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1. Introduction

According to Shannon’s sampling theorem, a signal f ∈ B2
σ, i.e., a bandlimited signal (see Section 2

for the exact definition) can be completely reconstructed in terms of samples, equidistantly spaced apart
the real axis R. Likewise one can reconstruct the derivatives f (s) or the Hilbert transform f̃ and its
derivative f̃ (s) = f̃ (s) just in terms of samples of f . Almost immediate applications of these results are
Boas-type formulae for arbitrary order derivatives of such signals as well as of their Hilbert transforms,
used in numerical analysis for computation of those derivatives.

The essential aim is to extend these results to non-bandlimited signals, in fact to the largest class,
denoted by F s,2 below, for which the Fourier transform, the basic tool of this approach, can be employed
effectively. Basic is the fact that by these extensions the exact reconstruction formulae have to be
equipped with remainder (error) terms. The errors involved will be measured in terms of the distance of
f from the space B2

σ of bandlimited function, a concept just introduced by the authors for the extensions
of basic relations for Bernstein spaces B2

σ to larger function spaces.
To become familiar with the new approach, the classical Shannon sampling theorem for derivatives of

B2
σ-signals, namely Theorem 3.1 below, can be extended to the larger space F s,2 by adding the remainder

term RWKS
s,σ f of (6) to the expansion for bandlimited signals (5). This remainder, the aliasing error, can be

estimated (cf. (7)) by:

∣∣(RWKS
s,σ f)(t)

∣∣ ≤√ 2

π

∫
|v|≥σ

∣∣vsf̂(v)∣∣ dv =

√
2

π
dist1(f

(s), B2
σ)

The integral on the right-hand side is the above mentioned distance of f (s) from the space B2
σ. Its

behaviour depends on the smoothness properties of f , and was extensively studied in [1]. If f is
bandlimited to [−σ, σ], then it vanishes, as to be expected. Otherwise, if f ∈ F s,2, the largest space
to be considered in this context, then this distance tends to zero for σ →∞. Furthermore, if one restricts
the matter to certain subspaces of F s,2, one can obtain refined estimates, including unusually sharp
rates of approximation; see Corollaries 3.5–3.7. In particular, if f belongs to a Lipschitz or Sobolev
space, then RWKS

s,σ f decays like a negative power of σ, and if f belongs to a Hardy space, then it decays
exponentially.

Similarly, to the sampling reconstruction for the derivatives of the Hilbert transform of B2
σ-signals,

thus for (d/dt)(s)f̃ = H(d/dt)(s)f , namely (12), the remainder term (R̃WKS
s,σ f)(t) of (14), must be added

in order to obtain its extension (13) to F s,2. The remainder (R̃WKS
s,σ f)(t) can be estimated in the same way

as RWKS
s,σ f above.

The paper’s chief point is to generalize the Boas formula for the first derivative, namely (16), to
higher order ones, odd order given by (25), even orders by (26). Thus, e.g., the derivative f (2s−1)(t) is
expressed in terms of the signal values f(t+π(k−1/2)/σ), which depend however on t ∈ R. The proof
is unusually simple, one just sets σ = π and t = 1/2 in Theorem 3.1 and applies the resulting formula
to the function g(u) := f(uπ/σ + t− π/σ).

For the first major result, Theorem 5.1, the extension of (25) to the larger class F s,2, formula (25) has
to be equipped with the aliasing error term RBoas

2s−1,σf of (38), which can be estimated in the same fashion
as the error RWKS

s,σ f above, which again tends to zero for σ →∞.
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A basic inequality in the theory of functions of exponential type is Bernstein’s inequality for the
derivatives f (s) for bandlimited f in the finite energy norm or in Lp(R), 1 ≤ p ≤ ∞. This result is
generalized in Section 6 to non-bandlimited signals, the aliasing error being (52) in the case of odd order
derivatives and (53) for even ones.

The active field of Landau–Kolmogorov inequalities in our situation is handled in Section 7. Finally,
Boas-type formulae for the Hilbert transform are left to Section 8.

2. Notation and Preliminary Results

As usual, Lp(R) is the space of all real or complex-valued function f that are Lebesgue integrable
to the pth power over the real axis R, endowed with the norm ‖f‖Lp(R) :=

{∫
R |f(u)|

p du
}1/p,

1 ≤ p <∞, and L∞(R) is the space of all measurable essentially bounded functions f with the norm
‖f‖L∞(R) := ess supu∈R |f(u)|. By C(R) we denote the class of all functions f : R −→ C that are
uniformly continuous and bounded on R, where ‖f‖C(R) := supu∈R |f(u)|.

The Fourier transform f̂ of f ∈ Lp(R), 1 ≤ p ≤ 2, is defined by:

f̂(v) :=
1√
2π

∫
R
f(u)e−ivu du (p = 1)

lim
R→∞

∥∥∥∥f̂(v)− 1√
2π

∫ R

−R
f(u)e−ivu du

∥∥∥∥
Lp′ (R)

= 0 (1 < p ≤ 2)

where 1/p + 1/p′ = 1. If f ∈ Lp(R), 1 ≤ p ≤ 2, is such that f̂ ∈ L1(R), then there holds the Fourier
inversion formula:

f(t) =
1√
2π

∫
R
f̂(v)eivt dv (1)

at each point t ∈ R where f is continuous; see [2, Proposition 5.1.10, 5.2.16].
For σ > 0 and 1 ≤ p ≤ ∞, let Bp

σ the Bernstein space comprising all entire functions (thus arbitrary
often differentiable) of exponential type σ, (i.e., |f(z)| ≤ ‖f‖C(R) exp(σ|y|) for z = x+ iy ∈ C), which
belong to Lp(R) when restricted to the real axis R. There holds:

B1
σ ⊂ Bp1

σ ⊂ Bp2
σ ⊂ B∞σ (1 ≤ p1 ≤ p2 ≤ ∞)

According to the Paley–Wiener theorem (cf. [3, p. 103]), a signal f belongs to Bp
σ; 1 ≤ p ≤ 2, if and

only if it is bandlimited to [−σ, σ], i.e., its Fourier transform vanishes outside [−σ, σ]. The same holds
true for p > 2, if the Fourier transform is understood in the distributional sense. Note that a bandlimited
signal cannot be simultaneously duration limited.

The sinc function is defined by:

sinc z :=


sin(πz)

πz
, z ∈ C \ {0}

1, z = 0

ŝinc(v) =
1√
2π

rect(v) (v ∈ R) (2)
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where the rectangle function is given by:

rect(v) :=


1, |v| < π

1
2
, |v| = π

0, |v| > π

Moreover, there holds by the Fourier inversion formula (1) (cf. [2, Section 5.2.4]):

sinc(s)(t) =
1√
2π

∫ ∞
−∞

rect(v)√
2π

(iv)seivt dv =
1

2π

∫ π

−π
(iv)seivt dv (t ∈ R; s ∈ N0) (3)

2.1. A Hierarchy of Spaces Extending Bernstein Spaces

In order to extend the Bernstein spaceBp
σ to larger function spaces, we weaken the property of f being

bandlimited, i.e., f̂ vanishes outside the compact interval [−σ, σ], to f̂ belonging to L1(R). This still
guarantees the reconstructibility of f from its Fourier transform in terms of the inversion formula (1). To
this end, we introduce the Fourier inversion classes:

F s,2 :=
{
f ∈ L2(R) ∩ C(R) : vsf̂(v) ∈ L1(R)

}
(s ∈ N0)

For 0 ≤ s1 ≤ s2, there holds F s2,2 ⊂ F s1,2 ⊂ F 0,2. In addition to (1) one has for f ∈ F s,2 that the
derivative f (s) exists, belongs to C(R) and has the representation:

f (s)(t) =
1√
2π

∫
R
(iv)sf̂(v)eivt dv (t ∈ R)

see [2, Proposition 5.1.17 with f replaced by f̂ ].
The Fourier inversion classes are in some sense the most general spaces in which our studies can be

performed. Spaces between B2
σ and F s,2 are also of interest since they will yield smaller errors in the

extended formulae.
The modulus of smoothness of f ∈ L2(R) of order r ∈ N is defined by:

ωr
(
f, δ, L2(R)

)
:= sup
|h|≤δ

{∫ ∞
−∞

∣∣∣∣ r∑
j=0

(−1)r−j
(
r

j

)
f(u+ jh)

∣∣∣∣2 du}1/2

(δ > 0)

and the associated Lipschitz class for 0 < α ≤ r by:

Lipr(α,L
2(R)) :=

{
f ∈ L2(R) ; ωr

(
f, δ, L2(R)

)
= O

(
δα
)
, δ → 0+

}
The Sobolev space is given by:

W s,2(R) :=
{
f ∈ L2(R) : vsf̂(v) ∈ L2(R)

}
(s ∈ N0)

and Hardy spaces for horizontal strips Sd := {z ∈ C : |=z| < d}, d > 0, by:

H2(Sd) :=
{
f : f analytic on Sd, ‖f‖H2(Sd) <∞

}

‖f‖H2(Sd) :=

{
sup

0<y<d

∫
R

|f(t− iy)|2 + |f(t+ iy)|2

2
dt

}1/2
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There hold the inclusions:

B2
σ ⊂ H2(Sd) ⊂ W s,2(R) ∩ C(R) ⊂ F s−1,2 ⊂ F 0,2 ⊂ L2(R) (h > 0; s ∈ N)

Here we recall some facts concerning the distance functional introduced in [1]. Let G be the vector
space of all functions f : R −→ C having the representation:

f(t) =
1√
2π

∫
R
φ(v)eitv dv (4)

for some φ ∈ L1(R) ∩ Lq(R), 1 ≤ q < ∞. We define the distance of two functions f1, f2 ∈ G having
representation (4) with φ1 and φ2, respectively, by:

distq(f1, f2) = ‖φ1 − φ2‖Lq(R) =
{∫

R
|φ1(v)− φ2(v)|q dv

}1/q

and the distance of a function f ∈ G from the Bernstein space B2
σ by:

distq(f,B
2
σ) := inf

g∈B2
σ

distq(f, g)

If f ∈ F s,2, s ∈ N0, then the derivative f (s) belongs to G with φ(v) = (iv)sf̂(v). Hence one has for
f1, f2 ∈ F s,2 with (iv)sf̂n(v) ∈ Lq(R), n = 1, 2,

distq
(
f
(s)
1 , f

(s)
2

)
=
∥∥∥vs( f̂1 − f̂2 )∥∥∥

Lq(R)

Moreover, one has for f ∈ F s,2, s ∈ N0,

distq(f
(s), B2

σ) =

{∫
|v|≥σ

∣∣vsf̂(v)∣∣q dv}1/q

Observe that for f ∈ F 0,2 and q = 2 one has in view of the isometry of the Fourier transform that
dist2(f1, f2) = ‖f1 − f2‖L2(R), i.e., dist2 is the Euclidean distance.

The following estimates for the distance distq(f (s), B2
σ) can be found in [1]. In each of the subsequent

statements, c and γ with attached indices denote positive numbers that depend only on the indices but
not on f and σ. They may be different at each occurrence.

Proposition 2.1. (a) Let f ∈ F 0,2 with f̂ ∈ Lq(R), 1 ≤ q < ∞, and r ∈ N. One has the derivative
free estimate:

distq(f,B
2
σ) ≤ cr,q

{∫ ∞
σ

v−q/2
[
ωr(f, v

−1, L2(R))
]q
dv

}1/q

If also f ∈ Lipr(α,L
2(R)), 1/q − 1/2 < α ≤ r, then:

distq(f,B
2
σ) = O

(
σ−α−1/2+1/q

)
(σ →∞)

If f (s) ∈ Lip1(α,L
2(R)), s ∈ N, 0 < α ≤ 1, then:

distq(f
(s), B2

σ) = O
(
σ−α−s−1/2+1/q

)
(σ →∞)
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(b) If f ∈ F s,2 and vsf̂(v) ∈ Lq(R), 1 ≤ q <∞, s ∈ N0, then for each r ∈ N,

distq(f
(s), B2

σ) ≤ cs,r,q

{∫ ∞
σ

v−q/2
[
ωr(f

(s), v−1, L2(R))
]q
dv

}1/q

= O
(
σ−α−1/2+1/q

)
(σ →∞)

the latter holding provided f (s) ∈ Lipr(α,L
2(R)), 1/q − 1/2 < α ≤ r.

Proposition 2.2. Let f ∈ W r,2(R) ∩ C(R). Then, for 1 ≤ q <∞, s ∈ N, and σ > 0,

distq(f,B
2
σ) ≤ cr,q σ

−r−1/2+1/q ‖f (r)‖L2(R)

distq(f
(s), B2

σ) ≤ cr−s,q σ
−r−1/2+s+1/q ‖f (r)‖L2(R) (r > s+ 1/q − 1/2)

Proposition 2.3. Let f ∈ H2(Sd). Then, for 1 ≤ q <∞, s ∈ N,

distq(f,B
2
σ) ≤ γd,q e

−dσ‖f‖H2(Sd) (σ > 0)

distq(f
(s), B2

σ) ≤ γd,q,s σ
se−dσ‖f‖H2(Sd) (σ ≥ s/d)

3. Extensions of Shannon’s Theorem to Non-Bandlimited Signals and Their Hilbert Transforms;
Aliasing Errors

Let us consider the well-known Whittaker–Kotel’nikov–Shannon sampling theorem for reconstruct-
ing a bandlimited signal and its derivatives in terms of samples of just f , namely (see e.g., [4,5], [6,
p. 13], [7, p. 59]).

Theorem 3.1. Let f ∈ B2
σ, then, for each s ∈ N,

f (s)(t) =
∞∑

k=−∞
f
(kπ
σ

)( d
dt

)(s)
sinc

(σt
π
− k
)

(t ∈ R) (5)

the series converging absolutely and uniformly for t ∈ R as well as in L2(R)-norm.

This theorem can be extended to the larger space F 2,s by adding a remainder or error term RWKS
s,σ f , to

the expansion (5). This leads to the following extended version of Theorem 3.1.

Theorem 3.2. Let f ∈ F s,2 for some s ∈ N0, and let θs : R −→ C be the 2π-periodic signal, defined for
t ∈ R by:

θs(t, v) := vse−itv (−π < v ≤ π)

Then one has the approximate sampling representation:

f (s)(t) =
∞∑

k=−∞
f
(kπ
σ

)( d
dt

)(s)
sinc

(σt
π
− k
)
+ (RWKS

s,σ f)(t) (t ∈ R)

with the remainder RWKS
s,σ f given by:

(RWKS
s,σ f)(t) :=

is√
2π

∫
|v|≥σ

f̂(v)
[
vs −

(σ
π

)s
θs

(
t,
v

σ

)]
eivt dv (t ∈ R) (6)

In particular, there holds:∣∣(RWKS
s,σ f)(t)

∣∣ =√ 2

π

∫
|v|≥σ

∣∣vsf̂(v)∣∣ dv =

√
2

π
dist1(f

(s), B2
σ) = o(1) (σ →∞) (7)
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The remainder RWKS
s,σ f is the so-called aliasing error occurring when a non-bandlimited signal is

reconstructed in terms of the sampling theorem; see e.g., [8].
The case s = 0 can be found already in [9] (see also [5,7,10], [6, p. 15 ff]), where the remainder (6)

was given in the equivalent form:

(RWKS
0,σ f)(t) :=

1√
2π

∞∑
k=−∞

(
1− e−i2kσt

) ∫ (2k+1)σ

(2k−1)σ
f̂(v)eivt dv (t ∈ R)

Theorem 3.2 for arbitrary s ∈ N is contained in [11], where it was deduced as a particular case of a
unified approach to various sampling representations. This general approach also covers the following
two results on the reconstruction of the Hilbert transform f̃ and its derivatives in terms of samples of f ;
see [5,11].

The Hilbert transform or conjugate function of f ∈ L2(R) ∩ C(R), defined by the Cauchy
principal value:

f̃(t) := lim
δ→0+

1

π

∫
|u|>δ

f(t− u)
u

du = PV
1

π

∫ ∞
−∞

f(t− u)
u

du

plays an important role in electrical engineering (see e.g., [12, p. 267 ff.], [13]). For the
Hilbert transform, also often called “one of the most important operators in analysis”, one may
consult [2, Chap. 8, 9], [14,15]. It defines a bounded linear operator from L2(R) into itself, and one has:

̂̃
f(v) = (−i sgn v)f̂(v) a. e. (8)

Furthermore, if f ∈ F 2,s for some s ∈ N0, then by the Fourier inversion formula (1) for each t ∈ R,[
f̃
](s)

(t) =
1√
2π

∫ ∞
−∞

f̂(v)(−i sgn v)(iv)seivt dv =
1√
2π

∫ ∞
−∞

f̂ (s)(v)(−i sgn v)eivt dv (9)

the latter equality holding provided f (s) ∈ L2(R). This formula also shows that
[
f̃
](s)

= f̃ (s); thus
derivation and taking Hilbert transform are commutative operations.

Noting (2) and (8), we see that the Fourier transform of the Hilbert transform of the sinc-function is
given by: ̂̃

sinc(v) =
1√
2π

(−i sgn v) rect(v) a. e.

and one easily obtains from the case s = 0 in (9) that the Hilbert transform of the sinc-function is
given by:

s̃inc(t) =


1− cos πt

πt
=

sin2
(
πt
2

)
πt
2

, t ∈ R \ {0}

0, t = 0

(10)

Moreover, one has the representation:

s̃inc
(s)
(t) =

1

2π

∫ π

−π
(−i sgn v)(iv)seivt dv (t ∈ R; s ∈ N0) (11)

Since the Hilbert transform is a bounded linear operator from L2(R) into itself, which commutes with
differentiation, the following sampling representation follows immediately from (5) by taking the Hilbert
transform of each side.
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Theorem 3.3. Let f ∈ B2
σ, where σ > 0. Then, for each s ∈ N,

f̃ (s)(t) =
∞∑

k=−∞
f
(kπ
σ

)( d
dt

)(s)
s̃inc

(σt
π
− k
)

(t ∈ R) (12)

the series converging absolutely and uniformly for t ∈ R as well as in L2(R)-norm.

This formula enables one to compute f̃ (s)(t) in term of samples of f itself; for the case s = 0

see [5–7,16], and for arbitrary s see [11]. The extended version of this result reads (see [11]):

Theorem 3.4. Let f ∈ F 2,s for some s ∈ N0, and let ηs : R −→ C be the 2π-periodic function, defined
for t ∈ R by:

ηs(t, v) := sgn(v)vse−itv (−π < v ≤ π)

Then one has the approximate sampling representation:

f̃ (s)(t) =
∞∑

k=−∞
f
(kπ
σ

)( d
dt

)(s)
s̃inc

(σt
π
− k
)
+ (R̃WKS

s,σ f)(t) (t ∈ R) (13)

with the remainder R̃WKS
s,σ f given by:

(R̃WKS
s,σ f)(t) :=

is−1√
2π

∫
|v|≥σ

f̂(v)
[
sgn(v)vs −

(σ
π

)s
ηs

(
t,
v

σ

)]
eivt dv (t ∈ R) (14)

In particular, there holds:∣∣(R̃WKS
s,σ f)(t)

∣∣ =√ 2

π

∫
|v|≥σ

∣∣vsf̂(v)∣∣ dv =

√
2

π
dist1(f

(s), B2
σ) = o(1) (σ →∞) (15)

The integral on the right-hand side of (7) and (15) is the distance of f (s) from the space B2
σ. Its

behaviour for σ → ∞ depends on the smoothness properties of f , and was extensively studied in [1];
recall Section 2.1. This leads to the following estimates for the remainders RWKS

s,σ f and R̃WKS
s,σ f .

Corollary 3.5. If f ∈ F s,2, s ∈ N0, then for any r ∈ N and t ∈ R,∣∣(RWKS
s,σ f)(t)

∣∣ ≤√ 2

π
dist1(f

(s), B2
σ) ≤ cs,r

∫ ∞
σ

v−1/2ωr
(
f (s), v−1, L2(R)

)
dv (σ > 0)

In particular, if in addition f (s) ∈ Lipr(α,L
2(R)) for 1/2 < α ≤ r, then:

(RWKS
s,σ f)(t) = O

(
σ−α+1/2

)
(σ →∞)

Corollary 3.6. Let s ∈ N0, f ∈ W r,2 ∩ C(R) for some r ≥ s+ 1. Then: for t ∈ R,∣∣(RWKS
s,σ f)(t)

∣∣ ≤ cs,r σ
−r+s+1/2‖f (r)‖L2(R) (σ > 0)

If moreover f (r) ∈ Lip1(α,L
2(R)), 0 < α ≤ 1, then

(RWKS
s,σ f)(t) = O

(
σ−r−α+s+1/2

)
(σ →∞)

Corollary 3.7. If f ∈ H2(Sd), then for s ∈ N0, positive σ ≥ s/d, and t ∈ R,∣∣(RWKS
s,σ f)(t)

∣∣ ≤ cd,s σ
se−πdσ‖f‖H2(Sd)

The three corollaries remain true, if RWKS
s,σ f is replaced by R̃WKS

s,σ f .
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4. Boas-type Formulae for Higher Derivatives

In [17, formula (6)] (see also [3, p. 211]) Boas established a differentiation formula that may be
presented as follows.

Let f ∈ B∞σ , where σ > 0. Then, for h = π/σ, we have:

f ′(t) =
1

h

∑
k∈Z

(−1)k+1

π(k − 1
2
)2
f
(
t+ h

(
k − 1

2

))
(16)

When f is a trigonometric polynomial of degree n, i.e., f(t) = Tn(t) =
∑n

k=−n cke
ikt, then f ∈ B∞n

and so (16) applies. In this case, by virtue of the periodicity of f , the series in (16) can be condensed to
a finite sum. The resulting formula was obtained by M. Riesz in 1914 [18]. In fact, Riesz’s interpolation
formula for trigonometric polynomials reads:

T ′n(t) =
2n∑
k=1

(−1)k−1αkTn(t+ τk) (t ∈ R) (17)

where αk := n−1(2 sin(τk/2))−2 and τk := (2k − 1)/(2n) for k = 1, 2, . . . , 2n. Since
∑2n

k=1 αk = n,
(17) implies the classical Bernstein inequality:∥∥T (s)

n

∥∥
C2π
≤ ns

∥∥Tn∥∥C2π
(s ∈ N) (18)

Analogously to the proof of (18), Boas’ formula (16), also known as generalized Riesz interpolation
formula (as Isaac Pesenson informed us), can be used to prove the basic Bernstein inequality for functions
f ∈ Bp

σ, namely ‖f (s)‖Lp(R) ≤ σs‖f‖Lp(R), s ∈ N, which will be treated extensively in Section 6.
There exist families of differentiation formulae for higher derivatives holding in Bernstein spaces;

see [6, § 3.2]. Which of them should we consider as a generalization of Boas’ formula? In the
applications of (16) the following properties are crucial:

(a) The formula applies to all entire functions of exponential type σ that are only bounded on R.
(b) The sample points are uniformly spaced according to the Nyquist rate and are located relatively to

the argument t of the derivative.
(c) The coefficients do not depend on t.
(d) The coefficients decay like O(k−2) as k → ±∞.
(e) When the sample points are arranged in increasing order, then the associated coefficients have

alternating signs.

In the case of higher derivatives, a Boas-type formula should also have the properties (a) to (e).
The Boas-type formulae to be established will be deduced as applications of the Whittaker–

Kotel’nikov–Shannon sampling theorem for higher order derivatives (Theorem 3.1). Another approach
by contour integration methods of complex function theory will be presented in Section 4.1.

In view of Leibniz’s rule, the basic term sinc(s)(t) in (5) can be written as follows:
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sinc(s)(t) =
( 1

πt
sin πt

)(s)
=

s∑
j=0

(
s

j

)
(sinπt)(j)

( 1

πt

)(s−j)

=
s∑
j=0

(
s

j

)
πj sin

(
πt+

jπ

2

)(−1)s−j(s− j)!
πts−j+1

=
(−1)ss!
πts+1

s∑
j=0

sin
(
πt+

jπ

2

)(−1)j(πt)j
j!

Expressing now sin(πt + jπ/2) in terms of sin πt and cos πt, we can rewrite sinc(s)(t) in the more
handy form:

sinc(s)(t) =
(−1)ss!
πts+1

{
sin πt

b s
2
c∑

ν=0

(−1)ν(πt)2ν

(2ν)!
− cosπt

b s−1
2
c∑

ν=0

(−1)ν(πt)2ν+1

(2ν + 1)!

}
(19)

where the right hand side is naturally thought to be continuously extended at t = 0 by:

sinc(s)(0) =


0, s odd

(−1)s/2 πs

s+ 1
, s even

(s ∈ N0)

This can be easily obtained from (3) or the power series expansion:

sinc t =
∞∑
j=0

(−1)j

(2j + 1)!
(πt)2j (t ∈ R)

Further, it follows easily from (19) that:

(2s− 1) sinc(2s−2)
(1
2
− k
)
=
(
k − 1

2

)
sinc(2s−1)

(1
2
− k
)

(k ∈ Z) (20)

2s sinc(2s−1)(−k) = k sinc(2s)(−k) (k ∈ Z) (21)

In view of (3) there holds the Fourier expansion (cf. [2, Proposition 4.1.5]):

∞∑
k=−∞

sinc(s)(t− k)eikx =
∞∑

k=−∞

{
1

2π

∫ π

−π
(iv)se−i(k−t)v dv

}
eitx = (ix)seitx (|x| < π; t ∈ R; s ∈ N0)

and, in particular, for s ∈ N and x = 0,

∞∑
k=−∞

sinc(s)(t− k) = 0 (t ∈ R) (22)

As an application, we now come to two Boas-type formulae, one for derivatives of odd order and one
for those of even order.
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Theorem 4.1. Let f ∈ B∞σ for some σ > 0, and define for s ∈ N,

As,k := (−1)k+1 sinc(2s−1)
(1
2
− k
)
=

(2s− 1)!

π(k − 1
2
)2s

s−1∑
j=0

(−1)j

(2j)!

[
π
(
k − 1

2

)]2j
(k ∈ Z) (23)

Bs,k := (−1)k+1 sinc(2s)(−k) =


(−1)s+1 π2s

2s+ 1
, k = 0

(2s)!

πk2s+1

{
s−1∑
j=0

(−1)j(πk)2j+1

(2j + 1)!

}
, k ∈ Z \ {0}

(24)

Then there hold the representations:

f (2s−1)(t) =
1

h2s−1

∞∑
k=−∞

(−1)k+1As,k f
(
t+ h

(
k − 1

2

))
(t ∈ R) (25)

f (2s)(t) =
1

h2s

∞∑
k=−∞

(−1)k+1Bs,k f(t+ hk) (t ∈ R) (26)

Proof. The identities (23) and (24) follow immediately from (19), noting that sin
(
π(k − 1/2)

)
=

cos πk = (−1)k and cos
(
π(k − 1/2)

)
= sinπk = 0.

For (25) and (26) we will give two proofs. The first one applies only to B2
σ, which seems to be

the more interesting case in engineering applications, whereas the second one also covers the larger
space B∞σ .

First assume that f ∈ B2
π, i.e., h = 1. Setting t = 1/2 in (5), then by the definition of As,k,

f (2s−1)
(1
2

)
=

∞∑
k=−∞

f(k) sinc(2s−1)
(1
2
− k
)
=

∞∑
k=−∞

f(k)(−1)k+1As,k (27)

Now, if f ∈ B2
σ for arbitrary σ > 0, then (25) follows by applying (27) to the function u 7→ f(hu+ t−

h/2), which belongs to B2
π.

For even order derivatives, one obtains from (5) for σ = π and t = 0,

f (2s)(0) =
∞∑

k=−∞
f(k) sinc(2s)(−k) =

∞∑
k=−∞

f(k)(−1)k+1Bs,k

The proof can now completed along the same lines as in the case of odd order derivatives.

In order to extend (25) and (26) to f ∈ B∞σ , one may apply the B2
σ-result just proved to the function

t 7→ f(t(1 − ε)) sinc(εt/π), 0 < ε < 1, which belongs to B2
σ, and then let ε → 0+. This density

argument can be avoided by the following alternative proof. To this end, let f ∈ B∞π , and let f1 ∈ B2
π be

defined by:

f1(u) :=


f(u)− f(0)

u
, u ∈ R \ {0}

f ′(0), u = 0
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By Leibniz’s rule one has:

f (s)(t) =
{
tf1(t)

}(s)
= sf

(s−1)
1 (t) + tf

(s)
1 (t) (t ∈ R; s ∈ N)

Since f1 ∈ B2
π, we can apply (5) to the terms on the right-hand side to obtain:

f (s)(t) = s

∞∑
k=−∞

f1(k) sinc
(s−1)(t− k) + t

∞∑
k=−∞

f1(k) sinc
(s)(t− k) (t ∈ R; s ∈ N) (28)

Now, we have to distinguish between odd and even order derivatives. Replacing s by 2s − 1 and
setting t = 1/2 in (28), we obtain in view of (20),

f (2s−1)
(1
2

)
= (2s− 1)

∞∑
k=−∞

f1(k) sinc
(2s−2)

(1
2
− k
)
+

1

2

∞∑
k=−∞

f1(k) sinc
(2s−1)

(1
2
− k
)

=
∞∑

k=−∞
f1(k)

(
k − 1

2

)
sinc(2s−1)

(1
2
− k
)
+

1

2

∞∑
k=−∞

f1(k) sinc
(2s−1)

(1
2
− k
)

=
∞∑

k=−∞

{
f(k)− f(0)

}
sinc(2s−1)

(1
2
− k
)

(s ∈ N)

Further, noting (22) and the definition of As,k, we end up with:

f (2s−1)
(1
2

)
=

∞∑
k=−∞

f(k) sinc(2s−1)
(1
2
− k
)
=

∞∑
k=−∞

f(k)(−1)k+1As,k (s ∈ N) (29)

To complete the proof for odd order derivatives, let now f ∈ B∞σ for arbitrary σ > 0 and apply (29) to
the function u 7→ f(hu+ t− h/2), where h = π/σ.

For even order derivatives one starts again with (28), replaces s by 2s and sets t = 0. In view of (21),
(22) and (24), one then obtains:

f (2s)(0) = 2s
∞∑

k=−∞
f1(k) sinc

(2s−1)(−k) =
∞∑

k=−∞
f1(k)k sinc

(2s)(−k)

=
∞∑

k=−∞

{
f(k)− f(0)

}
sinc(2s)(−k) =

∞∑
k=−∞

f(k)(−1)k+1Bs,k (s ∈ N)

Finally, apply this equation to the function u 7→ f(hu+ t).

Representation (25) can also be found in [19, Corollary 5], where it was proved by contour
integral methods.

For s = 1, (25) is the classical Boas formula (16), and (26) reads:

f ′′(t) = − π2

3h2
f(t) +

2

h2

∞∑
k=−∞
k 6=0

f(t+ hk)
(−1)k+1

k2
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The case s = 2 in (25) gives:

f (3)(t) =
1

h3

∞∑
k=−∞

(−1)k+1 6

π(1
2
− k)4

[
1− π2

2

(1
2
− k
)2]

f
(
t+ h

(
k − 1

2

))
(t ∈ R)

It is easily seen that formulae (25) and (26) both have the properties (a) to (d), but it is not immediately
clear whether (e) holds. We need to know the signs of the numbers As,k and Bs,k. For this, we represent
these numbers by an integral with an integrand that does not change sign.

Proposition 4.2. (a) For s ∈ N, s > 1 the numbers As,k of (23) have the representation:

As,k =
(−1)s−1(2s− 1)(2s− 2)

π(k − 1
2
)2s

∫ (2k−1)π/2

0

t2s−3
(
1 + (−1)k sin t

)
dt (30)

In particular,
(−1)s−1As,k > 0 (s ∈ N; k ∈ Z) (31)

(b) For s ∈ N the numbers Bs,k of (24) have the representation:

Bs,k =
(−1)s−12s(2s− 1)

πk2s+1

∫ kπ

0

t2s−2
(
1− (−1)k cos t

)
dt (k ∈ Z \ {0}) (32)

In particular,
(−1)s−1Bs,k > 0 (s ∈ N; k ∈ Z) (33)

Proof. First we note that the sum on the right-hand side of (23) is the Taylor polynomial of the cosine
function of degree 2s − 2 with respect to the origin, evaluated at (2k − 1)π/2. Next we recall Taylor’s
formula for a function f with the remainder represented by an integral. It states that:

f(x) =
2s−2∑
ν=0

f (ν)(0)

ν!
xν +

∫ x

0

(x− t)2s−2

(2s− 2)!
f (2s−1)(t) dt (34)

see, e.g., [20, p. 88, Theorem 6]. Applying this formula to f = cos with x = (2k − 1)π/2, we see that
(23) may be rewritten as:

As,k =
(−1)s+1(2s− 1)

π(k − 1
2
)2s

∫ (2k−1)π/2

0

[
t−
(
k − 1

2

)
π
]2s−2

sin t dt

By a change of variables, we obtain:

As,k =
(−1)s+k(2s− 1)

π(k − 1
2
)2s

∫ (2k−1)π/2

0

t2s−2 cos t dt

Now an integration by parts, taking (−1)k + sin t as a primitive of cos t, yields:

As,k =
(−1)s+k−1(2s− 1)(2s− 2)

π(k − 1
2
)2s

∫ (2k−1)π/2

0

t2s−3
(
(−1)k + sin t

)
dt

for s > 1. From this, (30) follows immediately.
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Except for a set of measure zero, the integrand in (30) is positive on the interval of integration if the
upper limit (2k−1)π/2 of the integral is positive, and is negative if that limit is negative. This shows that
the integral in (30) is always positive. Hence (31) holds for s > 1, and in view of A1,k = π−1(k−1/2)−2

for s = 1 as well.
Regarding (32), we note that the sum on the right-hand side of (24) is the Taylor polynomial of degree

2s − 1 of the sine function evaluated at kπ. Using again (34) and proceeding as in the proof of (a), we
arrive at (32) and (33).

Now (31) and (33) show that formulae (25) and (26) have also the property (e) and so they are
Boas-type formulae in our sense.

One may ask, why we started with f (2s−1)(1/2) in the proof of (25), and with f (2s)(0) in the proof
of (26). If one begins with f (2s−1)(0) in the case of odd order derivatives, one would end up with
formulae, the coefficients of which behave like O(|k|−1) for k → ±∞. Moreover, they are valid in Bp

σ

for 1 ≤ p < ∞ only, but not in B∞σ . Hence they are not Boas-type formulae in our sense. For s = 1

such a formula can be found in [7, p. 60 (87)].

4.1. An Alternative Approach by Methods of Complex Analysis

Formulae (25) and (26) of Theorem 4.1 can also be derived by contour integration without employing
the sampling theorem and without requiring a process that leads from B2

σ to B∞σ .
Denote by Q(X) the positively oriented rectangle with vertices at ±X ± iX. For f ∈ B∞π , we first

consider the meromorphic function:

K1,s(z) :=
(2s− 1)!f(z)

z2s cos(πz)

s−1∑
j=0

(−1)j

(2j)!
(πz)2j

It has a simple pole or a removable singularity at z = k + 1/2 for k ∈ Z, a pole of order at most 2s at
zero and no other singularities. Noting that the sum is a truncated Taylor expansion of cos(πz) around
z = 0, we conclude that:

z2s

(2s− 1)!
K1,s(z) = f(z)

[
1 +O

(
z2s
)]

(z → 0)

By a well-known formula for the residue at a pole of order at most 2s, this implies that:

res(K1,s, 0) = f (2s−1)(0)

Furthermore, it is easily verified that:

res
(
K1,s, k −

1

2

)
= (−1)kAs,kf

(
k − 1

2

)
with As,k given by (23).

Now, for N ∈ N, it is readily seen that:

max
z∈Q(N)

|K1,s(z)| = O
(
N−2

)
(N →∞)
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Hence by the residue theorem,

0 = lim
N→∞

1

2πi

∫
Q(N)

K1,s(z) dz = f (2s−1)(0) +
∞∑

k=−∞
(−1)kAs,kf

(
k − 1

2

)
which implies (25) by a transformation of the argument of f .

Analogously, one considers:

K2,s(z) :=
(2s)!f(z)

z2s+1 sin(πz)

s−1∑
j=0

(−1)j(πz)2j+1

(2j + 1)!

Here z = 0 is a pole of order at most 2s+ 1 and,

z2s+1

(2s)!
K2,s(z) = f(z)

[
1− (−1)s (πz)2s

(2s+ 1)!
+O

(
z2s+1

)]
(z → 0)

which gives:

res(K2,s, 0) = f (2s)(0) +
(−1)s+1π2s

2s+ 1
f(0)

while,
res(K2,s, k) = (−1)kBs,kf(k) (k ∈ Z \ {0})

with Bs,k given by (24). This time, for N ∈ N, we find that:

0 = lim
N→∞

1

2πi

∫
Q(N+ 1

2
)

K2,s(z) dz = f (2s)(0) +
(−1)s+1π2s

2s+ 1
f(0) +

∞∑
k=−∞
k 6=0

(−1)kBs,kf(k)

which implies (26) by a transformation of the argument of f .

4.2. Variants

If we abandon property (e) of a Boas-type formula and admit a correction at t by the value of f or
that of its first derivative, we can improve upon property (d) by establishing formulae with coefficients
that decay like O(k−3) as k → ±∞. Such formulae are of interest in numerical applications since the
truncated series will need less terms for achieving certain accuracy.

The following formula (35) was already obtained in [19, Corollary 5] by methods of complex analysis;
formula (36) is new.

Corollary 4.3. Let f ∈ B∞σ for some σ > 0 and let s ∈ N. Then, in the notation of Theorem 4.1,

f (2s)(t) = (−1)s
(π
h

)2s
f(t) +

2s

h2s

∞∑
k=−∞

As,k
k − 1

2

f
(
t+ h

(
k − 1

2

))
(t ∈ R) (35)

f (2s+1)(t) = (−1)s
(π
h

)2s
f ′(t) +

2s+ 1

h2s+1

∞∑
k=−∞
k 6=0

(−1)k+1Bs,k

k
f(t+ hk) (t ∈ R) (36)
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Proof. Obviously the function g : z 7→
(
f(z) − f(0)

)
/z belongs to B∞σ and, as is seen by Taylor

expansion around 0, we have
g(r)(0)

r!
=
f (r+1)(0)

(r + 1)!
(r ∈ N)

Thus applying (25) to g at t = 0, we obtain

f (2s)(0) =
2s

h2s

∞∑
k=−∞

(−1)k+1As,k
f(h(k − 1

2
))− f(0)

k − 1
2

For f : z 7→ cosπz this formula holds with h = 1 and yields

(−1)sπ2s = −2s
∞∑

k=−∞
(−1)k+1 As,k

k − 1
2

Thus,

f (2s)(0) = (−1)s
(π
h

)2s
f(0) +

2s

h2s

∞∑
k=−∞

(−1)k+1 As,k
k − 1

2

f
(
h
(
(k − 1

2

))
which gives (35) by shifting the argument of f .

Analogously, applying (26) to g at t = 0, we obtain:

f (2s+1)(0) = − 2s+ 1

h2s
Bs,0f

′(0) +
2s+ 1

h2s+1

∞∑
k=−∞
k 6=0

(−1)k+1Bs,k
f(hk)− f(0)

k

For the sinc function, this formula holds with h = 1 and yields:

0 = −(2s+ 1)
∞∑

k=−∞
k 6=0

(−1)k+1 Bs,k

k

Thus,

f (2s+1)(0) = − 2s+ 1

h2s
Bs,0f

′(0) +
2s+ 1

h2s+1

∞∑
k=−∞
k 6=0

(−1)k+1Bs,k

k
f(hk)

which gives (36) by substituting the value of Bs,0 and shifting the argument of f .

5. Extensions to Non-Bandlimited Functions

Theorem 5.1. Let s ∈ N, f ∈ F 2s−1,2. Then f (2s−1) exists, and for h > 0, σ := π/h formula (25)
extends to:

f (2s−1)(t) =
1

h2s−1

∑
k∈Z

(−1)k+1As,kf
(
t+ h

(
k − 1

2

))
+ (RBoas

2s−1,σf)(t) (t ∈ R) (37)

where,

(RBoas
2s−1,σf)(t) =

i(−1)s+1

√
2π h2s−1

∫
|v|≥σ

[
(hv)2s−1 − φ2s−1(hv)

]
f̂(v)eivt dv (38)
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φ2s−1 being the 4π-periodic function defined by:

φ2s−1(v) :=

{
v2s−1, −π < v ≤ π

(2π − v)2s−1, π < v ≤ 3π
(39)

In particular,∣∣(RBoas
2s−1,σf)(t)

∣∣ ≤ 1 + 3−2s+1

√
2π

∫
|v|≥σ
|v|2s−1

∣∣f̂(v)∣∣ dv =
1 + 3−2s+1

√
2π

dist1(f
(2s−1), B2

σ) (40)

Proof. First assume h = 1, i.e., σ = π, and let:

f1(t) :=
1√
2π

∫
|v|≥π

f̂(v)eitv dv (41)

Then f − f1 ∈ B∞π and so (25) applies to this difference, i.e.,

(RBoas
2s−1,πf)(t) =

(
RBoas

2s−1,π(f − f1)
)
(t) + (RBoas

2s−1,πf1)(t) = (RBoas
2s−1,πf1)(t)

and we find that for t = 0,

(RBoas
2s−1,πf)(0) = f

(2s−1)
1 (0)−

∞∑
k=−∞

(−1)k+1As,k f1

(
k − 1

2

)
(42)

>From (41) there follows:

f
(2s−1)
1 (0) =

1√
2π

∫
|v|≥π

(iv)2s−1f̂(v) dv

and,

f1

(
k − 1

2

)
=

1√
2π

∫
|v|≥π

f̂(v)ei(k−1/2)v dv (k ∈ Z)

When we use these expressions for the calculation of (42), an interchange of summation and integration
is permitted by Levi’s theorem. Hence,

(RBoas
2s−1,πf)(0) =

1√
2π

∫
|v|≥π

f̂(t)

[
(iv)2s−1 −

∞∑
k=−∞

(−1)k+1As,k e
i(k−1/2)v

]
dv (43)

Consider now the function gv : t 7→ eivt. Obviously gv ∈ B∞π when |v| ≤ π, and so (25) applies to gv
for these values of v, i.e., for t = 0,

g(2s−1)v (0) = (iv)2s−1 =
∞∑

k=−∞
(−1)k+1As,k e

i(k−1/2)v (|v| ≤ π)

This means that:
∞∑

k=−∞
(−1)k+1As,k e

i(k−1/2)v = i(−1)s+1φ2s−1(v) (|v| ≤ π) (44)

Noting that the left-hand side of (44) is a 4π-periodic function satisfying, in addition,

φ2s−1(v + 2nπ) = (−1)nφ2s−1(v) (n ∈ Z)
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we see from the definition (39) of φ2s−1 that (44) even holds for all v ∈ R, and inserting this into (43),
we now obtain (37) with remainder (38) for h = 1 and t = 0.

For arbitrary h > 0 and t ∈ R one applies this particular case to the function fh : u 7→ f(t+hu). Since
f̂h(v) = h−1f̂(v)eivt/h, the general form (38) of the remainder now follows by a change of variable.

Since |v2s−1 − φ2s−1(v)| ≤ (1 + 3−2s+1)|v|2s−1 for all v ∈ R, the first relation in (40) follows
immediately. The second is a consequence of [1, Proposition 15].

Theorem 5.2. Let s ∈ N, f ∈ F 2s,2. Then f (2s) exists and for h > 0, σ := π/h formula (26) extends to:

f (2s)(t) =
1

h2s

∑
k∈Z

(−1)k+1Bs,kf(t+ hk) + (RBoas
2s,σf)(t) (t ∈ R)

where,

(RBoas
2s,σf)(t) =

(−1)s√
2π h2s

∫
|v|≥σ

[
(hv)2s − φ2s(hv)

]
f̂(v)eivt dv (45)

φ2s being the 2π-periodic function defined by:

φ2s(v) := v2s, for |v| ≤ π (46)

In particular, ∣∣(RBoas
2s,σf)(t)

∣∣ ≤ 1√
2π

∫
|v|≥σ

v2s
∣∣f̂(v)∣∣ dv =

1√
2π

dist1(f
(2s), B2

σ) (47)

Proof. We proceed as in the proof of Theorem 5.1. With f1 as defined by (41) we have:

(RBoas
2s,πf)(0) = f

(2s)
1 (0)−

∞∑
k=−∞

(−1)k+1Bs,k f1(k)

Noting that,

f
(2s)
1 (0) =

1√
2π

∫
|v|≥π

(iv)2sf̂(v) dv

f1(k) =
1√
2π

∫
|v|≥π

f̂(v)eikv dv (k ∈ Z)

it follows that,

(RBoas
2s,πf)(0) =

1√
2π

∫
|v|≥π

f̂(t)

[
(iv)2s −

∞∑
k=−∞

(−1)k+1Bs,k e
ikv

]
dv

Applying now (26) to gv : t 7→ eivt, where |v| ≤ π, we find:

g(2s)v (0) = (iv)2s =
∞∑

k=−∞
(−1)k+1Bs,k e

ikv (|v| ≤ π)

φ2s(v) :=
1

i2s

∞∑
k=−∞

(−1)k+1Bs,k e
ikv = v2s (|v| ≤ π)

which yields (45) and (46) for h = 1 and t = 0. The general case follows again by applying this
particular case to fh : u 7→ f(t+ hu).

Since φ2s is a 2π-periodic function, we have |φ2s(v)| ≤ π2s for all v ∈ R. This yields the first relation
in (47), and the second one is again a consequence of [1, Proposition 15].
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Counterparts of Corollaries 3.5–3.7 are also valid in the instance of the error RBoas
s,σf .

For s = 1, Theorem 5.1 reduces to [1, Theorem 5]. The graphs of φ1, φ2, φ3, φ4 are shown in
Figures 1–4, respectively.

Figure 1. The graph of π−1φ1.

−3π −2π −π π 2π 3π

−1

1

Figure 2. The graph of π−2φ2.

−3π −2π −π π 2π 3π

−1
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Figure 3. The graph of π−3φ3.
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Figure 4. The graph of π−4φ4.
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1

6. Extended Bernstein Inequalities for Higher Order Derivatives

We now come the matter sketched at the beginning of Section 4. The well-known Bernstein
inequality states:

For f ∈ Bp
σ, 1 ≤ p ≤ ∞, σ > 0, there holds:

‖f (s)‖Lp(R) ≤ σs‖f‖Lp(R) (s ∈ N) (48)
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The case s = 1 is usually proved with help of Boas’ formula (16), and the general case then by
iteration; see e.g., [3, Section 11.3]. Boas’ formulae for higher order derivatives enables us now to prove
(48) directly for arbitrary s ∈ N. Indeed, we have by (25),

‖f (2s−1)‖Lp(R) ≤
1

h2s−1

∞∑
k=−∞

|As,k|‖f‖Lp(R) (49)

The series on the right-hand side can be evaluated as follows. Since sin(σ ·) ∈ B∞σ , formula (25) applies
to this function. For t = 0 it yields that:

(−1)s−1σ2s−1 =
1

h2s−1

∑
k∈Z

As,k =
(−1)s−1

h2s−1

∞∑
k=−∞

|As,k| (50)

where (31) has been used in the last step. Combining this equation with (49), we obtain (48). For
derivatives of even order one uses (26) and proceeds analogously.

In this section we employ Theorems 5.1 and 5.2 to extend Bernstein’s inequality for higher derivatives
to non-bandlimited functions by adding an “error term”. For this aim, properties (a)–(e) of a Boas-type
formula, specified in Section 4, will be crucial.

Theorem 6.1. Let s ∈ N, f ∈ F 2s−1,2, p ∈ [2,∞], and suppose that v2s−1f̂(v) belongs to Lp
′
(R) as a

function of v. Then, for any σ > 0, we have:

‖f (2s−1)‖Lp(R) ≤ σ2s−1 ‖f‖Lp(R) + ‖RBoas
2s−1,σf‖Lp(R) (51)

with RBoas
2s−1,σf defined by (38). Furthermore,

‖RBoas
2s−1,σf‖Lp(R) ≤ (2π)1/2−1/p

′ 1

h2s−1

{∫
|v|≥σ

∣∣((hv)2s−1 − φ2s−1(hv)
)
f̂(v)

∣∣p′dv}1/p′

(52)

≤ 4

3
(2π)1/2−1/p

′
{∫
|v|≥σ

∣∣v2s−1f̂(v)∣∣p′ dv}1/p′

=
4

3
(2π)1/2−1/p

′
distp′(f

(2s−1), B2
σ)

Proof. Consider (37) as a function of t and apply ‖ · ‖Lp(R) on both sides. Using the triangle inequality
on the right-hand side and noting that ‖f‖Lp(R) does not change under a shift of the argument of f , we
find that:

‖f (2s−1)‖Lp(R) ≤
1

h2s−1

∑
k∈Z
|As,k| · ‖f‖Lp(R) + ‖RBoas

2s−1,σf‖Lp(R)

Inserting (50) for the series on the right-hand side, we obtain (51).
Next we observe that (RBoas

2s−1,σf)(− ·) is the Fourier transform of the function:

g : v 7−→ i(−1)s−1

h2s−1
(
(hv)2s−1 − φ2s−1(hv)

)
f̂(v)
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The hypotheses imply that g ∈ L1(R) ∩ Lp′(R). Thus, using [2, Prop. 5.2.6] and noting that this book
uses the notation ‖ · ‖p = (2π)−1/(2p)‖ · ‖Lp(R), we conclude that:

‖RBoas
2s−1,σf‖Lp(R) ≤ (2π)1/2−1/p

′‖g‖Lp′ (R)

= (2π)1/2−1/p
′ 1

h2s−1

{∫
|v|≥σ

∣∣((hv)2s−1 − φ2s−1(hv)
)
f̂(v)

∣∣p′ dv}1/p′

≤ 4

3
(2π)1/2−1/p

′
{∫
|v|≥σ

∣∣v2s−1f̂(v)∣∣p′ dv}1/p′

=
4

3
(2π)1/2−1/p

′
distp′(f

(2s−1), B2
σ)

where we have used that |v2s−1 − φ2s−1(v)| ≤ (1 + 3−2s+1)|v|2s−1 ≤ (4/3)|v|2s−1. This completes
the proof.

By an analogous proof, we deduce from Theorem 5.2 the following result for derivatives of even order.

Theorem 6.2. Let s ∈ N, f ∈ F 2s,2, p ∈ [2,∞], and suppose that v2sf̂(v) belongs to Lp
′
(R) as a

function of v. Then, for any σ > 0, we have:

‖f (2s)‖Lp(R) ≤ σ2s ‖f‖Lp(R) + ‖RBoas
2s,σf‖Lp(R)

with RBoas
2s,σf defined by (45). Furthermore,

‖RBoas
2s,σf‖Lp(R) ≤ (2π)1/2−1/p

′
{∫
|v|≥σ
|v2sf̂(v)|p′dv

}1/p′

= (2π)1/2−1/p
′
distp′(f

(2s), B2
σ) (53)

It should be noted that for derivatives of odd order the bound in terms of the distance function is by
a factor 4/3 bigger than the corresponding bound for derivatives of even order. However, when p = 2,
we can profit from the isometry of the Fourier transform and deduce the same bound in both cases. An
obvious modification of the proof in [1, Theorem 11] leads to the following result.

Theorem 6.3. Let s ∈ N, f ∈ F s,2 and suppose that vsf̂(v) ∈ L2(R) as a function of v. Then, for any
σ > 0, we have

‖f (s)‖L2(R) ≤ σs ‖f‖L2(R) + dist2(f
(s), B2

σ)

7. Landau–Kolmogorov Inequalities

In this section we consider the case where f belongs to a Sobolev space and deduce Landau–
Kolmogorov inequalities, a very popular and still active field. The proof of the following proposition
is essentially contained in that of [1, Proposition 13].

Proposition 7.1. Let f ∈ W r,2(R) ∩ C(R), where r ∈ N. Then for s ∈ N with s ≤ r, we have

dist2(f
(s), B2

σ) ≤
1

σr−s
‖f (r)‖L2(R)
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and
distq(f

(s), B2
σ) ≤

cr−s,q
σr−s+1/2−1/q ‖f

(r)‖L2(R)

for q ∈ [1, 2) and r ≥ s− 1/2 + 1/q, where

cr,q :=

(
4− 2q

(2r + 1)q − 2

)1/q−1/2
(54)

Proposition 7.1 enables us to deduce from Theorems 6.1–6.3 the following corollaries.

Corollary 7.2. Let s ∈ N and f ∈ W r,2(R)∩C(R), where r ≥ 2s. Then, for p ∈ [2,∞] and any σ > 0,
we have:

‖f (2s−1)‖Lp(R) ≤ σ2s−1 ‖f‖Lp(R) +
4

3
(2π)1/2−1/p

′ cr−2s+1,p′

σr−2s+3/2−1/p′ ‖f
(r)‖L2(R) (55)

Corollary 7.3. Let s ∈ N and let f ∈ W r,2(R) ∩ C(R), where r > 2s. Then, for p ∈ [2,∞] and any
σ > 0, we have

‖f (2s)‖Lp(R) ≤ σ2s ‖f‖Lp(R) + (2π)1/2−1/p
′ cr−2s,p′

σr−2s+1/2−1/p′ ‖f
(r)‖L2(R) (56)

Corollary 7.4. Let s ∈ N and let f ∈ W r,2(R) ∩ C(R), where r > s. Then, for any σ > 0, we have:

‖f (s)‖L2(R) ≤ σs ‖f‖L2(R) + σs−r ‖f (r)‖L2(R) (57)

Note that for s = 1 Corollary 7.2 reduces to a result in [1, Corollary 16].
The statements of Corollaries 7.2–7.4 can be interpreted as a linearized equivalent form of a

Landau–Kolmogorov inequality [21,22]. The equivalence is shown by the following lemma in which
R+ := (0,∞). A more specialized result was mentioned by Stečkin [23]; also see [21, pp. 5–6].

Lemma 7.5. Let (x, y, z) ∈ R3
+, C > 0 and 0 < s < t. Then,

z ≤ σsx+ Cσs−ty (58)

for all σ > 0 if and only if,
z ≤ Kx1−αyα (59)

where,

α =
s

t
and K =

Cα

αα(1− α)1−α
(60)

Proof. Suppose that (58) holds. Then we may minimize the right-hand side over σ by using standard
calculus. This leads us to (59) with α and K given by (60).

Conversely, suppose that (59) holds with K > 0 and α ∈ (0, 1). Consider now the function:

F (x, y) := Kx1−αyα

Its Hessian shows that it is concave on R2
+. Hence, at any point (x0, y0) ∈ R2

+ the tangent plane of F lies
above the graph of F , that is,

F (x, y) ≤ F (x0, y0) + 〈gradF (x0, y0), (x− x0, y − y0)〉



Entropy 2012, 14 2214

Setting λ := y0/x0, we find by a straightforward calculation that:

F (x, y) ≤ K(1− α)λαx+Kαλα−1y

Now, setting s := αt and defining:
σ := [K(1− α)λα]1/s

we find that:
Kαλα−1 = K1/αα(1− α)1/α−1σs−t

This shows that:
F (x, y) ≤ σsx+ Cσs−ty

with C defined by (60). Since λ may take any value in (0,∞), the same is true for σ. Hence (59)
implies (58).

Lemma 7.5 can be used to deduce three Landau–Kolmogorov inequalities from (55)–(57). We may
state them in a unified form as follows.

Corollary 7.6. Let s ∈ N and f ∈ W r,2(R) ∩ C(R), where r ∈ N and r > s. For p ∈ [2,∞] define:

α :=
s

r + 1
2
− 1

p′

and,

C(s, r, p) :=


1, p = 2

(2π)1/2−1/p
′
cr−s,p′ , p ∈ (2,∞], s even

4
3
(2π)1/2−1/p

′
cr−s,p′ , p ∈ (2,∞], s odd

with cr−s,p′ given by (54). Then,

‖f (s)‖Lp(R) ≤
C(s, r, p)α

αα(1− α)1−α
‖f‖1−αLp(R) ‖f

(r)‖αL2(R) (61)

Unfortunately, the constant in (61) is not the best possible. However, the discussion in [24, pp.
442–447], does not extend to results for p ∈ (2,∞). For p = 2 inequality (61) simplifies to:

‖f (s)‖L2(R) ≤

[(
r − s
s

)s/r
+

(
s

r − s

)1−s/r
]
‖f‖1−s/rL2(R) ‖f

(r)‖s/rL2(R)

Here the term in square brackets can be replaced by 1. For s = 1 and r = 2, this is shown in [25, § 7.9,
No. 261]. For general r, s ∈ N with r > s, we may use the isometry of the L2-Fourier transform together
with Hölder’s inequality and proceed as follows:
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‖f (s)‖2L2(R) =

∫
R
|vsf̂(v)|2 dv

=

∫
R
v2s|f̂(v)|2s/r · |f̂(v)|2(1−s/r) dv

≤
{∫

R

[
v2s|f̂(v)|2s/r

]p
dv

}1/p

·
{∫

R

∣∣f̂(v)∣∣2(1−s/r)p′dv}1/p′

=

{∫
R
v2r
∣∣f̂(v)∣∣2 dv}s/r ·{∫

R
|f̂(v)|2 dv

}1−s/r

= ‖f‖2(1−s/r)L2(R) · ‖f (r)‖2s/rL2(R)

Now, employing Lemma 7.5, we may in turn improve upon Corollary 7.4. This way we obtain:

Corollary 7.7. Let s ∈ N and let f ∈ W r,2(R) ∩ C(R), where r > s. Then, for any σ > 0, we have

‖f (s)‖L2(R) ≤ σs‖f‖L2(R) +

[
(r − s)r−sss

rr

]1/s
σs−r ‖f (r)‖L2(R)

8. Boas-type Formulae for the Hilbert Transform

We now establish the counterparts of the theorems of Sections 4 and 5 in the instance of Hilbert
transforms. Although the definition of the Hilbert transform can be extended to signals f ∈ Lp(R),
1 ≤ p ≤ ∞, (see [26, p. 126 ff.]), we restrict ourselves to the most important case p = 2.

8.1. Formulae for Bandlimited Functions

The derivatives s̃inc
(s)
(t) are needed. They are given by (cf. (10)),

s̃inc
(s)
(t) =

(1− cos πt

πt

)(s)
=

s∑
j=0

(
s

j

)
(1− cos πt)(j)

( 1

πt

)(s−j)

=
(−1)ss!
πts+1

−
s∑
j=0

(
s

j

)
πj cos

(
πt+

jπ

2

)(−1)s−j(s− j)!
πts−j+1

=
(−1)ss!
πts+1

{
1−

s∑
j=0

cos
(
πt+

jπ

2

)(−1)j(πt)j
j!

}
By the cosine addition formula this can be rewritten as:

s̃inc
(s)
(t) =

(−1)ss!
πts+1

{
1− cos πt

b s
2
c∑

ν=0

(−1)ν(πt)2ν

(2ν)!
− sin πt

b s−1
2
c∑

ν=0

(−1)ν(πt)2ν+1

(2ν + 1)!

}
(62)
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where the right hand side is thought to be continuously extended at t = 0 by:

s̃inc
(s)
(0) =


(−1)(s−1)/2 πs

s+ 1
, s odd

0, s even
(s ∈ N0)

This can be easily obtained from (11) or the power series expansion:

s̃inc(t) =
∞∑
j=1

(−1)j+1

(2j)!
(πt)2j−1

As an application, we now come two new Boas-type formulae, one for derivatives of odd order and
another for those of even order.

Theorem 8.1. Let f ∈ B2
σ for some σ > 0 and h := π/σ. Then for s ∈ N,

f̃ (2s−1)(t) =
1

h2s−1

∞∑
k=−∞

(−1)k+1Ãs,k f(t+ hk) (t ∈ R) (63)

and for s ∈ N0,

f̃ (2s)(t) =
1

h2s

∞∑
k=−∞

(−1)k+1B̃s,k f
(
t+ h

(
(k − 1

2

))
(t ∈ R) (64)

Here the coefficients Ãs,k and B̃s,k are given by:

Ãs,k := (−1)k+1 s̃inc
(2s−1)

(−k) =


(−1)sπ

2s−1

2s
k = 0

(2s− 1)!

πk2s

{
(−1)k −

s−1∑
j=0

(−1)j

(2j)!

(
πk
)2j}

k ∈ Z \ {0}
(65)

B̃s,k := (−1)k+1 s̃inc(2s)
(1
2
− k
)
=

(2s)!

π(k − 1
2
)2s+1

{
(−1)k +

s−1∑
j=0

(−1)j
[
π(k − 1

2
)
]2j+1

(2j + 1)!

}
(k ∈ Z)

(66)

Proof. The proof follows along the same lines as the first proof of Theorem 4.1, starting with:

f̃ (2s−1)(0) =
∞∑

k=−∞
f(k)s̃inc

(2s−1)
(−k)

in the case of odd order derivatives, and with:

f̃ (2s)
(1
2

)
=

∞∑
k=−∞

f(k)s̃inc
(2s)
(1
2
− k
)

for even orders.
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For s = 0 one obtains from (64):

f̃(t) =
∞∑

k=−∞

−1
π(k − 1

2
)
f
(
t+ h

(
k − 1

2

))
and the case s = 1 in (63) gives:

f̃ ′(t) =
π

2h
f(t) +

1

h

∞∑
k=−∞

−2
π(2k + 1)2

f
(
t+ h(2k + 1)

)
(67)

already to be found in [27, p. 203]; see also [11]. The case s = 1 in (64) gives:

f̃ ′′(t) =
1

h2

∞∑
k=−∞

(−1)k+12
[
(−1)k + (π

(
k − 1

2

)]
π
(
k − 1

2

)3 f
(
t+ h

(
k − 1

2

))
(t ∈ R) (68)

8.2. Achieser-type Formulae

Achieser [26, p. 143, (II)] proved an informative formula, which combines the assertions of the first
derivative of a signal and that of its Hilbert transform. It may be stated for our definition of the Hilbert
transform as follows:

Let f ∈ B2
σ. Then,

sinα f ′(t)− cosα f̃ ′(t) = σ
∑
k∈Z

(−1)k+1 2 sin
2
(
α−kπ

2

)
(α− kπ)2

f

(
t+

kπ − α
σ

)
We now establish analogous formulae for higher derivatives, distinguishing the cases of odd and
even order.

Theorem 8.2. Let f ∈ B2
σ for some σ > 0 and h := π/σ. Then for α ∈ R and s ∈ N,

sinα f (2s−1)(t)− cosα f̃ (2s−1)(t) =
1

h2s−1

∑
k∈Z

(−1)k+1As,k(α)f
(
t+ h

(
k − α

π

))
(69)

and,

cosα f (2s)(t) + sinα f̃ (2s)(t) =
1

h2s

∑
k∈Z

(−1)k+1Bs,k(α)f
(
t+ h

(
k − α

π

))
(70)

where,

As,k(kπ) := (−1)s−1π
2s−1

2s
(k ∈ Z),

As,k(α) := −
π2s−1(2s− 1)!

(α− kπ)2s

[
(−1)k cosα−

s−1∑
j=0

(−1)j

(2j)!
(α− kπ)2j

]
(α 6= kπ)

and,

Bs,k(kπ) := (−1)s−1 π2s

2s+ 1
(k ∈ Z),

Bs,k(α) := −
π2s(2s)!

(α− kπ)2s+1

[
(−1)k sinα−

s−1∑
j=0

(−1)j

(2j + 1)!
(α− kπ)2j+1

]
(α 6= kπ)
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Proof. First let f ∈ B2
π. Then,

sinα f (2s−1)
(α
π

)
− cosα f̃ (2s−1)

(α
π

)
=

∑
k∈Z

[
sinα sinc(2s−1)

(α
π
− k
)
− cosα s̃inc

(2s−1) (α
π
− k
)]
f(k)

By using the formulae (19) and (62) for calculating the term in square brackets, we find that:

sinα sinc(2s−1)
(α
π
− k
)
− cosα s̃inc

(2s−1) (α
π
− k
)

=

− π
2s−1(2s− 1)!

(α− kπ)2s

[
− cosα + (−1)k

s−1∑
j=0

(−1)j

(2j)!
(α− kπ)2j

]
= (−1)k+1As,k(α)

for α 6= kπ with As,k(α) as defined in the theorem. The values of sinc(2s−1)(0) and sinc˜(2s−1)(0) show
that the left-hand side is equal to the right-hand side for α = kπ as well. Hence we have proved that:

sinα f (2s−1)
(α
π

)
− cosα f̃ (2s−1)

(α
π

)
=
∑
k∈Z

(−1)k+1As,k(α)f(k)

If f ∈ B2
σ for an arbitrary σ > 0, then applying this result to the function u 7→ f(hu + t − hα/π), we

obtain (69). The proof of (70) is strictly analogous.

Remark 8.3. Note that Theorem 8.2 contains the statements of Theorems 4.1 for f ∈ B2
σ ⊂ B∞σ and 8.1

for s ∈ N as special cases. This follows by observing that:

As,k(0) = −Ãs,k , As,k

(π
2

)
= As,k , Bs,k(0) = Bs,k , Bs,k

(π
2

)
= B̃s,k

Next we establish integral representations for the numbers As,k(α) and Bs,k(α), which allow us to
determine the signs of these numbers.

Proposition 8.4. (a) For s ∈ N, s > 1 and α 6= kπ we have the integral represention:

As,k(α) = (−1)s−1 π
2s−1(2s− 1)(2s− 2)

(α− kπ)2s

∫ α−kπ

0

t2s−3
(
1− (−1)k cos(t− α)

)
dt (71)

Furthermore,
(−1)s−1As,k(α) > 0 (72)

for all s ∈ N, k ∈ Z and α ∈ R.
(b) For s ∈ N and α 6= kπ we have the integral representation:

Bs,k(α) = (−1)s−1 π
2s2s(2s− 1)

(α− kπ)2s+1

∫ α−kπ

0

t2s−2
(
1− (−1)k cos(t− α)

)
dt (73)

Furthermore,
(−1)s−1Bs,k(α) > 0 (74)

for all s ∈ N, k ∈ Z and α ∈ R.
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Proof. Let s > 1 and α 6= kπ. Writing (−1)k cosα as cos(α− kπ) and using Taylor’s formula as given
by (34), we readily find that:

As,k(α) = (−1)s−1 π
2s−1(2s− 1)!

(α− kπ)2s

∫ α−kπ

0

(α− kπ − t)2s−2

(2s− 2)!
sin t dt

Now integration by parts and a change of variables yields (71). The integral in (71) is always positive,
regardless of whether α − kπ is positive or negative. This shows that (72) holds whenever (71) is valid.
For s = 1 and for the exceptional values of α, the validity of (72) can be verified directly.

The proofs of (73) and (74) are analogous except for obvious variations.

8.3. Extensions to Non-bandlimited Functions

Our next aim is to extend (63) and (64) to larger function spaces.

Theorem 8.5. Let s ∈ N, f ∈ F 2s−1,2. Then f̃ (2s−1) exists and for h > 0, σ := π/h formula (63)
extends to:

f̃ (2s−1)(t) =
1

h2s−1

∑
k∈Z

(−1)k+1Ãs,kf(t+ hk) + (R̃Boas
2s−1,σf)(t) (t ∈ R)

where,

(R̃Boas
2s−1,σf)(t) =

(−1)s+1

√
2π h2s−1

∫
|v|≥σ

[
(sgn v)(hv)2s−1 − χ2s−1(hv)

]
f̂(v)eivt dv

with χ2s−1 being the 2π-periodic function defined by:

χ2s−1(v) := (sgn v)v2s−1 = |v|2s−1 (−π < v ≤ π) (75)

In particular, ∣∣(R̃Boas
2s−1,σf)(t)

∣∣ ≤ 1√
2π

∫
|v|≥σ

∣∣v2s−1f̂(v)∣∣ dv =
1√
2π

dist1(f
(2s−1), B2

σ)

Proof. Following the proof of Theorem 5.1 we find that:

(R̃Boas
2s−1,πf)(0) = f̃1

(2s−1)
(0)−

∞∑
k=−∞

(−1)k+1Ãs,k f1(k)

f̃1
(2s−1)

(0) =
1√
2π

∫
|v|≥π

f̂(v)(−i sgn v)(iv)2s−1 dv

and,

f1(k) =
1√
2π

∫
|v|≥π

f̂(v)eikv dv (k ∈ Z)

There follows:

(R̃Boas
2s−1,πf)(0) =

1√
2π

∫
|v|≥π

f̂(v)

[
(−i sgn v)(iv)2s−1 −

∞∑
k=−∞

(−1)k+1Ãs,k e
ikv

]
dv (76)
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In order to evaluate the infinite series in (76), we have to proceed in a different way from the proof of
Theorem 5.1. Indeed, since the function gv : t 7→ eivt does not belong to L2(R) we cannot apply formula
(63) to this function.

On the other hand, there holds by (65) and (11),

(−1)k+1Ãs,k = s̃inc
(2s−1)

(−k) = (−1)s+1 1

2π

∫ π

−π
(sgn v)v2s−1e−ikv dv

i.e., the series in (76) is the (trigonometric) Fourier series of the 2π-periodic function (−1)s+1χ2s−1 with
χ2s−1 defined by (75). Moreover, since χ2s−1(v) is differentiable, save possibly for v = jπ, j ∈ Z, we
even have (cf. [2, Proposition 4.1.5]),

∞∑
k=−∞

(−1)k+1Ãs,k e
ikv = (−1)s+1χ2s−1(v) (a. e on R)

The proof can now be completed as the proof of Theorem 5.1.

The graphs of χ1 and χ3 are shown in Figures 5 and 6 below.

Figure 5. The graph of π−1χ1.
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Figure 6. The graph of π−3χ3.
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Theorem 8.6. Let s ∈ N, f ∈ F 2s,2. Then f̃ (2s) exists and for h > 0, σ := π/h formula (64) extends to:

f̃ (2s)(t) =
1

h2s

∞∑
k=−∞

(−1)k+1B̃s,k f
(
t+ h

(
(k − 1

2

))
+ (R̃Boas

2s,σf)(t) (t ∈ R) (77)

where,

(R̃Boas
2s,σf)(t) =

i(−1)s+1

√
2π h2s

∫
|v|≥σ

[
(sgn v)(hv)2s − χ2s(hv)

]
f̂(v)eivt dv (78)

Here χ2s is the 4π-periodic function defined by:

χ2s(v) :=

{
(sgn v)v2s, −π < v ≤ π

sgn(2π − v)(2π − v)2s, π < v ≤ 3π
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In particular,

∣∣(R̃Boas
2s,σf)(t)

∣∣ ≤ 1 + 3−2s√
2π

∫
|v|≥σ

v2s
∣∣f̂(v)∣∣ dv =

1 + 3−2s√
2π

dist1(f
(2s), B2

σ)

Proof. Proceeding as in the proof of Theorem 8.5, we arrive at a formula corresponding to (76), namely,

(R̃Boas
2s,πf)(0) =

1√
2π

∫
|v|≥π

f̂(v)

[
(−i sgn v)(iv)2s −

∞∑
k=−∞

(−1)k+1B̃s,k e
i(k−1/2)v

]
dv (79)

Noting (66) and (11), we see that the infinite series in (79) can be rewritten as a Fourier series, namely,

∞∑
k=−∞

(−1)k+1B̃s,k e
i(k−1/2)v = e−iv/2

∞∑
k=−∞

sinc˜(2s)(1
2
− k
)
eikv

= (−1)s−1e−iv/2
∞∑

k=−∞

{
1

2π

∫ π

−π
(sgn v)v2seiv/2e−ikv dv

}
eikv

and, using the same arguments on the convergence of Fourier series as above, we obtain:

∞∑
k=−∞

(−1)k+1B̃s,k e
i(k−1/2)v = (−1)s−1χ2s(v) (0 < |v| < π) (80)

Since the series in (80) defines a 4π-periodic function satisfying χ2s(v + 2nπ) = (−1)nχ2s(v) for all
n ∈ Z, it follows that (80) holds a. e. on R. This yields (77) with remainder (78) for h = 1 and t = 0.
The rest of the proof now follows as in the proof of Theorem 5.1.

The graphs of χ2 and χ4 are shown in Figures 7 and 8 below.

Figure 7. The graph of π−2χ2.
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Figure 8. The graph of π−4χ4.
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9. Applications

In this section we apply the results of Sections 3 and 8 to the signal function g(t) := 1/(1 + t2),
t ∈ R, having Fourier transform

√
π/2 exp(−|v|) and Hilbert transform g̃(t) = t/(1+t2). The extended

sampling theorem for the Hilbert transform (Theorem 3.4) takes on the concrete form, first for g̃ ′,∣∣∣∣∣ 1− t2

(1 + t2)2
−

∞∑
k=−∞

σ2

σ2 + (kπ)2
π
(
σt− k

)
sin
(
π(σt− k)

)
+ cos(π(σt− k))− 1

π(σt− k)2

∣∣∣∣∣
≤ 1√

2π

∫
|v|≥σ

√
π

2
|v|e−|v| dv = (1 + σ)e−σ (σ > 0) (81)

In practice, one has to deal with a finite sum rather than with the infinite series. This leads to an
additional truncation error, namely,

(Tσ,Nf)(t) =
∑

|k|≥N+1

σ2

σ2 + (kπ)2
π
(
σt− k

)
sin
(
π(σt− k)

)
+ cos(π(σt− k))− 1

π(σt− k)2

Assuming N ≥ γσ|t| for some constant γ > 1, then the terms of the latter series, denoted by ak, can be
estimated by:

|ak| ≤
σ2

(πk)2
|σt− k|+ 1

|σt− k|2
≤ σ2(2γ + 1)

π2(γ − 1)

1

|k|3
(|k| > N)

This yields for the truncation error:

∣∣(Tσ,Nf)(t)∣∣ ≤ σ2(2γ + 1)

π2(γ − 1)

∑
|k|≥N+1

1

|k|3
≤ 2σ2(2γ + 1)

π2(γ − 1)

∫ ∞
N

1

u3
du =

σ2(2γ + 1)

π2(γ − 1)
N−2

Combining the aliasing error in (81) with this estimate for the truncation error, we finally obtain:∣∣∣∣∣ 1− t2

(1 + t2)2
−

N∑
k=−N

σ2

σ2 + (kπ)2
π
(
σt− k

)
sin
(
π(σt− k)

)
+ cos(π(σt− k))− 1

π(σt− k)2

∣∣∣∣∣
≤ (1 + σ)e−σ +

σ2(2γ + 1)

π2(γ − 1)
N−2 (σ > 0;N ≥ γσ|t|)

Thus, we have a pretty precise and practical estimate for the error occurring when the derivative of
the Hilbert transform is reconstructed in terms of the Hilbert version of the sampling theorem. Whereas
the first term on the right-hand side covers the aliasing error, the second one is due to truncation.

Similarly, the Boas-type theorem for higher order derivatives (Theorem 8.5) takes the form
(recall (67)): ∣∣∣∣∣ 1− t2

(1 + t2)2
−
{
π

2h
− 1

h

∞∑
k=−∞

2

π(2k + 1)2
1

1 + [t+ (2k + 1)h]2

}∣∣∣∣∣
≤ 1√

2π

∫
|v|≥σ

√
π

2
|v|e−|v| dv = (1 + σ)e−σ (σ > 0)
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For the second order derivative of g̃ one obtains from Theorem 8.6 for s = 1,∣∣∣∣∣ 2t3 − 6t

(1 + t2)3
− 1

h2

∞∑
k=−∞

(−1)k
8
(
π − 2πk + 2(−1)k

)
π(2k − 1)3

1

1 + [t+ (2k + 1)h]2

∣∣∣∣∣
≤ 1√

2π

∫
|v|≥σ

√
π

2
v2e−|v| dv = (2 + 2σ + σ2)e−σ (σ > 0)

These are the aliasing errors for the reconstruction of derivatives of the Hilbert transform in terms of
the Boas-type formulae. In both cases, the truncation errors can be handled in a similar fashion as above.
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A Brief Biography of Karl Willy Wagner

Karl Willy Wagner, born in Friedrichsdorf, a town in the Taunus founded 1687 by the Huguenots
(his mother Emilie Zeline, née Gauterin, was a traditional Huguenot), who completed his studies as an
electrical engineer at the well-known Technikum Bingen in 1902, worked in 1904–1908 as a research
engineer at Berlin’s Siemens & Schuckert. In 1908 he became the assistant to the physicist Hermann
Theodor Simon at Göttingen under whom he received his Dr. Phil. in 1910, and in 1912 he earned the
Habilitation degree at the TH Berlin. Already in fall 1912 he was appointed Professor and member of
the Physikalisch-Technische Reichsanstalt, and its President from 1923 to 1927. Then he became the
founding professor of the Institute für Schwingungsforschung (Oscillation Theory) at the TH Berlin,
named the Heinrich-Hertz-Institute in 1930.

At a special meeting of the Heinrich-Hertz Institute of January 1936 the Gaudozentenführer (the Nazi
boss of Berlin’s universities), Willi Willing (1907–1983), reported that he planned to dismiss Wagner
from his offices due to certain financial irregularities: allegedly receiving a Leica camera from the Leitz
firm and for driving home in his official car in a roundabout way for coffee. None of the professors
present objected, only Dr. Alfred Thoma, Wagner’s assistant, did, stating that these accusations did not
represent the facts. As a consequence, he was discharged a few day later. Willing declared Wagner a
Volksfeind (state enemy) and fired him.

Willing himself, who had received his doctorate only in 1935, became provisional Director of the
Heinrich-Hertz Institute that February 1936.

According to Wagner himself, he was removed from office because he refused to dismiss his Jewish
employees, ignoring the Nuremberg laws of September 1935 according to which German universities
were to be “cleansed” of their Jewish students and lecturers.

As Dr. Thoma reported, Wagner would have been sent to a concentration camp, if he had not been
bedridden with thrombosis at the time. Until 1938 most prisoners of concentration camps, which were an
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integral feature of the regime as soon as Hitler came to power, and were established all over Germany to
handle the masses of people labelled as political/religious opponents and social deviants, were German
citizens. Only after the “Kristallnacht” pogroms of November 1938 did the Nazis conduct mass arrests
of adult male Jews. To facilitate the genocide of the Jews, the Nazis established “killing centers”, the
first being Chelmno in Poland in December 1941.

After his dismissal Wagner returned home to Friedrichsdorf and together with his brother-in-law
Friedrich Schmitt founded the “Landgrafen-Zwiebackfabrik”, enabling him to make a living.

In 1949 Wagner became President of the predecessor of the University of Mainz, which he
co-founded, and in 1951 became Honorary Professor at Mainz.

He received many honours, the first, in 1919, being the “Cedergrenska guldmedaljen” (Gold
Cedergren Medal), awarded every five years by the Royal Institute of Technology in Stockholm, and in
1935 he was elected a corresponding member of the Royal Swedish Academy of Engineering Sciences
(korresponderande ledamot Kungl. Ingenjörsvetenskapsakademin) there. He was a referee of Wilhelm
Cauer’s milestone thesis of 1926. Already in the fall of 1946, Wagner could again visit his colleagues
in Switzerland. A little later, he was invited to lecture in Stockholm, Uppsala and Gothenburg, as well
as to a guest-course at the KTH, the Royal Institute of Technology at Stockholm. Wagner’s treatise
“Operatorenrechnung und Laplace Transformation” [28] was one of the first to attempt a justification
of the operational calculus of Oliver Heaviside (the recipient of the Cedergren Medal in 1924), as well
as to make transform methods popular in engineering circles, Fourier transforms being one of them;
see [29–33].

Our paper is therefore dedicated to a true man of principles, a renowned electrical engineer, one who
was fired from office for not having dismissed his Jewish employees, one of few such cases known in
university circles during Nazi times.
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