1 Static temperature ahead of the bow shock wave 
t2 Static temperature behind the bow shock wave 
Taw Adiabatic wall temperature 
u  Axial boundary layer velocity 
ue Axial velocity at the outer edge of the boundary layer 
ui Fluctuating i-component of velocity instability 
Ui Mean velocity in the i-direction 
v Vertical boundary layer velocity 
Vy Mean vertical velocity in the x-y plane 
Vz Mean vertical velocity in the z-y plane 
w Span wise boundary layer velocity 
W Mean velocity in the span wise direction 
x Axial distance 
xi i-th direction 
xj j-th direction 
y Vertical distance 
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z Span wise distance 

Greek Letters 

α Amplification factor 
γ Ratio of specific heats for air 
δ Boundary-layer thickness 
δlm Kronecker delta 
η Transformed vertical parameter 
κf Thermal conductivity of the gas mixture 
μ Dynamic viscosity of air 
μf Dynamic viscosity of the gas mixture 
ν Kinematic viscosity of air 
ω Frequency factor 
Ψ Transformed stream function 

Subscripts 

i, j, l, m Tensor indices 
r The r-th index in the j-th time series data segment 
x Component in the x-direction 
y Component in the y-direction 
z Component in the z-direction 

1. Introduction 

Considerable progress has been made in understanding the role that different values of the control 
parameters play in determining the computational output from nonlinear deterministic equations. 
Klimontovich and Bonitz [1] studied the self-organization process resulting from two control 
parameters. Kapitaniak [2] presents a discussion of the various feedback parameters in controlling 
chaos. [2] also presents reprints of thirteen important contributions to the study of the effects of 
parameter values on controlling chaos. Two papers by Pyragas [3,4] are of particular interest in our 
study of the effects of control parameters on the prediction of instabilities arising in boundary layers 
subjected to external disturbances. In these two papers, Pyragas discusses the roles of both internal and 
external feedback control parameters in providing continuous control of chaotic behavior. 

In the approach that we describe here, a set of coupled, nonlinear deterministic equations for 
fluctuating velocity wave vectors (see [5]) is embedded in the Falkner-Skan boundary-layer profiles 
calculated in both the axial-vertical velocity plane and the span wise-vertical velocity plane. This 
approach requires three internal control parameters and two externally applied control parameters. 

The first internal control parameter is the set of mean velocity gradients computed in the boundary 
layer profiles in both the axial velocity plane and the span wise velocity plane. These gradients are 
evaluated at each vertical station in the respective velocity profiles and serve as input for the required 
coefficients in the coupled, nonlinear deterministic equations. The coupled, nonlinear deterministic 
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equations are solved for selected vertical stations within the boundary layers, with the resulting 
nonlinear time series serving as the source for the analysis of possible boundary-layer instabilities. 

The second internal control parameter consists of the span wise location of the determination of the 
velocity gradients in the span-wise, vertical velocity plane. The third internal control parameter is a 
weighted, linearization factor determining the degree of coupled nonlinearity incorporated within the 
set of deterministic equations. 

The externally imposed unsteady pressure disturbance provides two additional feedback control 
parameters. These are, first, the frequency factor for the unsteady imposed wave, and, second, the 
amplification factor for the wave. 

The environment for the analysis of this computational approach consists of the supersonic to 
hypersonic flow of air around a flight vehicle that produces an upstream oblique shock wave that 
intersects a down stream detached bow shock wave. The model configuration for this flow is the 
spiked-blunt body flow field, consisting of an attached conical oblique shock wave that impinges on 
the detached bow shock wave of the blunt body surface. Panaras and Drikakis [6] have presented a 
recent review of the progress made in understanding the unsteady flow around spiked-blunt bodies in 
high-speed flow. Drikakis and Rider [7] present the computational tools used in the mathematical 
modeling of these flows.  

For hypersonic propulsion flight vehicles, the inlet to the propulsion system may consist of a 
rectangular shape, with an upper plate forward of the lower, engine inlet cowl. In this supersonic flow 
environment, a bow shock wave is produced forward of the lower engine cowl. An oblique shock 
wave, produced by the upper plate, impinges on the lower detached bow shock wave. Lind and 
Lewis [8] and Lind [9] have numerically mapped the resulting flow field and demonstrated the 
production of an imposed pressure disturbance on the engine cowl boundary layer. 

The first section in this paper determines the thermodynamic and transport properties for this flow 
environment at a selected flight Mach number and flight altitude. These properties determine the 
kinematic viscosity used in the boundary layer calculations. 

The second section of the paper presents the computational basis for the evaluation of the 
axial-vertical plane velocity gradients and the span wise-vertical velocity gradients. To facilitate the 
utilization of appropriate boundary layer results for the computation of boundary layer instabilities, we 
have included tables of the appropriate velocity gradients for each of the boundary layer 
velocity profiles.  

A modified form [5] of the flow equations developed by Townsend [10], describing the fluctuating 
velocity components, is presented in the third section. The integration in time of these coupled, 
nonlinear deterministic equations, with the incorporation of the various control parameters, yields the 
nonlinear time series output for each of the respective fluctuating velocity wave vectors. 

The fourth section of the paper discusses Burg’s method [11,12] for the extraction of the power 
spectral density of the sum of the squares of the axial and vertical velocity wave vectors from the 
nonlinear time series data. A key part of the paper is presented is this section to clarify the differences 
between Burg’s method for the extraction of the power spectral density from nonlinear time series 
data, and the determination of the spectral entropy rate characteristics which are inherent within the 
power spectral density data sets. It is especially important to draw attention to the meaning of the 
phase “spectral entropy rate pulses” as it is used in this paper. 
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The spectral entropy rate [13] is described as a concept to distinguish “regular” from “irregular” 
trajectories as predicted in the solution of nonlinear deterministic differential equations. We employ 
the concept of the spectral entropy rate to identify “coherent’ structures within the power spectral 
density time series from “chaotic” structures within the same time series data. Thus, when we discuss 
the “spectral entropy rate pulse”, we are using the phase to describe whether the computed power 
spectral density time series is in a conceptual “chaotic structure” mode (high values of the spectral 
entropy rate approaching the value of 0.345 1/s for possible chaotic behavior) or whether it is in a 
“coherent structure” mode (low values of the spectral entropy rate, approaching the value of 0.0 for 
possible span wise periodic vortex structures). 

Putting all of this together, we are in a position to examine the effects of each of the control 
parameters on the production of “coherent” or “chaotic” structures at various locations in the vertical 
velocity profiles as a function of the time integration of the coupled, nonlinear deterministic modified 
Townsend equations. 

The results of these computations are presented in a series of graphs representing the behavior of 
the spectral entropy rate pulses for a set of values for each of the respective control parameters. It is 
observed that for the prediction of the presence of boundary layer instabilities, velocity gradients of the 
span wise-vertical velocity profiles must be included in the internal set of control parameters. Further, 
the span wise location for the evaluation of the span wise vertical velocity gradients has a direct 
bearing on the prediction of the rate of production of the pulses in the spectral entropy content of the 
time series. Additional observations are presented in the discussion of the results.  

From the computational results, we may observe first, that for the imposed pressure disturbances, 
significant vertical velocity wave vector fluctuations occur in the region next to the wall beneath the 
imposed pressure disturbance. This has significant implications for the evaluation of wall heat transfer 
at higher flight Mach numbers. Second, significant “coherent” structures (vortices?) occur within the 
boundary layer just below the mid-point of the normalized vertical thickness of the boundary layer. 

2. Supersonic Flight Environment 

Considerable progress has been made in the development of hypersonic flight propulsion. Present 
configurations of hypersonic propulsion systems include an engine-integrated airframe in which the 
forebody acts as the engine compression surface and the afterbody serves as the engine nozzle [14,15]. 
[8,9] report the results of extensive numerical evaluations of the interactions of the inlet oblique shock 
wave with the bow shock wave produced by the engine cowl. The flow configuration that we are 
approximating in this exploratory study is shown in Figure 1, modeled after Figure 9 of [9]. In this 
approximate flow environment, the oblique shock wave from the forward inlet structure impinges on 
the engine cowl bow shock wave. This shock wave interaction results in a transmitted shock wave and 
an imposed pressure disturbance acting on the subsonic boundary layer formed over the surface of the 
engine cowl structure. The results presented in [9] indicate that this imposed pressure disturbance may 
be unsteady in nature. Our objectives here are to explore a possible mechanism for the time-dependent 
formation of vortex-like coherent structures within the boundary layer and to present a set of control 
parameters which yield the numerical results predicting such transient ordered structures. 
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The flight conditions considered in this study are a modest flight Mach number of M1 = 1.44 at an 
altitude of approximately 21,300 m. For these conditions, the atmospheric temperature is taken as 
t1 = 217.76 K and the atmospheric pressure is p1 = 4.54 × 103 N/m2 [16]. At this altitude, flight Mach 
numbers between 1.44 and 2.50 yield static temperatures behind the bow shock wave between 279.1 K 
and 458.7 K. In this range of temperatures, the ratio of specific heats for air is essentially constant 
at 1.40. As the flight Mach number increases beyond 2.50, variation in the thermodynamic properties 
of the air behind the bow shock wave will need to be taken into account. 

Figure 1. Two-dimensional supersonic flow indicating an impingement shock wave on the 
bow shock wave of an engine cowl. Note the development of an imposed pressure 
disturbance on the cowl boundary layer. 

 
 

The thermodynamic properties that are required for the calculation of the boundary layer 
development are obtained from standard gas dynamic relations for normal shock waves [17]. The 
Mach number immediately downstream of the normal bow shock wave ahead of the engine cowl is 
given by: 

M2
2 =

M1
2 +

2
γ +1

2γ
γ −1

M1
2 −1

 (1) 
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In this expression, M1 is the upstream Mach number, M2 is the shock wave downstream Mach number, 
and γ  is the ratio of specific heats for air at these conditions. For the flight conditions given, the 
downstream Mach number is M2 = 0.723, the static temperature is t2 = 278.88 K, and the static 
pressure is p2 = 1.019154 × 104 N/m2. 

The thermodynamic and transport properties, required for the determination of the effects of the 
control parameters, are sensitive to the choice of temperature and pressure values for their evaluation. 
For example, the kinematic viscosity of the air is required for the evaluation of the boundary-layer 
velocity gradients. This parameter is dependent upon both the temperature and the pressure of the air 
in the boundary layer environment. Assuming that the surface of the blunt body is insulated, the 
adiabatic wall temperature and the static pressure behind the bow shock wave are used as the reference 
thermodynamic conditions for the evaluation of this parameter. The adiabatic wall temperature, Taw, is 
define as [18]: 

Taw = t2[1+ Rc
γ −1

2
M2

2] (2) 

In this expression, Rc is the recovery factor, which is closely determined by the rule: 

Rc = Prf  (3) 

where Prf is the Prandtl number for the flowing gas mixture. The Prandtl number, Prf, is defined by 
the equation: 

Prf =
Cpf μ f

κ f

 (4) 

The specific heat at constant pressure, Cpf is the specific heat of the mixture of the molecular species 
making up the gas, μf is the dynamic viscosity of the gas mixture, and κf is the thermal conductivity of 
the gas mixture. 

Since the various properties in the Prandtl number are temperature dependent, an iterative solution 
is required to determine the appropriate value of the adiabatic wall temperature. A mixture of 0.002% 
CO2, 0.002% H2O, 21.052% O2, and 78.944% N2, with percent by volume, was used as the working 
gas. Empirical expressions for the specific heats of the various components were obtained from 
Heywood [19], corresponding expressions for the dynamic viscosity of the components were obtained 
from [20], and the thermal conductivity expressions were obtained by polynomial fit to the data 
presented by Mills [21]. 

The thermodynamic and transport properties for mixtures of polyatomic gases are determined by 
the procedures presented by Dorrance [22]. It should be noted that as flight Mach numbers increase 
into the hypersonic range, the gas temperatures become sufficiently high that variations of these 
properties must be taken into account. Also, active methods of cooling the surface may be necessary, 
such as the transpiration of hydrogen, H2 into the boundary layer. Gas mixtures, such as H2 into air 
(O2 and N2), produce mixture Prandtl numbers significantly lower than those predicted for polyatomic 
gas mixtures. This effect will change the value of the adiabatic wall temperature used in the calculation 
of the kinematic viscosity, which is the primary transport property used in the calculation of the effects 
of the control parameters on the boundary-layer instabilities. 
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The results for the various thermodynamic and transport properties for the flight Mach number of 
M1 = 1.44 at an altitude of 21.3 km are as follows: 

Adiabatic wall temperature, Taw; 303.64 K (5) 

Static pressure, p2: 1.019154 × 104 N/m2 (6) 

Mixture Prandtl number, Prf: 0.7101 (7) 

The kinematic viscosity for air has been calculated using an expression from [20] for the dynamic 
viscosity of air as a function of temperature. For the resulting adiabatic wall temperature and the given 
static pressure behind the shock wave, the kinematic viscosity for air is determined to be: 

Air kinematic viscosity, ν: 1.599 × 10�4 m2/s (8) 

This value for the kinematic viscosity for air is used for the evaluation of the various boundary layer 
velocity gradients and for the prediction of boundary layer instabilities  

3. Boundary-Layer Flow Environment 

The basic objective of this study is to use the boundary layer flow environments computed with 
well-established computational tools to establish a basis for the determination of a set of spectral 
entropy rate production values calculated at an upstream location of a laminar boundary layer flow 
subjected to an externally imposed pressure disturbance. Cebeci and Bradshaw [23] have developed a 
set of computer source codes for the computation of various wall shear environments. These source 
codes have been used to create computer programs required to compute the desired boundary layer 
flows, including the necessary gradients in the mean velocities in a three-dimensional configuration.  

3.1. Computational Model for the Boundary-Layer Flow 

The flow configuration we wish to model is the three-dimensional wall shear layer downstream of 
an initial starting plane, as indicated in Figure 2. The flow is from left to right and is assumed to be an 
ideal gas moving at subsonic velocity over a flat plate with laminar flow. 

The computational procedure developed in [23] is used as the basis for our computations of the 
boundary layer flow. The flow is of the Falkner-Skan type with an adverse pressure gradient in the 
axial direction only. The modification, which we introduce, is to impose an initial free stream velocity 
of unity, making the boundary layer edge velocity dimensionless. The main computer program in the 
computational procedure developed in [23] establishes “nx” as the station number for the axial 
direction and the symbol “j” for the vertical grid number for the calculation of the vertical profiles at a 
given axial station. Following the nomenclature used in the computer program development, we will 
use “nx” throughout this article to identify the axial station calculations and the vertical grid number 
“j” to specify the values of the appropriate vertical parameters. We also will include the corresponding 
axial distance with the nx value and the corresponding η value with the vertical station number j.  
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Figure 2. The three-dimensional flow model and the coordinate system for the boundary 
layer flow environment. Note the location for the laminar flow velocity profile computations. 

 
 

In an analysis of the conditions for similarity in boundary layer flows, Hansen [24] indicates that 
both the Blasius profile of the axial velocity in the x-y plane and the Blasius profile in the z-y plane 
along the original starting planes are similar. Hence, we apply the computer methods of [23] to the 
computation of the laminar velocity profile in the x-y plane at the axial station, nx = 4 (x = 0.08), along 
the x-axis, and the same computer methods to the computation of the laminar velocity profile in the 
z-y plane at the span wise station, nz = 4 (z = 0.003), along the z-axis, with no pressure gradient in the 
z direction. 

The implementation of the calculations for the effect of the control parameters within the 
boundary-layer flow requires the evaluation of velocity gradients in a three-dimensional format. We 
have again followed the procedure of [23] in implementing a computational procedure for the 
development of the boundary layer along the z-y plane as indicated in Figure 2. Here, however, we 
uncouple the x-y plane boundary-layer development from the z-y plane and apply the same computer 
procedure as outlined above to the flow along the z-y plane at the initial laminar region of nx = 4 
(x = 0.08), where nx is the axial station number for the development of the initial laminar flow in the 
axial direction and nz = 4 as the corresponding location in the z-direction. This procedure thus yields 
the necessary velocity gradients in the z-y plane for the computation of the unsteady velocity 
fluctuations in the unstable region of the boundary-layer flow. Since the mathematical and 
computational procedures for the computation of the boundary layer flow are fully developed and 
described in [23], only an outline of the boundary-layer computational procedure is presented here. 
Where we have used expressions for mean velocity gradients that do not appear in these references, we 
provide more detail. The momentum equations for the boundary-layer flow may be written as: 

��
�

��
�+−=+ y

u
ydx

dp
y
uvx

uu ∂
∂μ∂

∂
ρρ∂

∂
∂
∂ 11  (9) 
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(the meaning of each of the symbols is given in the Nomenclature). 
The boundary conditions are: 

y = 0, u = v = 0 (10) 

y = δ(x) , u = ue x( ) (11) 

Following [23], the Falkner-Skan transformation is defined by: 

η =
ue

νx
� 
	 

 

� 
� 

 

1/ 2

y  (12) 

The velocity at the edge of the boundary layer, ue = ue x( ), is assumed to vary with distance x. A 
dimensionless stream function, f x( ,η), is introduced and is given by: 

Ψ x( , y)= ueνx( )1/ 2
f x( ,η) (13) 

These definitions yield the results for velocities u and v as [23]: 

u = ue f ', v = −
∂
∂ x

ue([ ν x)1/ 2 f ]+
η
2

ueν
x

� 
	 

 

� 
� 

 

1/ 2

f '  (14) 

In these expressions, the prime indicates differentiation with respect to η.  
The velocity gradients in both the x-y plane and the z-y plane are required for the evaluation 

of instabilities produced within the boundary layer by the imposed pressure disturbances. These 
values thus form the first set of internal control parameters. The set of velocity gradients required are 
the following: 

∂u
∂x

 
∂u
∂y
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∂z

      (15) 

∂v
∂x

 
∂v
∂y

 
∂v
∂z

      (16) 

∂w
∂x

 
∂w
∂y

 
∂w
∂z

      (17) 

With the assumption that the velocity profiles in the z-y plane are independent of the profiles in the 
x-y plane, we may write: 

∂u
∂z

=
∂w
∂x

= 0 (18) 

From the continuity equations in both the x-y plane and in the z-y plane, we may write: 
∂v
∂y

= −
∂u
∂x

; 
∂w
∂y

= −
∂v
∂z

 (19) 

Utilizing the transformed variables from [23], the appropriate velocity gradients are obtained from 
the computational output with the following equations [5]: 

∂u
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= − f ' '
u
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  (20) 
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∂u
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= f ' '
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 (21) 
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In these expressions, the prime indicates differentiation with respect to η. Corresponding 
expressions are used to determine similar velocity gradients in the z-y plane. 

The flow conditions that correspond to a kinematic viscosity of 1.599 × 10�4 m2/s are an adiabatic 
wall temperature Taw = 303.64 K and a boundary layer edge pressure p2 = 10191.54 N/m2. These 
values are considered applicable as the flow temperature and pressure for the boundary layer and are 
used for the boundary layer calculations. The density is calculated from the ideal gas equation of state 
and the dynamic viscosity for air is calculated from the expression given in [20].  

We assume for convenience that the basic flow environment corresponds to a flow with the 
boundary-layer edge velocity given by: 

ue = 1−
x
8

� 
	 

 

� 
� 

  (24) 

In this expression, ue is the dimensionless boundary layer edge velocity and x is the dimensionless 
axial distance. The corresponding dimensionless pressure gradient parameter, m, is given by: 

m =
x
ue

� 

	 

 

� 

� 

 

−1
8

� 
	 

 

� 
� 

  (25) 

The velocity profiles are obtained from the computational procedure at nx = 4 (x = 0.08), thus 
initially computing the boundary layer as laminar. The length and width of the plate are each taken 
as 1.0 m.  

For the flow in the z direction, we take the external velocity we = 0.01, with a pressure gradient of 
zero in the z direction. The z-y plane laminar velocity gradients are obtained at a span wise station of 
nz = 4 (z = 0.003), at the axial station of nx = 4 (x = 0.08). This procedure allows us to estimate the 
required velocity gradients in the initially laminar region in a three-dimensional configuration, as 
indicated in Figure 2. 

The computational results for the velocity gradients in the x-y plane are presented in Table 1. The 
corresponding velocity gradients in the z-y plane are presented in Table 2. These values for the 
velocity gradients form the first set of internal control parameters required for the solution of the 
modified Townsend equations. The values presented in these tables allow the computation of the 
boundary-layer instabilities independently of boundary-layer computations. 
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Table 1. Boundary-layer x-y plane velocity gradients. Kinematic viscosity, ν = 1.599 × 10�4 m2/s, x = 0.08. 

j η ∂U /∂x ∂U /∂y ∂V /∂x ∂V /∂y
1 0.0000     
2 0.2000 �0.3953 87.9648 0.0018 0.3953 
3 0.4000 �0.7921 88.1166 0.0098 0.7921 
4 0.6000 �1.1855 87.9006 0.0231 1.1855 
5 0.8010 �1.5686 87.2045 0.0415 1.5686 
6 1.0010 �1.9325 85.9288 0.0647 1.9325 
7 1.2020 �2.2673 83.9931 0.0919 2.2673 
8 1.4020 �2.5624 81.3431 0.1223 2.5624 
9 1.6030 �2.8073 77.9565 0.1548 2.8073 

10 1.8040 �2.9925 73.8486 0.1881 2.9925 
11 2.0050 �3.1108 69.0742 0.2207 3.1108 
12 2.2060 �3.1578 63.7273 0.2512 3.1578 
13 2.4070 �3.1326 57.9367 0.2784 3.1326 
14 2.6080 �3.0384 51.8577 0.3010 3.0384 
15 2.8090 �2.8818 45.6616 0.3183 2.8818 
16 3.0110 �2.6733 39.5230 0.3298 2.6733 
17 3.2120 �2.4252 33.6067 0.3356 2.4252 
18 3.4140 �2.1518 28.0563 0.3360 2.1518 
19 3.6150 �1.8670 22.9850 0.3317 1.8670 
20 3.8170 �1.5841 18.4706 0.3238 1.5841 
21 4.0190 �1.3142 14.5540 0.3132 1.3142 
22 4.2210 �1.0661 11.2411 0.3010 1.0661 
23 4.4230 �0.8455 8.5083 0.2883 0.8455 
24 4.6250 �0.6557 6.3093 0.2758 0.6557 
25 4.8280 �0.4971 4.5829 0.2642 0.4971 
26 5.0300 �0.3685 3.2603 0.2539 0.3685 
27 5.2330 �0.2670 2.2711 0.2451 0.2670 
28 5.4350 �0.1891 1.5489 0.2378 0.1891 
29 5.6380 �0.1310 1.0341 0.2320 0.1310 
30 5.8410 �0.0887 0.6757 0.2275 0.0887 
31 6.0440 �0.0587 0.4321 0.2242 0.0587 
32 6.2470 �0.0380 0.2704 0.2218 0.0380 
33 6.4500 �0.0240 0.1656 0.2200 0.0240 
34 6.6530 �0.0148 0.0992 0.2188 0.0148 
35 6.8560 �0.0090 0.0581 0.2180 0.0090 
36 7.0600 �0.0053 0.0333 0.2175 0.0053 
37 7.2630 �0.0030 0.0187 0.2172 0.0030 
38 7.4670 �0.0017 0.0102 0.2170 0.0017 
39 7.6710 �0.0009 0.0055 0.2168 0.0009 
40 7.8750 �0.0005 0.0029 0.2168 0.0005 
41 8.0780 0.0000 0.0000 0.0000 0.0000 
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Table 2. Boundary-layer z-y plane velocity gradients. Kinematic viscosity, ν = 1.599 × 10�4 
m2/s, z = 0.003. 

j η ∂W /∂z ∂W /∂y ∂Vz /∂z ∂Vz /∂y
1 0.0000     
2 0.2000 �2.2089 15.1271 �0.1613 2.2089 
3 0.4000 �4.3987 15.0620 �0.6423 4.3987 
4 0.6000 �6.5437 14.9379 �1.4333 6.5437 
5 0.8000 �8.6074 14.7368 �2.5137 8.6074 
6 1.0000 �10.5449 14.4432 �3.8494 10.5449 
7 1.2000 �12.3050 14.0449 �5.3903 12.3050 
8 1.4000 �13.8338 13.5342 �7.0700 13.8338 
9 1.6000 �15.0793 12.9086 �8.8075 15.0793 

10 1.8000 �15.9963 12.1721 �10.5110 15.9963 
11 2.0000 �16.5510 11.3348 �12.0839 16.5510 
12 2.2000 �16.7256 10.4130 �13.4325 16.7256 
13 2.4000 �16.5210 9.4285 �14.4744 16.5210 
14 2.6000 �15.9583 8.4068 �15.1465 15.9583 
15 2.8000 �15.0779 7.3757 �15.4117 15.0779 
16 3.0000 �13.9362 6.3627 �15.2622 13.9362 
17 3.2000 �12.6013 5.3937 �14.7203 12.6013 
18 3.4000 �11.1469 4.4905 �13.8352 11.1469 
19 3.6000 �9.6461 3.6700 �12.6766 9.6461 
20 3.8000 �8.1657 2.9433 �11.3274 8.1657 
21 4.0000 �6.7621 2.3155 �9.8740 6.7621 
22 4.2000 �5.4778 1.7864 �8.3986 5.4778 
23 4.4000 �4.3408 1.3512 �6.9722 4.3408 
24 4.6000 �3.3648 1.0019 �5.6503 3.3648 
25 4.8000 �2.5515 0.7281 �4.4709 2.5515 
26 5.0000 �1.8927 0.5185 �3.4547 1.8927 
27 5.2000 �1.3735 0.3618 �2.6072 1.3735 
28 5.4000 �0.9750 0.2473 �1.9220 0.9750 
29 5.6000 �0.6771 0.1656 �1.3842 0.6771 
30 5.8000 �0.4600 0.1086 �0.9739 0.4600 
31 6.0000 �0.3057 0.0698 �0.6695 0.3057 
32 6.2000 �0.1987 0.0439 �0.4497 0.1987 
33 6.4000 �0.1263 0.0270 �0.2952 0.1263 
34 6.6000 �0.0786 0.0163 �0.1894 0.0786 
35 6.8000 �0.0478 0.0096 �0.1187 0.0478 
36 7.0000 �0.0284 0.0056 �0.0727 0.0284 
37 7.2000 �0.0165 0.0031 �0.0435 0.0165 
38 7.4000 �0.0094 0.0017 �0.0254 0.0094 
39 7.6000 �0.0052 0.0009 �0.0146 0.0052 
40 7.8000 �0.0029 0.0005 �0.0081 0.0029 
41 8.0000 0.0000 0.0000 0.0000 0.0000 
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4. Mathematical Model of the Flow Instability 

4.1. Transformation of the Townsend Equations 

Considerable effort has recently been devoted to the study of the transition of laminar boundary 
layers brought about by the existence of free-stream disturbances. Recent work has been presented 
in [25–30]. These references present an extensive review of the recent work in this field and hence a 
review of this work will not be repeated here. However, several aspects of the so-called by-pass 
transition process are essential to our mathematical model and hence will be discussed here. One of 
the essential aspects of these studies is the evidence that strong free-stream turbulence produces 
elongated stream wise structures with narrow span wise scales. These disturbances apparently give rise 
to a periodic modulation of the stream wise velocity. We will use the results of [25–30] to further 
investigate the possibilities of the existence of vertical bursts occurring near the wall in a 
boundary-layer flow.  

The Navier-Stokes equations describing this flow are transformed through a Fourier analysis into a 
Lorenz-type format, specifically keeping the nonlinear coupling terms. The coefficients of the 
nonlinear terms are simplified into a form obtained from the perturbation theory of non-relativistic 
quantum mechanics as described by Landau and Lifshitz [31]. Using the Fourier expansion procedure 
as presented by Townsend [10], the equations of motion for the boundary-layer flow may be separated 
into steady plus fluctuating values of the velocity components. The velocity fluctuations around the 
mean values of the velocity components will thus be of primary interest. The equations for the velocity 
fluctuations may then be written as follows: 
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In these equations, � is the kinematic viscosity. The pressure term may be transformed as: 

−
∂ 2 p
∂xl
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∂um

∂xl

 (27) 

In these expressions, the mean velocity components are denoted by Ui, with i = 1,2,3 representing 
the x, y, and z components, while xj, with j = 1,2,3 denote the x, y and z directions. The three mean 
velocity components and the nine gradients in the mean velocities are obtained from the solutions for 
the boundary-layer flow as outlined in previous sections. 

As pointed out in [10], the pressure is determined by the velocity and temperature fields and is not a 
local quantity but depends on the entire field of velocity and temperature. The elimination of the 
pressure fluctuation term introduces nonlinear coupling between the velocity coefficients. In our work 
here, we will introduce an internal feedback mechanism that will model the nonlinear interaction 
process but will allow the resulting equations to be integrated in time. The velocity fluctuations may be 
expanded in terms of a sum of Fourier components as: 

ui(x) = ai� (k)exp(ik⋅ x)  (28) 

The variation with time of each Fourier component of the fluctuation field is then given by the 
equation for each of the velocity wave vector amplitudes: 
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The equations for the rate of change of the wave numbers are: 
dki

dt
= −

∂Ul

∂xi

kl  (30) 

The equations for the fluctuating velocity components may be transformed by Fourier expansion 
into a form similar to Lorenz-type equations, as shown by Hellberg and Orszag [32] and Isaacson [33]. 
The equations resulting from the transformation process have been presented in other publications and 
references to them may be found in [33]. 

In the mathematical model used in this study, the coefficients in the set of differential equations 
for the variation of the wave numbers (Equation (30)) are replaced by periodic functions of the 
form αcos(ωt), where α is an amplification factor and ω is a frequency factor for the imposed periodic 
disturbances. These equations form a set of external control parameters, as discussed by 
Klimontovich [1].  

The set of internal control parameters is provided by the values of the mean velocity gradients 
determined in the solution of the boundary-layer flow, the span wise location z for the determination of 
the z-y velocity gradients, and a linearization factor accounting for the degree of nonlinearity included 
in the nonlinear coupling terms in the modified Townsend equations. 

The computational solution of the nonlinear Townsend equations for the fluctuating components of 
the velocity wave vectors in our study is aided by the introduction of these two sets of feedback 
parameters. The set of external parameters is obtained by replacing the gradients of the mean velocities 
that appear in Equation (30) by a periodic cosine function [1] and write: 

dkx

dt
= −α cos(ωt)kx − α cos(ωt)ky  (31) 

dky

dt
= −α cos(ωt)kx − α cos(ωt)ky − α cos(ωt)kz  (32) 

dkz

dt
= −α cos(ωt)ky − α cos(ωt)kz  (33) 

In these expressions, ω is the externally applied frequency factor, and α is the externally applied 
amplification factor. 

The initial values for the wave numbers are: 

kx (t = 0.0) = 0.80; ky (t = 0.0) = 0.1; kz (t = 0.0) = 0.1 (34) 

With these approximations, we uncouple the continuity equations for the wave numbers from the 
solutions of the nonlinear deterministic equations for the velocity fluctuation wave vectors. The 
solution of the equations for the time dependent wave numbers provides results that are stored in files 
available for input into the computational solutions of the deterministic equations for the fluctuating 
velocity coefficients. The results for the wave numbers represent the influence of the externally 
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applied free-stream disturbances across all of the boundary layer vertical stations for which solutions 
of the deterministic equations will be sought. 

Durbin and Zaki [30] have reviewed the role that the wave number vectors have in boundary-layer 
bypass transition processes, and have presented observations that are directly applicable to our use of 
these equations in the form as represented in Equations (31)–(33). They have found that wave number 
modes penetrate to the wall when the frequencies are low, and that for small boundary layer Reynolds 
numbers, higher frequency modes also penetrate to the wall. Thus, we consider the set of values for the 
externally applied frequency factor and amplification factor as an appropriate set of external control 
parameters and assume that these values apply at each vertical station for which instability calculations 
are performed. 

The next approximation is to the first-order nonlinear differential equations describing the equations 
of motion of the fluctuating velocity wave vector components. The term (1− F ) is substituted for the 
coefficients of the nonlinear terms in the deterministic equations for the time rate of change of the 
ai(k) coefficients (Equations (38)–(39)). F is a time-dependent weight factor for the nonlinear 
coupling terms in the set of deterministic differential equations defined as [3,4]: 

F = K ⋅ k(t) (35) 

K is an adjustable linearization factor within the modified Townsend equations and k(t) is the 
magnitude of the imposed time-dependent wave vector given by: 

k(t) = (kx
2 + ky

2 + kz
2)1/ 2  (36) 

The value for K represents the degree of linearization that is applied in the nonlinear coupling terms in 
the modified Townsend equations. For a value of K = 0.00, the complete nonlinear coupling terms are 
present in the equations. For the value of K = 1.00, the value of the term F is set equal to unity, 
assuring the elimination of the nonlinear terms from the modified Townsend equations. Thus, the 
various values of K form a part of the internal set of control parameters. 

The three deterministic equations for the velocity coefficients may then be written as: 
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Note that the perturbation factor (1− F ) is applied to the nonlinear terms in the equations for dt
day  

and dt
daz , and not to one of the directly accessible dependent variables. This is a significant change 
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from the practice in the study of synchronization and chaos [3,4]. The application of the perturbation 
factor in this fashion implies that the nonlinear terms in the first-order equations for the velocity 
fluctuations wave vectors represent transition probabilities from an initial state to a secondary state.  

The theoretical modeling of the internal flow instabilities within the boundary-layer flow consists of 
six simultaneous first-order differential equations, to be solved at each vertical station within the wall 
shear layer. The mean velocity gradients are obtained at each vertical station from the overall solution 
of the boundary layer equations and are as presented in Tables 1 and 2. The thermodynamic and 
viscous properties of the fluid have been previously described. The solution of the set of equation 
describing the flow instabilities yields the velocity-fluctuation wave-vectors in three-dimensions for 
each of the vertical stations within the wall shear layer at the axial station of nx = 4 (x = 0.08) and the 
span wise station of nz = 4 (z = 0.003). The initial values of the fluctuating velocity wave-vectors are: 

ax (t = 0.0) = 0.01, az(t = 0.0) = 0.01, ay (t = 0.0) = 0.01 (40) 

The equations are integrated using a fourth-order Runge-Kutta technique with computer source 
codes as presented by Press, et al. [34]. First, the three first-order differential equations for the wave 
numbers are integrated in time with the resulting series stored to files on the hard drive. A time step 
of 0.0001 s is used with a total of 12,288 time steps included in the integration process. The resulting 
time-series is stored in external data files. These data files thus become available for the power spectral 
density analysis as described in the next section. 

Figure 3 presents the resulting time dependent wave number as a function of time step over the 
complete computation range. It should be noted that the wave number is a continuously varying 
parameter throughout the computations of the boundary layer instabilities. 

Figure 3. The time dependent wave number, k, is shown as a function of the time step. 
Parameters: α = 1.00, ω = 8.00. 
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Figure 4 presents the variation of the fluctuating axial velocity wave vector as a function of the time 
step. These results indicate that after a period of induction, oscillatory instabilities develop in the 
fluctuating axial velocity wave vector. 
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Figure 4. The axial velocity wave vector is shown as a function of the time step. 
Parameters: x = 0.08, z = 0.003, η = 1.402, K = 0.20, α = 1.00, ω = 8.00.  

 
 

Figure 5 presents the phase diagram of the fluctuating vertical velocity wave vector as a function of 
the fluctuating axial velocity wave for the complete range of time step values. Two separate regions 
are indicated. The first region indicates a rather uniform oscillation of the velocity wave vectors, while 
the second region indicates the presence of ordered structures. The analysis of the spectral entropy rate 
production will focus on the second of the two regions. 

4.2. The Prediction of Spectral Entropy Rates from the Deterministic Results 

The results from the time integration of the modified Townsend equations for the various values of 
the control parameters consist of nonlinear time series outputs for the composite wave number and for 
the three fluctuating velocity wave vectors. It becomes necessary to process these time series records 
to extract the underlying structural characteristics of the time series. Chen [11] has presented a series 
of studies of methods for the extraction of such structural information from time series information. In 
reference [11], a computer source code was presented which implemented the maximum entropy 
method (Burg’s method) for spectral analysis of geophysical seismic time data records. This method 
considerably improves the spectral resolution for short records. 
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Figure 5. The vertical velocity wave vector is shown as a function of the axial velocity 
wave vector. Parameters: x = 0.08, z = 0.003, η = 1.402, K = 0.20, α = 1.00, ω = 8.00.  

 
 

Burg’s method has its theoretical roots in information theory [35], where a discussion and a proof 
of Burg’s maximum entropy rate theorem are given. These authors also make reference to the work of 
Rissanen [36,37], where the maximum entropy method is related to the concept of Kolmogorov 
complexity [38].  

One of the significant advantages of Burg’s method is the enhancement of the spectral peaks in the 
power spectral density distribution. Our previous experience with Burg’s method and the existence of 
useful source codes for the analysis of the predicted time series led to our use of this method for the 
evaluation of the power spectral density of the x-y kinetic energy, ax

2 + ay
2, for each segment in the 

time series. A series of time segments representing an internal block of data with 2048 data points 
from time steps 8192 to 10240 is used for the evaluation of the underlying structure embedded in the 
output nonlinear time series data. 

The method of computation used for the prediction of the distribution of the power spectral density 
rates is the method presented by Press, et al. [39]. The individual histories for the fluctuating axial and 
vertical velocity wave-vector components are combined into one time series by adding the squares of 
each component for each time step. The selected time series is then divided into 64 segments with 32 
data sets per segment. Burg’s method [38], is then applied to each segment of the 32 data sets to obtain 
16 spiked values of the power spectral density of the kinetic energy, fr , for each particular segment.  
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At this point, it becomes necessary to introduce an appropriate measure by which we can obtain 
information that characterizes the effect of each of the control parameters in the boundary layer 
profiles and in the imposed pressure disturbances in producing boundary layer instabilities. This 
measure is the spectral entropy rate evaluated in each of the time segments for which the power 
spectral density of the local kinetic energy has been determined. 

The probability value of each set of particular spectral densities for each segment is first computed 

from �=
 

 /
r

rrr ffP . 

The methods of Powell and Percival [13], Grassberger and Procaccia [40], and Cohen and 
Procaccia [41] are then applied to the probability distributions for each time segment to develop the 
spectral entropy rate for the given segment. The spectral entropy rate (1/s) is then defined for the j-th 
time segment as: 

r
r

rj PPspents ln_ �−=  (41) 

This procedure is applied to each of the 64 segments over the selected time data range. 
For the spectral entropy rate results that will be presented, we should note the results are presented 

over the 64 time data segments of the 2,048 time steps block of nonlinear time series output at 
specified locations, either at a normalized vertical station or for a particular span wise z location at the 
axial station of nx = 4 (x = 0.08). These results will show low values of spectral entropy rate 
production indicating transient coherent behavior, separated by transient pulses of high spectral 
entropy rate production, through the selected block of time series data. Thus, for the selected location 
in spatial coordinates, and for the particular set of control parameters, the instability results will be 
indicated by a time-dependent transition process between chaotic states, to coherent states, returning to 
chaotic states for each particular system. As indicated in Figure 5, the magnitudes of the ax and ay 
wave vectors are significant, thus representing a largely vertical burst of fluctuating fluid elements.  

Figure 6 plots the phase plane behavior of the vertical velocity wave vector, ay, versus the axial 
velocity wave vector, ax, at the transformed vertical location of j = 8 (η = 1.402), over the selected 
block of time-series data. These results indicate that the effects of the external periodic disturbance are 
transmitted through the entire boundary layer structure.  

The spectral entropy rate results for the phase diagram in Figure 6 are shown in Figure 7. The 
coherent structures are indicated by the essentially zero values of the spectral entropy rates, while the 
chaotic sheaths are represented by the peaked values of the spectral entropy rates. 

Figure 8 presents the number of spectral entropy rate pulses that occur within the given block of 
time step data as a function of the span wise location at which the z-y plane velocity gradients are 
calculated. The prediction of the boundary-layer instabilities is a sensitive function of the span wise 
location for the evaluation of the velocity gradients in the z-y plane. The results presented in Figure 8 
indicate that the location for the evaluation of these gradients must be very near the central x-y plane 
where the axial and vertical velocity gradients are evaluated. 

Figure 9 presents the number of spectral entropy rate pulses that occur as a function of the 
linearization factor, K.  
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Figure 6. The vertical velocity wave vector is shown as a function of the axial velocity 
wave vector for the selected block of time step data. Parameters: x = 0.08, z = 0.003, 
η = 1.402, K = 0.20, α = 1.00, ω = 8.00. 

 
 

Figure 7. The spectral entropy rate is shown as a function of the time segment number. 
Parameters: x = 0.08, z = 0.003, η = 1.402, K = 0.20, α = 1.00, ω = 8.00. 
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Figure 8. The number of spectral entropy rate pulses is shown as a function of the span 
wise location for the z-y velocity gradients. Parameters: x = 0.08, η = 1.402, K = 0.20, 
α = 1.00, ω = 8.00. 
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Figure 9. The number of spectral entropy rate pulses is shown as a function of the 
linearization factor. Parameters: x = 0.08, z = 0.003, η = 1.402, α = 1.00, ω = 8.00.  

 
 

For K = 1.0, the factor F is set equal to unity to enforce the elimination of the nonlinear coupling 
terms from the deterministic equations. The results presented in Figure 9 indicate that non-linear 
coupling terms must be included in the coupled, deterministic equations for the fluctuating velocity 
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wave vectors for the solutions to present any information about resulting boundary-layer instabilities. 
If the coupled, deterministic equations do not include any non-linear effects (if F = 1.0), the solutions 
will provide no information about boundary-layer instabilities. 

Figure 10 presents the number of spectral entropy rate pulses as a function of the applied frequency 
factor, ω. These results indicate that as the frequency factor is increased, the rate of production of 
ordered structures separated by regions of chaotic behavior increases.  

Figure 10. The number of spectral entropy rate pulses is shown as a function of the 
frequency factor. Parameters: x = 0.08, z = 0.003, η = 1.402, K = 0.20, α = 1.00.  

 
 

Figure 11 presents an overlay of the spectral entropy rates for various values of the applied 
amplification factor, α, across the given block of time step data. Apparently, the generation of 
transient coherent structures within the boundary layer is not a strong function of the amplitude of the 
imposed pressure disturbance, but more a function of the frequency of the applied disturbance. 

For a given set of control parameters, an interesting question concerns the transient generation of 
coherent structures at various vertical locations across the boundary layer. The spectral entropy rates at 
several values of normalized vertical dimension, η, have been determined and are presented in 
Figures 12–14. Near the wall, at η = 0.200, the rapid production of coherent and chaotic structures is 
indicated in Figure 12. As we move further out in the boundary layer, at η = 1.402, the coherent 
structures are more prominent, with a smaller number of pulses of chaotic behavior in between, as 
indicated in Figure 7. However, at the vertical location of η = 2.206, the rapid production of smaller 
transient coherent structures occurs again, as indicated in Figure 13. Finally, at the vertical location of 
η = 3.414, Figure 14 indicates transient coherent structures of significant duration, with only several 
pulses of high spectral entropy rate production separating the coherent regions. Beyond the boundary 
layer location of η = 4.221, the solutions of the nonlinear deterministic equations do not indicate the 
presence of instabilities [5]. 
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Figure 11. The spectral entropy rate values are shown for several values of the applied 
amplification factor for the imposed pressure disturbance. Parameters: x = 0.08, z = 0.003, 
η = 1.402, K = 0.20, ω = 8.00. 
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Figure 12. The spectral entropy rate is shown for the vertical location of η = 0.200. 
Parameters: x = 0.08, z = 0.003, η = 0.200, K = 0.20, α = 1.00, ω = 8.00. 
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Figure 13. The spectral entropy rate is shown for the vertical location of η = 2.206. 
Parameters: x = 0.08, z = 0.003, η = 2.206, K = 0.20, α = 1.00, ω = 8.00. 
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Figure 14. The spectral entropy rate is shown for the vertical location of η = 3.414. 
Parameters: x = 0.08, z = 0.003, η = 3.414, K = 0.20, α = 1.00, ω = 8.00. 
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The integration in time of the modified Townsend equations yields the time series of the fluctuating 

axial, vertical and span wise velocity wave vectors. These series are oscillatory in nature. The 
maximum magnitude of the vertical velocity wave vector decreases from a significant level near the 
wall to a much lower level further out in the boundary layer. Figure 15 presents values of the 
maximum vertical velocity wave vector for several vertical boundary layer stations as a function of the 
applied frequency factor.  
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Figure 15. The maximum amplitude of the vertical velocity wave vector is shown for 
several vertical locations in the boundary layer as a function of the frequency factor. 
Parameters: x = 0.08, z = 0.003, K = 0.20, α = 1.00.  

 

6. Discussion 

Considerable progress has been made in the development of hypersonic propulsion systems. In the 
development process, it has been found that unsteady shock interactions can occur on blunt body 
forms of parts of the inlet structure. These interactions produce pressure disturbances that are imposed 
on the underlying subsonic boundary layer, which is formed over the body surface. The fluctuating 
vertical velocity wave vectors shown in Figure 15 are orders of magnitude greater near the wall as 
compared with the values near the region of transient coherent structure production. These results 
indicate that the boundary layer velocity gradients near the wall are much more receptive to the 
imposed pressure disturbances than are the outer regions of the boundary layer. 

By embedding modified Townsend equations for the fluctuating velocity wave vectors in the 
laminar boundary layer environments in both the axial and the span wise planes, and introducing sets 
of internal and external control parameters, it has been shown that these boundary layers are receptive 
to the imposed pressure disturbances.  

The spectral entropy rates, determined from the resulting nonlinear time series describing the 
fluctuating velocity wave vectors, indicate the production of transient chaotic, coherent, and then 
chaotic flow structures at each normalized vertical boundary layer location examined.  

In a study of the core dynamics of coherent vortex structures, Pradeep and Hussain [42] describe 
the formation of thin sheaths of intense vorticity surrounding regions of low enstrophy, which we have 
described as coherent structures. These sheaths collapse and form with the onset and dispersal of the 
regions of coherent structures. The sharp peaks of the spectral entropy rates apparently represent sharp 
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boundaries between the formation and the dissolution of the regions of coherent structures. Since the 
peaks represent a sharp break from one structure to the next, they must represent distinct boundaries in 
the nature of the flow structures. Thus, for a specific location in the boundary layer, and for a given set 
of control parameters, the time-dependent values of the various wave number vectors and the variation 
of the total wave number induce a time sequence of the generation of flow structures, each consisting 
of a sheath of chaotic motion undergoing a transition to a coherent structure, which then undergoes 
transition to a following sheath of chaotic flow structure. The sharp peaks in the spectral entropy 
pulses apparently indicate that each flow structure is individually separate from the others.  

It is particularly interesting to note that for each of vertical boundary layer location and each set 
of control parameters examined, the spectral entropy rate pulses have a maximum value in the range 
of 0.325 ± 0.02. An asymptotic value of 0.325 ± 0.02 for the Kolmogorov entropy for the Hénon map 
is given in [41]. The positive nature of the spectral entropy rates in our results thus implies chaotic 
behavior within the pulses. Thus, the results obtained for the boundary layer instabilities indicate the 
production of transient coherent structures separated by regions of chaotic transitions. For the vertical 
station j = 22 (η = 4.221), no instabilities are observed (Figure 15 of [5]). We have not explored the 
outer part of the boundary layer. 

7. Conclusions

The complete set of equations for the fluctuating velocity wave vectors within a boundary-layer 
flow has been reduced to a set of equations similar to the Lorenz equations with the introduction of 
sets of internal and external control parameters. The internal control parameters are the velocity 
gradients for the vertical boundary-layer stations in both the x-y and z-y planes, the z location for the 
z-y velocity gradients and the linearization factor K in the modified Townsend equations. The external 
parameters are the frequency factor and the amplification factor of the imposed pressure disturbance 
from the blunt body unsteady shock interaction process. The measure for the effect of the values of the 
various control parameters is the spectral entropy rate calculated from the power spectral density 
properties of the nonlinear time series output of the deterministic equations. For a given set of internal 
and external control parameters, the spectral entropy rate results show time-dependent transitions from 
chaotic to coherent motion, then back to chaotic motion, in a repetitive manner within the nonlinear 
time-series output. The results indicate that the Falkner-Skan boundary layer profiles in both the x-y 
and the z-y plane are required for the prediction of the boundary-layer instabilities. For the z-position 
control parameter, the transition rates are high for the z location nearest the x-y plane, decreasing as 
the location moves away from the x-y plane. For the linearization parameter near zero (with the full 
nonlinear terms included in the deterministic equations), the transition rates are high, while vanishing 
completely when the nonlinear terms are eliminated from the equations. For the external control 
parameters, the frequency factor has the dominant effect, increasing the rate of spectral entropy 
production as the frequency factor increases in value. The external amplification factor seems to have 
essentially little effect on the spectral entropy rate production. Three important observations can be 
noted from these results: First, the spectral entropy rate pulses have positive values in the range 
of 0.325 ± 0.020, indicating possible transient chaotic sheath behavior surrounding the coherent core 
of the structures. Second, spectral entropy rates at vertical locations just below the midpoint on the η 
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scale indicate the time-dependent production of significant vortex-like structures, and third, the 
maximum vertical velocity wave vector magnitudes appear significantly higher near the surface than in 
the vortex-like production regions. This result has particular significance for surface heat-transfer 
considerations. 
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