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Abstract: Handwriting is an important modality for Human-Computer Interaction. For
medical professionals, handwriting is (still) the preferred natural method of documentation.
Handwriting recognition has long been a primary research area in Computer Science.
With the tremendous ubiquity of smartphones, along with the renaissance of the stylus,
handwriting recognition has become a new impetus. However, recognition rates are still
not 100% perfect, and researchers still are constantly improving handwriting algorithms. In
this paper we evaluate the performance of entropy based slant- and skew-correction, and
compare the results to other methods. We selected 3700 words of 23 writers out of the
Unipen-ICROW-03 benchmark set, which we annotated with their associated error angles
by hand. Our results show that the entropy-based slant correction method outperforms a
window based approach with an average precision of +6.02° for the entropy-based method,
compared with the £7.85° for the alternative. On the other hand, the entropy-based skew
correction yields a lower average precision of £2.86°, compared with the average precision
of +£2.13° for the alternative LSM based approach.
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1. Introduction

Since the introduction of entropy to information theory [1], a lot of research has been concerned with
refining and applying the term entropy for different fields of application.

In our work presented in this paper, we study the impact of entropy for the field of handwriting
recognition. Why handwriting? Handwriting is more than just the use of pen and paper. It can
also be seen as a very natural way of communication between humans and computers. Even though
keyboards have proven to be an effective interface, the advancement in computational technology calls
for a new or at least different way of human-computer interaction. The ultimate goal here is to make the
communication with electronic devices feel as natural as communicating with other humans, without the
restriction of an additional learning process. This puts speech recognition and handwriting recognition
in the focus of future user interfaces.

In 2007 Steve Jobs argued “Who need a stylus?”. Yet interestingly, Apple has made a patent
application on stylus [2], and the use of stylus even dates back to the Apple Newton [3]. Undoubtedly, it
is true that touch input is well accepted and easy to learn, even amongst non-computer literate people and
elderly people [4,5]. Devices with touch screens are useful in hospitals, where patients can, for example,
fill out questionnaires while they are waiting for their examination, for the reception by the doctor, or
during other spare times [6].

Direct input of questionnaire answers by the patients makes the error prone and time consuming
copying of completed paper sheets unnecessary. This saves time, which can be used for direct contact
with the patient, thereby improving the overall quality of the interaction between doctors and their
patients. Although touch is a very intuitive way of interaction, it was shown that in a professional
medical context, styluses are preferred over finger-based input [7].

Input via stylus has the advantage of being more precise and the action is similar to the user’s
accustomed writing on sheets of paper—and paper is still a preferred medium in the hospital [8]. For
addressing the problem of imprecise touch using fingers, Vogel and Baudisch [9] developed a system
called Shift, which makes it possible to make more precise selections using a finger. Shift shows a copy
of the touched screen location and shows a pointer representing the selection point of the finger if the
finger is placed over a small target. However, for further improving the precision of touch input via
finger it must be better understood how people touch touch screens [10].

Another problem with touch input using fingers is that the user’s “fat fingers” also cover the areas the
user intends to touch. To circumvent this problem, [11] developed a mobile device that can be operated
from the back. In addition, by using back-of-device interaction, it is possible to create very small touch
devices [12].

Despite all these facts, medical professionals (medical doctors, nurses, therapists, first
responders, efc.) are more familiar with dictation and handling a stylus, since they are used to handling
a pen all the time [7,13], despite the issue of poor handwriting in medicine generally [14].

As regards input technology, the most recent development on the mobile market is at contrast to
the preferred input technique of professionals in the medical domain, whereas from the viewpoint of
Human-Computer Interaction (HCI), handwriting can be seen as a very natural input technology [15].

Studies have shown that a recognition rate below 97% is not acceptable to end users [16]. The challenge
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in developing such a system is the fact that the art of handwriting is very individual, making a universal
recognition of all handwriting particularly demanding [17].

A typical example is the case of incoming patients in the triage (aka EBA: first clinical examination),
where it is similar to an emergency: Rapid patient information collection is crucial. Promptly and
accurately recorded and well communicated vital patient data can make the difference between life and
death [18,19]. Consequently, the data acquisition should have as little disruptive effect on the workflow
of the medical professionals as possible. In the past, solutions for data input on mobile applications have
been tested in the field [7,15,17,20-23].

Due to the fact that emergencies are usually complicated by difficult physical situations, special
attention has to be given to the design of information technology for emergencies [24]. A key issue
of any such information system is the acquisition of textual information. However, extensive text entry
on mobile devices is principally to be avoided and a simple and easy to use interface, in accordance with
the maxim less is more, is a supreme necessity [22].

The basic evidence is that entering data into a mobile device via a stylus is slower, more erroneous
and less satisfactory for end users than entering data via a QWERTZ (de) or QWERTY (us) keyboard,
as has been demonstrated in some studies [25,26], however, the use of a stylus is much faster and more
accurate than using finger touch [7].

We will start by talking about the theory behind handwriting and briefly explain how online
handwriting recognition is practised today. After explaining the mathematical background, we will
go into related work and talk about how entropy has been used in the field of handwriting for the
last 35 years. There is very little application, as of today, in the field of online handwriting recognition.
This enabled us to carefully re-implement those processes step by step. After presenting our results,
we will conclude this paper by talking about possible future application of entropy in the field of
handwriting recognition.

1.1. History of Handwriting Recognition

Handwriting has a long tradition in mankind and goes back to the early cave painters [27]. The
ingenious idea of captivating human thoughts into signs and symbols (pictures, later with letters) was a
major cultural step. Plato (428-328 BC) described the human memory as a wax tablet and the Romans
used a stylus (Latin: stilus) and wax-tablet (Latin: tabula cerata) as handwriting capturing tool, which
looks astonishing similar to our stylus and touch-tablets of today (see Figure 1).

With the advent of modern technology, more sophisticated ideas of captivating handwriting emerged:
The first patent was issued in the US to Elisa Gray in 1888 for an electrical stylus for captivating
handwriting and transmission via telegraph. The first patent on handwriting recognition, as we know
it still today, was issued in 1914 and in 1915 to Hyman Eli Goldberg on the on-line recognition of
hand-written numerals to control a machine in real-time. In 1945 handwriting recognition was also
described by Vannevar Bush within the context of the MEMEX (Memory expander) vision, followed by
real-world implementations in form of the Stylator in 1957, the RAND tablet in 1961 and the electronic
ink project GRAIL in 1969. For detailed information on the Archaeology of handwriting recognition
refer to [28].
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Figure 1. A roman writer from Constantinian time (306-337 AD) holding a wax-tablet
(Latin: hexaptychon) in his left hand and a stylus in his right hand (Sculpture in the
Lapidarium of the Landesmuseum Joanneum in Graz, Eggenberg, picture taken 7 November
2012 by the authors.

1.2. Model of Handwriting

Handwriting recognition (HWR) methods can generally be classified into offline and online
recognition. While offline handwriting recognition deals with a bitmap presentation of the handwriting,
online handwriting recognition uses the pen trajectory as input. Since in this paper we are concerned
with online handwriting recognition, we model the continuous handwriting input signal given by an input

device as
X(t) = (x(t),y(t), p(t)" (1)

It contains the coordinates z(¢) and y(¢) as well as the pressure p(t) of the stylus [29]. It might be
interesting to note that some devices also provide azimuth and inclination of the stylus [30]. After the
digitalization process, X () is considered as a discrete time series sampled at different points ¢ € T" over
time. Let the sampling times be %, ¢4, ..., t,, satisfying 0 < t, < t; < ... < t,. If the time points are
equally spaced (i.e., |t;41 — t;| = 7 foralli = 0,1,...,n — 1, 7 > 0 some constant), we call the input
signal regularly sampled.

Let d(X(t;), X(tir1)) = ((z(tiyr) —2(t:)? + (y(tis1) —y(ti))Q)l/2 be the Euclidian distance
with respect to the coordinates x(¢) and y(¢). A sampling of the handwriting trajectory satisfying
d(X(t;), X(ti+1)) = 9, for some constant § > 0 and i = 0, 1,...,m — 1, is referred as the equidistant
re-sampling of the time series X (¢). One notices that ¢,, < t, holds and in general the equidistant
re-sampling is not regular (see Figure 2).
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Figure 2. Example of a regularly sampled input signal (left) and its equidistant re-sampling
(right).
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2. Theoretical Background

Handwriting recognition in general has to overcome a lot of obstacles. To understand handwriting
recognition, one has to recognize a few basic things about handwriting in general. Every writer differs
in his handwriting-style from one another in a unique way. Sometimes they differ so much that it is even
hard for the other person to read it.

Many people do not write in distinct letters with clear spacing between them. Often letters tend to run
together, making it harder to separate them. But even if one can segment the characters, identification
remains a problem. Some characters, such as I-1, O-0, 1-1, 5-S, 6-G tend to look alike, or even the same,
again depending on the writer [31]. Hence, sometimes characters are only distinguishable through the
context in which they occur [32].

Handwriting recognition is still considered an open research problem, mainly due to the substantial
individual variation in appearance. Consequently, the challenges include the distortion of handwritten
characters, since different people may use different style of handwriting, direction, etc. [33].

If a system needs to deal with the input of different end users, a training phase is required to enable
the system to understand the user’s art of writing. The data received in this phase is stored in a database.
During the recognition process, the system compares the input with the stored data and calculates
the output.

Handwriting can be characterized as a sequence of basic strokes connected according to a rule.
Consequently, recognition can be seen as a matching process, used as the fundamental principle in a
handwriting recognizer. Early work in handwriting recognition dates back into the 1960s [34].

2.1. Handwriting Properties

Every written language has an alphabet consisting of different characters and most of the time a
handful of symbols for punctuation. Handwriting typically consists of different strokes done by the
writer. A stroke is the path of the tip of a pen from pen down to pen up. There can be more than one

stroke per letter, but there can also be more than one letter per stroke.
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A basic principle behind any written language, and the condition that makes communication possible,
is that the difference between different characters is greater than the difference between multiple
drawings of the same character [31]. An example for different drawings of the letter “R” can be seen in
Figure 3. There are however exceptions, as was mentioned before. Some characters, like O and 0, tend
to look alike and are sometimes only distinguishable through the context in which they occur [32].

Figure 3. Different drawings of the same character.

R K X K

In the Latin alphabet, all characters vary in their static and dynamic properties. Static properties
would be things like size and shape, while dynamic properties are typically things like stroke number
and order [31].

2.2. The Process of Online Handwriting Recognition

The process of online handwriting recognition can be broken down into a few general steps:
preprocessing, feature extraction and classification [35].

The purpose of preprocessing is to discard irrelevant information in the input data that can
negatively affect the recognition [36]. This means speed and accuracy. Preprocessing usually consists
of binarization, normalization, sampling, smoothing and denoising [35].

The second step is feature extraction. Out of the two- or three-dimensional vector field received
from the preprocessing algorithms, higher dimensional data is extracted. The purpose of this step is to
highlight important information for the recognition model [32]. This data may include information like
pen pressure, velocity or the changes of writing direction.

The last big step is classification. In this step various models are used to map the extracted features to
different classes and thus identifying the characters or words the features represent.

2.3. Impact of Skew and Slant in Handwriting Recognition

Tang et al. [37,38] pointed out the potential of preprocessing by introducing the Entropy-Reduced
Transformation, where the goal is to reduce the entropy of the input data set. Since distortions in the
input data, like skew or slant, increase the entropy of the data set, they increase the variations within
samples that represent the same class and thus making it more challenging for the recognition process to
yield good results. While slant correction can often be ignored in writer dependent systems, where the
slant might be consistent for the writer, it is especially important for writer independent systems. The
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goal is to minimize the variation between different drawings of the same character. Slant correction is
also useful to simplify the segmentation procedure.

Brakensiek et al. [39] investigated the influence of skew- and slant-correction in the recognition rate,
while using entropy-based techniques. In the case of a writer independent system, they reported an
increase of 0.9% to a total recognition rate of 86.7% for a test set of 4153 words. They have also shown
that the recognition error of their writer independent system can be reduced by about 7% (compared
with only re-sampled data). This tells us that good solutions for skew- and slant-correction would in fact
be useful.

Kosmala [32] reported a precision of about £1° for an entropy based skew correction approach, with
the restriction of enough data points being available. For an entropy based slant correction approach he
reported an average precision of £7.31°.

Guerfali and Plamondon [40] used the least squares method for skew correction and reported a
precision of +1.3° for a range of allowed angles of £30°. For their window based slant correction they
have shown an average precision of £6°, which they considered as acceptable, because the accuracy of
the subjects slant was about +5° [40].

2.4. Challenges of Skew- and Slant-Correction

The effectiveness of skew- and especially slant-correction is still very much dependent on some
properties of the input data. Short words, for example, can be a big problem for skew correction. Also,
the range of allowed angles can significantly influence the correction precision. A bigger range of angles
allow for bigger outliers.

For words written without an available reference line, the base line might not be unique, as the
characters tend to vary in size. Also some writers may vary in the shearing angle even within the same
word, rendering slant correction with only one angle to describe the distortion impractical. An example
for a slant variation of about 13° can be seen in Figure 4. Thus, automatic identification of a unique slant
angle might not always be possible—not even with human intervention. To emphasize this, Guerfali
and Plamondon [40] asked ten subjects to determine the slant of each one of 275 words. They used the
averages of the selected angles as references, while the standard deviations were treated as indication of
an acceptable error. Their results have shown that the standard deviation is about +5°. This does not
necessarily apply for our test results. Nevertheless, it shows that there is in fact an ambiguity involved.

There are promising approaches using local slant. They do so by employing dynamic programming
techniques to apply different shearing angles at different points within the word [41]. However, as
the algorithm has more freedom to make errors within a word, there are more robustness issues to
address [42].
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Figure 4. Challenges of slant correction. The angle ¢ varies between 30 and 43 degrees.

phi=30.1" SLANT: Define the error angle. phi=43"°

2.5. Mathematical Background

In this section we describe the mathematical background necessary to understand the methods we
mention in this paper. We start by defining the entropy along with a partitioning. We will use them as
correction mechanism for rotation distortions (skew) and sheering distortions (slant).

Let P = {pi1,po,..., i} be a discrete probability set of a variable X, then the entropy H(X) is

defined as l

== p;-logp 2)
j=1

Denote (minz(t) = by < by < ... < by = max x(t)) a partition for an equidistant re-sampling of x(¢)
with some constant mesh |b; — b;_;| = w > 0, j = 1,2,...,[. The partitioning resembles a binning,
which can be used to determine the properties p;

bi= m—i—lz:XJ )

with x; being the indicator function for the j-th bin

1, bj—l < l‘(t) < bj
0, otherwise

X;(x(t) = { (4)

As an alternative method for skew correction, we use the least square method to identify the error
angle alpha [40]. Let n be the number of minima in X, (xy,, ;) be the coordinates of the minimum
point X;, and ¢; be the sampling instant of the i-th minima, then the error angle « is defined as

”‘i(ti'yti)—iti'iyti

o = arctan =l - Z:nl = )
n-y t?— <Z ti>
i=1 i=1

Since we deal with distortions, to be precise with rotation and sheering distortions, we need to define

correction mechanism once the error angles have been defined.



Entropy 2012, 14 2332

Let X be the input signal to be rotated by an angle «.. Then the skew corrected signal X is defined as

X(6) = R - X(1) (©)
with R, being the rotation matrix
cosae —sina 0
R,=| sina cosa 0 @)
0 0 1

Let X be the input signal to be slanted by an angle ¢. Then the slant corrected signal X’ is defined as

X'(t) = 8- X(t) (8)
with S, being the sheering matrix
1 —tan¢ 0
Se=10 1 0 )
0 0 1

3. Related Work

Entropy found its way into pattern recognition in a number of ways. In this paper, however, we
will focus on handwriting recognition. To be specific, we focus on the online handwriting recognition.
However, entropy is also used in optical character recognition. In this section we will briefly describe
how entropy is applied in the case of the offline handwriting recognition and the writer identification in
online handwriting.

Sesa-Nogueras et al. [30] analyzed, from an information theory perspective, the gestures produced by
human beings when handwriting a text. They used additional handwriting features, such as azimuth and
inclination of the stylus. By analyzing the entropy of on-surface and in-air trajectories, which means that
the stylus is either touching the surface or is in the air transitioning between strokes, they showed that the
amount of information is similar in both trajectories, which in turn appear to be notably non-redundant.

Handwritten characters vary a lot, which consequently requires measures that reflect the variation for
a given set of data. For this purpose, Kim et al. [43] defined four properties that a variation measure for
character data is supposed to satisfy.

* Boundedness: because a variation measure should be independent of the size of the image and the
number of images in a single data set, i.e., the variation values should be bounded by a constant
maximum and a constant minimum;

* Independency: because a variation measure should be independent of the size of the white area in
an image as well as the pen used to create images;

* Monotonicity, because a variation measure should increase monotonically as the grey area of a
data set increases;

* Constancy, because a variation measure should be independent of the complexity of the character
itself.
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The authors demonstrated that none of the variation measures proposed at that time satisfied all four
properties. Consequently, they introduced a new variation measure, Average Entropy Difference, and
showed that it satisfied all four properties.

Average Entropy Difference Let C be defined as

C = {(z,y) | Mz,y) # 0} (10)
h(z,y) = —pl(x,y)logyp(z,y) — (1 — p(x,y))logy(1 — p(x,y)) (11)

where h(x,y) is the entropy of the point (x,y). Denote |C| the cardinality of C, then the Average Entropy
Difference V; is defined as
X Y
= y), |C|#0

Vv, = |c|m2:1y;7/($ y), |C|# (12)

with
h(z,y)

a-max {|h(z + L y) — h(z,y)|, |h(z,y + 1) = h(z,y)[} + 1

being the Entropy Difference of a point (x,y). Since v(x,y) = 0 for (x,y) ¢ C, the Average Entropy

v(z,y) = (13)

Difference is also defined as
Vy = ﬁ > vzy) (14)
(z,y)eC
Park et al. [44] proposed a quality measurement method of gray-scale handwriting data to compare
different data objectively. For this they defined an Extended Average Entropy, as an extension of the
Average Entropy (AE) in binary-scale. They intended to directly measure the handwriting qualities in a
given gray-scale character database. Moreover, they measured the quality of each sample in a class, and
classified all data within a class into several groups according to their handwriting qualities. The results
of Park et al. confirmed that their method was useful for measuring the qualities of handwritten Hangul
characters (the Korean alphabet). This Extended Average Entropy (EAE) works as follows:

Extended average entropy Given M images of size X X Y with L gray levels | = {0,1,2,...,L — 1},
let the gray level of a pixel (x,y) be denoted by I(x,y). Then, the frequency of the gray level | at position
(x,y) is defined as

M
F(z,y;1) = ) Cou(w, ;1) (15)
m=1

where Cy,(z,y;1) = 1 when I(x,y) = I, i.e., the gray level at position (x,y) is equal to l. Therefore,
the frequency has a value of 0 < F(x,y;l) < M. Furthermore, let P(x,y;l) be probability of the gray
level | at position (x,y) and H(x,y) be the corresponding entropy with a logarithmic base of L, then
the extended average entropy (EAE) in gray-scale is defined as

N 1 X Y
K ZHZZH(%?/) (16)
r=1 y=1
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4. Materials and Methods

In this section we will go through preprocessing step by step, while focusing on the normalization
techniques using entropy. In particular, we will focus on performing normalization techniques based
on the idea of Cote et al. [45], as well as Kavallieratou et al. [46] and adapted to online handwriting
recognition by Kosmala [32] as well as Schenk and Rigoll [29].

We will also describe alternative methods for the normalization processes, like skew correction with

the use of the least squares method described by Guerfali and Plamondon [40], which we will later use
to benchmark the entropy based methods against.

4.1. Sampling

Most of the time sampling, sometimes referred to as filtering [40], is performed after normalization
and may as well be the last step of preprocessing. However, it is also common to start the preprocessing
with sampling as well, since it is a low cost process that can significantly increase the performance and
accuracy of the other preprocessing steps, especially for normalization techniques that use the projection
profile of the input data along an axis, as we will explain further down.

There are usually two reasons to perform sampling. One is to remove unnecessary detail in the form
of over-fitting (too many points representing the drawing). The other one is to remove artifacts like
pen velocity out of the input data. Keep in mind that the pen velocity could still be interesting for the
recognition [47]. In that case it has to be extracted and stored before applying the sampling process.

As mentioned before, the continuous input signal X (¢) is in general regularly sampled, resulting in
an equidistant time series data concerning the time dimension [32]. In some cases, such as in on-line
handwritten whiteboard note recognition, the digitalized data may neither be equidistant in time nor
in space [29]. However, the goal of sampling remains the same, namely to re-sample the data to

be equidistant in space, ideally without distorting the data. An example for data before and after the
sampling process can be seen in Figure 5.

Figure 5. Visualization of the re-sampling process. The regularly sampled data (left) and its
equidistant re-sampling (right).
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4.2. Normalization

The normalization process is concerned with removing the variation of size and position information
out of the input data. Most of the time this step consists of scaling and translating, in order to define a
common base for recognition and give the writer the freedom to define the size he or she wants to write in.
However, depending on the freedom the writer may have, it may also include correction mechanism for
skew and slant. Again, the purpose of normalization is to define a common base, so that the recognizer
does not have to deal with different sizes, skews and so forth.

4.2.1. Skew Correction Based on Entropy

Skew correction, or sometimes referred to as baseline drift correction [40], is aimed at bringing the
writing direction to the horizontal level.

A typical user interface for handwriting today contains some sort of indication on where to draw your
character, word or sentence [48,49]. This may be in the form of a line or even a box. Hence, usually the
drawing has the right orientation and does not have to be rotated. But if this is not the case, and the user
is presented with the freedom to choose the user’s own point of reference, the input data might have a
skew that needs to be corrected.

If skew correction needs to be done, the first issue that has to be identified is the error angle ag. This
is the angle between the base line and the horizontal line, as can be seen on the left side in Figure 6.

Figure 6. Visualization for the error angles o and ¢, for performing skew- (left) or slant-

(right) correction. The right figure is already skew corrected.
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Once the error angle « has been identified, the data points have to be rotated. With respect to
Equation (6), let X (¢) be the time series after an equidistant re-sampling then the corresponding time
series after the rotation is defined as

Xo(t) = Ry - X(1) (17)

A promising approach described by Kosmala [32] to identify the error angle « is to calculate the
projection profile histogram p, ;(a) for a range of binns 1 < j < [. The minimum of the entropy
distribution of p, ;(«) for a range of angles « is then calculated.

We state the following assumption:

Hypothesis 1 The slope angle of the baseline, of an equidistant re-sampled time series representing a

Latin based word, is closest to 0 ° when the most y-coordinates of the time series are concentrated within

some interval [Ya, Y, |Ya — Ub| < Reore, Where heore is the height of the lower case letters.
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Note that the height of the lower case letters is unknown. However, the entropy of a projection profile
histogram gives a good indication on degree of order in the distribution. Hence if most of the data points

are located within a small interval, the entropy is supposedly at its minimum.
We define projection profile histogram it in respect to Equation (3) for the y- axis and a range of

different angles « as

m+1

1 m
Py(e) = > xi(a(t)) (18)
=0
with y,(t) being the y-component of X, (¢). An example for such a histogram can be seen in Figure 7.

Figure 7. Skew correction of a equidistant re-sampling of the handwriting trajectory X (¢). It
was performed with the help of the projection profile histograms p, ;(c). This image shows

the histogram for the corrected angle of oy = 22°.
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After calculating the projection profile p, ;(c), the corresponding entropy H, ,(.X') is computed based

on Equation (2) as
!
Hyo(X)=— Zpy,j(a) -logy py,;(cv) (19)
j=1
vy is set to the angle o where H,, ,(X) is at its minimum, as can be seen in Figure 8.

Figure 8. Skew- and slant-correction performed with the entropy of various projection
profile histograms [29,32]. These images show the entropy distributions for different angles.
The error angles oy and ¢ are set to the angle where the corresponding entropy distribution
is at its minimum. Note that the entropy distribution of H, 4 (right side) is in general not as

distinctive as the one of H, . (left side).
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This approach for skew correction supposedly can yield a high precision of about £1 °, if there are
enough data points available [32].

4.2.2. Skew Correction Based on Least Squares Method (LSM)

An alternative approach for skew correction based on the least squares method was introduced by
Guerfali and Plamondon [40]. The idea is that the writing baseline is defined as the best fitting straight
line passing through the minima of the character drawings [40].

Their approach is divided into two steps. The first step is aimed at detecting major deviations, which
can cause errors in locating the real minima of the character drawings. The whole drawing is divided
into eight equally spaced regions. For each region, the center of mass of all points within the region is
calculated. The eight resulting points serve as input for the LSM to calculate an approximation for the
real baseline. The angle « is set to the angle between the calculated baseline and the horizontal.

The second step uses a retroactive process consisting of successive estimations and rotations until
satisfactory results are achieved [40]. For this purpose the current minima of the drawing are located. To
eliminate superfluous points, only minima within the median zone are used as input for the LSM. Again,
the angle « is set to the angle between the calculated baseline and the horizontal. The second step is
repeated until an estimated baseline angle of less than £2 ° is reached [40]. Both steps are visualized in
Figure 9.

Figure 9. Skew correction performed with the least squares method [40]. Step 1 uses the
centers of mass of eight regions to compute the regression line can be seen on the left. Step 2

uses the minima within the median zone for the regression line on the right.

4.2.3. Slant Correction Based on Entropy

Slant correction is a little more problematic than skew correction. The slant is described by the error
angle ¢g, which is the angle between the vertical line and those lines of the drawn text that are supposed
to be vertical. Also, the slant may vary along the drawing and might not be the same for all characters as
was mentioned in Section 2.4 and can be seen in Figure 4.

The error angle ¢y describing the slant can be computed similar to the error angle oy mentioned in
entropy based skew correction. The difference is that instead of calculating the relative occurrence of the
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data points along the y-axis, the relative occurrence along the z-axis p, ;(¢) is used. The idea is that the
entropy of the relative occurrence is at its minimum when all characters are oriented straight up [29,32].
However, the minimum of the entropy distribution might not always be unique, or correct for that matter.
In a lot of cases, slant correction is not deemed to be applicable enough just now [32].

Once the error angle ¢, has been identified, the slant correction can be performed similar to the way
the skew correction was performed. In respect to Equation (8), let X, (¢) be the time series after skew
correction then the corresponding time series after slant correction is defined as.

Xo(t) = Sy - Xa(t) (20)

For slant correction, we define the projection profile histogram with respect to Equation (3), but this

time for the x-axis and a range of different angles ¢

Pai(0) = —— ) x;(@e(t) 1)

with z4(t) being the z-component of X 4(¢).
After calculating the projection profile histogram p, ;(¢), the corresponding entropy H,. , is computed

similar to skew correction and based on Equation (2).

!
Hyp(X) = = ) paj(®) 1085 1o j(9) (22)
j=1
¢y is set to the angle ¢ where H, ,(X) is at its minimum, as can be seen in Figure 8.

4.2.4. Script Line Identification

Script line identification is an important step in the normalization process. The primary purpose
of the script lines in preprocessing is size normalization. However, they may also serve for feature
extraction [47]. In fields like whiteboard note recognition, where the script lines are much harder to
detect, the script line identification process may also serve as a form of de-noising, in the sense that the
data points might be modified in the process [47].

There are four lines that have to be identified. Top line and bottom line are where the maximum and
minimum y coordinates of the data points are, and the whole drawing is between top and bottom line.
However, those two lines alone are not enough information for scaling, because ascenders and descenders
may distort the font size information of the drawing. Good indications for the font size would be the
height of the lower case letters in the drawing. For that purpose, corpus line and base line have to be
identified. An example for script lines can be seen in Figure 10.

One approach to compute corpus- and base line is to use the relative occurrence p, ; of the input
data as it was described in skew correction and compute (or in the concrete case approximate) the first

derivative [29]
d
= Dy 23
Pyi =3 jpyd (23)
The minimum and maximum of the derivative are a good indication for the script line positions in
general. Of course, the accuracy depends a lot on the proper alignment of the text [29]. A visualization

of this approach can be seen in Figure 10.



Entropy 2012, 14 2339

Figure 10. Visualization for script line identification utilizing the occurrence histogram
along the y-axis. Note that in this example the corpus- and the base line may not be optimal.
The reason for that are variations in size and position of the text, probably caused by the lack

of reference lines in the writing process.
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Another way to compute the corpus- and the base line would be by putting regression lines through
the upper and lower turning points of the data itself [32], or a combination of both approaches [40].

4.2.5. Slant Correction Based on Window

Another approach for slant correction was proposed by Guerfali and Plamondon [40] and is based on

an offline slant correction method introduced by Bozinovic and Srihari [50].

First, the script line identification (See Section 4.2.4) is performed in order to identify three possible
regions: the upper zone between top line and corpus line (ascenders), the lower zone between base line
and bottom line (descenders) and the central region of the middle zone, which is between corpus line and
base line. Within those three regions, observation windows are extracted. Each one of those windows is

then divided into an upper part and a lower part [40]. For every existing part, the center of mass of all
data points within the part is computed. The local slant of a window is then defined as the slope angle
of the line connection the mass centers of the upper and lower part of the window. The error angle ¢, of

the word is then set to the average of the local slants.

5. Results and Discussion

In this section we will describe our implementation of the previously mentioned methods, as well as

discuss the results we obtained in the process. Where possible, we use the same notation and variables

for the pseudo-code algorithms, as we did in Section 4.

5.1. Implementation

We start our preprocessing with sampling, as it is described in Section 4.1. For the interpolation of
the points, we used the Euclidean distance, which is a straight forward approach. Given enough data

points to start with, there is no visible distortion of the input data.
The next step is skew correction. We implemented the entropy-based approach as well as the one

based on the least squares method. Both methods were described earlier.
For the entropy based approach we decided to copy the input data set and rotate the copy for a range

of different angles. The algorithm for rotation is described in Algorithm 1.
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Algorithm 1 Rotating the data points in X for o degree

Require: K = number of data points in X

1: function ROTATEDATAPOINTS(X, K, o)

2 X, := new vector of size K

3 fork=1— Kdo

4 Xolkl.x = X[k].o - cos(a) — X[k].y - SIN(a)

5 Xolkl.y = X[k].x - SIN(a) + X [k].y - cOS(a)

6: Xolk].p = X[k].p > Optional: pen pressure
7 end for

8 return X,

9: end function

With rotateDataPoints” defined we can calculate the projection profile p,, ;(«a) for a range of different
angles and with those we can compute the entropy H,,(X) for each angle. We implemented the
algorithm as it is described in Algorithm 2. A screenshot of data after the entropy based skew correction

process can be seen in Figure 11.

Algorithm 2 Calculate the entropy H, ,(.X) for the projection profiles p, ;(«) for a range of angles «

Require: K = number of data points in X
Require: VA € N, 1 <k < K: ynn < X[kly AND  ynax > X[k]y
Require: [, apin, max €N AND — 35 < apin < Qpax < 35

1: function CALCULATEHY (X, K, Qmin, Qmaxs Ymins Ymax, [)

2 range < |Qmax — Qmin|

3 H, := new vector of size range > Denote the index range from 