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Abstract:



The paper is concerned with Shannon sampling reconstruction formulae of derivatives of bandlimited signals as well as of derivatives of their Hilbert transform, and their application to Boas-type formulae for higher order derivatives. The essential aim is to extend these results to non-bandlimited signals. Basic is the fact that by these extensions aliasing error terms must now be added to the bandlimited reconstruction formulae. These errors will be estimated in terms of the distance functional just introduced by the authors for the extensions of basic relations valid for bandlimited functions to larger function spaces. This approach can be regarded as a mathematical foundation of aliasing error analysis of many applications.
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1. Introduction


According to Shannon’s sampling theorem, a signal [image: there is no content], et al., a bandlimited signal (see Section 2 for the exact definition) can be completely reconstructed in terms of samples, equidistantly spaced apart the real axis [image: there is no content]. Likewise one can reconstruct the derivatives [image: there is no content] or the Hilbert transform [image: there is no content] and its derivative [image: there is no content](s)=[image: there is no content]˜ just in terms of samples of f. Almost immediate applications of these results are Boas-type formulae for arbitrary order derivatives of such signals as well as of their Hilbert transforms, used in numerical analysis for computation of those derivatives.



The essential aim is to extend these results to non-bandlimited signals, in fact to the largest class, denoted by [image: there is no content] below, for which the Fourier transform, the basic tool of this approach, can be employed effectively. Basic is the fact that by these extensions the exact reconstruction formulae have to be equipped with remainder (error) terms. The errors involved will be measured in terms of the distance of f from the space [image: there is no content] of bandlimited function, a concept just introduced by the authors for the extensions of basic relations for Bernstein spaces [image: there is no content] to larger function spaces.



To become familiar with the new approach, the classical Shannon sampling theorem for derivatives of [image: there is no content]-signals, namely Theorem 3.1 below, can be extended to the larger space [image: there is no content] by adding the remainder term [image: there is no content] of (6) to the expansion for bandlimited signals (5). This remainder, the aliasing error, can be estimated (cf. (7)) by:


(Rs,σWKSf)(t)≤2π∫|v|≥σvs[image: there is no content](v)dv=2πdist1([image: there is no content],[image: there is no content])








The integral on the right-hand side is the above mentioned distance of [image: there is no content] from the space [image: there is no content]. Its behaviour depends on the smoothness properties of f, and was extensively studied in [1]. If f is bandlimited to [image: there is no content], then it vanishes, as to be expected. Otherwise, if f∈[image: there is no content], the largest space to be considered in this context, then this distance tends to zero for [image: there is no content]. Furthermore, if one restricts the matter to certain subspaces of [image: there is no content], one can obtain refined estimates, including unusually sharp rates of approximation; see Corollaries 3.5–3.7. In particular, if f belongs to a Lipschitz or Sobolev space, then [image: there is no content] decays like a negative power of σ, and if f belongs to a Hardy space, then it decays exponentially.



Similarly, to the sampling reconstruction for the derivatives of the Hilbert transform of [image: there is no content]-signals, thus for (d/dt)(s)[image: there is no content]=H(d/dt)(s)f, namely (12), the remainder term [image: there is no content] of (14), must be added in order to obtain its extension (13) to [image: there is no content]. The remainder [image: there is no content] can be estimated in the same way as [image: there is no content] above.



The paper’s chief point is to generalize the Boas formula for the first derivative, namely (16), to higher order ones, odd order given by (25), even orders by (26). Thus, e.g., the derivative [image: there is no content] is expressed in terms of the signal values [image: there is no content], which depend however on t∈[image: there is no content]. The proof is unusually simple, one just sets [image: there is no content] and [image: there is no content] in Theorem 3.1 and applies the resulting formula to the function [image: there is no content].



For the first major result, Theorem 5.1, the extension of (25) to the larger class [image: there is no content], formula (25) has to be equipped with the aliasing error term [image: there is no content] of (38), which can be estimated in the same fashion as the error [image: there is no content] above, which again tends to zero for [image: there is no content].



A basic inequality in the theory of functions of exponential type is Bernstein’s inequality for the derivatives [image: there is no content] for bandlimited f in the finite energy norm or in Lp([image: there is no content]), [image: there is no content]. This result is generalized in Section 6 to non-bandlimited signals, the aliasing error being (52) in the case of odd order derivatives and (53) for even ones.



The active field of Landau–Kolmogorov inequalities in our situation is handled in Section 7. Finally, Boas-type formulae for the Hilbert transform are left to Section 8.




2. Notation and Preliminary Results


As usual, Lp([image: there is no content]) is the space of all real or complex-valued function f that are Lebesgue integrable to the pth power over the real axis [image: there is no content], endowed with the norm ∥f∥Lp([image: there is no content]):=∫[image: there is no content]|f(u)|pdu1/p, [image: there is no content], and L∞([image: there is no content]) is the space of all measurable essentially bounded functions f with the norm ∥f∥L∞([image: there is no content]):=ess supu∈[image: there is no content]|f(u)|. By C([image: there is no content]) we denote the class of all functions f:[image: there is no content]⟶C that are uniformly continuous and bounded on [image: there is no content], where ∥f∥C([image: there is no content]):=supu∈[image: there is no content]|f(u)|.



The Fourier transform [image: there is no content] of f∈Lp([image: there is no content]), [image: there is no content], is defined by:


[image: there is no content](v):=1[image: there is no content]∫[image: there is no content]f(u)e−ivudu(p=1)limR→∞[image: there is no content](v)−1[image: there is no content]∫−RRf(u)e−ivuduLp′([image: there is no content])=0(1<p≤2)








where [image: there is no content]. If f∈Lp([image: there is no content]), [image: there is no content], is such that [image: there is no content]∈L1([image: there is no content]), then there holds the Fourier inversion formula:


f(t)=1[image: there is no content]∫[image: there is no content][image: there is no content](v)eivtdv



(1)




at each point t∈[image: there is no content] where f is continuous; see [2, Proposition 5.1.10, 5.2.16].



For [image: there is no content] and [image: there is no content], let [image: there is no content] the Bernstein space comprising all entire functions (thus arbitrary often differentiable) of exponential type σ, (i.e., |f(z)|≤∥f∥C([image: there is no content])exp(σ|y|) for [image: there is no content], which belong to Lp([image: there is no content]) when restricted to the real axis [image: there is no content]. There holds:


Bσ1⊂Bσp1⊂Bσp2⊂[image: there is no content](1≤p1≤p2≤∞)











According to the Paley–Wiener theorem (cf. [3, p. 103]), a signal f belongs to [image: there is no content]; [image: there is no content], if and only if it is bandlimited to [image: there is no content], i.e., its Fourier transform vanishes outside [image: there is no content]. The same holds true for [image: there is no content], if the Fourier transform is understood in the distributional sense. Note that a bandlimited signal cannot be simultaneously duration limited.



The sinc function is defined by:


sincz:=sin(πz)πz,z∈C\{0}1,[image: there is no content]sinc^(v)=1[image: there is no content]rect(v)(v∈[image: there is no content])



(2)




where the rectangle function is given by:


[image: there is no content]








Moreover, there holds by the Fourier inversion formula (1) (cf. [2, Section 5.2.4]):


sinc(s)(t)=1[image: there is no content]∫−∞∞rect(v)[image: there is no content](iv)seivtdv=1[image: there is no content]∫−ππ(iv)seivtdv(t∈[image: there is no content];s∈N0)



(3)







2.1. A Hierarchy of Spaces Extending Bernstein Spaces


In order to extend the Bernstein space [image: there is no content] to larger function spaces, we weaken the property of f being bandlimited, [image: there is no content] vanishes outside the compact interval [image: there is no content], to [image: there is no content] belonging to L1([image: there is no content]). This still guarantees the reconstructibility of f from its Fourier transform in terms of the inversion formula (1). To this end, we introduce the Fourier inversion classes:


[image: there is no content]:=f∈[image: there is no content]([image: there is no content])∩C([image: there is no content]):vs[image: there is no content](v)∈L1([image: there is no content])(s∈N0)








For [image: there is no content], there holds [image: there is no content]. In addition to (1) one has for f∈[image: there is no content] that the derivative [image: there is no content] exists, belongs to C([image: there is no content]) and has the representation:


[image: there is no content](t)=1[image: there is no content]∫[image: there is no content](iv)s[image: there is no content](v)eivtdv(t∈[image: there is no content])








see [2, Proposition 5.1.17 with [image: there is no content] replaced by [image: there is no content]].



The Fourier inversion classes are in some sense the most general spaces in which our studies can be performed. Spaces between [image: there is no content] and [image: there is no content] are also of interest since they will yield smaller errors in the extended formulae.



The modulus of smoothness of f∈[image: there is no content]([image: there is no content]) of order [image: there is no content] is defined by:


ωrf,δ,[image: there is no content]([image: there is no content]):=sup|h|≤δ∫−∞∞∑j=0r(−1)r−jrjf(u+jh)2du1/2(δ>0)








and the associated Lipschitz class for [image: there is no content] by:


Lipr(α,[image: there is no content]([image: there is no content])):=f∈[image: there is no content]([image: there is no content]);ωrf,δ,[image: there is no content]([image: there is no content])=Oδα,δ→0+











The Sobolev space is given by:


Ws,2([image: there is no content]):=f∈[image: there is no content]([image: there is no content]):vs[image: there is no content](v)∈[image: there is no content]([image: there is no content])(s∈N0)








and Hardy spaces for horizontal strips Sd:={z∈:|ℑz|<d}, [image: there is no content], by:


H2(Sd):=f:fanalyticonSd,fH2(Sd)<∞fH2(Sd):=sup0<y<d∫[image: there is no content]|f(t−iy)|2+|f(t+iy)|22dt1/2








There hold the inclusions:


[image: there is no content]⊂H2(Sd)⊂Ws,2([image: there is no content])∩C([image: there is no content])⊂Fs−1,2⊂F0,2⊂[image: there is no content]([image: there is no content])(h>0;s∈N)











Here we recall some facts concerning the distance functional introduced in [1]. Let G be the vector space of all functions f:[image: there is no content]⟶C having the representation:


f(t)=1[image: there is no content]∫[image: there is no content]ϕ(v)eivtdv



(4)




for some ϕ∈L1([image: there is no content])∩Lq([image: there is no content]),1<q≤<∞. We define the distance of two functions [image: there is no content] having representation (4) with [image: there is no content], respectively, by:


distq([image: there is no content],f2)=∥[image: there is no content]−[image: there is no content]∥Lq([image: there is no content])=∫[image: there is no content]|[image: there is no content](v)−[image: there is no content](v)|qdv1/q








and the distance of a functions [image: there is no content]from the Bernstein space [image: there is no content]by:


distq(f,[image: there is no content]):=infg∈[image: there is no content]distq(f,g)











If f∈[image: there is no content], [image: there is no content], then the derivative [image: there is no content] belongs to G with ϕ(v)=(iv)s[image: there is no content](v). Hence one has for [image: there is no content],f2∈[image: there is no content] with (iv)s[image: there is no content]n(v)∈Lq([image: there is no content]), [image: there is no content],


distqf1(s),f2(s)=vs[image: there is no content]^−f2^Lq([image: there is no content])








Moreover, one has for f∈[image: there is no content], [image: there is no content],


distq([image: there is no content],[image: there is no content])=∫|v|≥σvs[image: there is no content](v)qdv1/q











Observe that for [image: there is no content] and [image: there is no content] one has in view of the isometry of the Fourier transform that [image: there is no content]([image: there is no content],f2)=∥[image: there is no content]−f2∥[image: there is no content]([image: there is no content]), i.e., [image: there is no content] is the Euclidean distance.



The following estimates for the distance distq([image: there is no content],[image: there is no content]) can be found in [1]. In each of the subsequent statements, c and γ with attached indices denote positive numbers that depend only on the indices but not on f and σ. They may be different at each occurrence.



Proposition 2.1. 

(a) Let [image: there is no content] with [image: there is no content]∈Lq([image: there is no content]), [image: there is no content], and [image: there is no content]. One has the derivative free estimate:


distq(f,[image: there is no content])≤cr,q∫σ∞v−q/2ωr(f,v−1,[image: there is no content]([image: there is no content]))qdv1/q








If also f∈Lipr(α,[image: there is no content]([image: there is no content])), [image: there is no content], then:


distq(f,[image: there is no content])=Oσ−α−1/2+1/q(σ→∞)








If [image: there is no content]∈Lip1(α,[image: there is no content]([image: there is no content])), [image: there is no content], [image: there is no content], then:


distq([image: there is no content],[image: there is no content])=Oσ−α−s−1/2+1/q(σ→∞)








(b) If f∈[image: there is no content] and vs[image: there is no content](v)∈Lq([image: there is no content]), [image: there is no content], [image: there is no content], then for each [image: there is no content],


distq([image: there is no content],[image: there is no content])≤cs,r,q∫σ∞v−q/2ωr([image: there is no content],v−1,[image: there is no content]([image: there is no content]))qdv1/q=Oσ−α−1/2+1/q(σ→∞)








the latter holding provided [image: there is no content]∈Lipr(α,[image: there is no content]([image: there is no content])), [image: there is no content].





Proposition 2.2. 

Let f∈Wr,2([image: there is no content])∩C([image: there is no content]). Then, for [image: there is no content], [image: there is no content], and [image: there is no content],


distq(f,[image: there is no content])≤cr,qσ−r−1/2+1/q∥f(r)∥[image: there is no content]([image: there is no content])distq([image: there is no content],[image: there is no content])≤cr−s,qσ−r−1/2+s+1/q∥f(r)∥[image: there is no content]([image: there is no content])(r>s+1/q−1/2)













Proposition 2.3. 

Let [image: there is no content]. Then, for [image: there is no content], [image: there is no content],


distq(f,[image: there is no content])≤γd,qe−dσ∥f∥H2(Sd)(σ>0)distq([image: there is no content],[image: there is no content])≤γd,q,sσse−dσ∥f∥H2(Sd)(σ≥s/d)















3. Extensions of Shannon’s Theorem to Non-Bandlimited Signals and Their Hilbert Transforms; Aliasing Errors


Let us consider the well-known Whittaker–Kotel’nikov–Shannon sampling theorem for reconstructing a bandlimited signal and its derivatives in terms of samples of just f, namely ((see e.g., [4,5], [6, p. 13], [7, p. 59]).



Theorem 3.1. 

Let [image: there is no content], then, for each [image: there is no content],


[image: there is no content](t)=∑k=−∞∞f[image: there is no content]σddt(s)sincσtπ−k(t∈[image: there is no content])



(5)




the series converging absolutely and uniformly for t∈[image: there is no content] as well as in [image: there is no content]([image: there is no content])-norm.





This theorem can be extended to the larger space [image: there is no content] by adding a remainder or error term [image: there is no content], to the expansion (5). This leads to the following extended version of Theorem 3.1.



Theorem 3.2. 

Let f∈[image: there is no content] for some [image: there is no content], and let θs:[image: there is no content]⟶C be the 2π-periodic signal, defined for t∈[image: there is no content] by:


θs(t,v):=vse−itv(−π<v≤π)








Then one has the approximate sampling representation:


[image: there is no content](t)=∑k=−∞∞f[image: there is no content]σddt(s)sincσtπ−k+(Rs,σWKSf)(t)(t∈[image: there is no content])








with the remainder [image: there is no content] given by:


(Rs,σWKSf)(t):=is[image: there is no content]∫|v|≥σ[image: there is no content](v)[vs−(σπ)sθs(t,vσ)]eivtdv(t∈[image: there is no content])



(6)




In particular, there holds:


|(Rs,σWKSf)(t)|=2π∫|v|≥σ|vs[image: there is no content](v)|dv=2πdist1(f(S),[image: there is no content])=o(1)(σ→∞)



(7)









The remainder [image: there is no content] is the so-called aliasing error occurring when a non-bandlimited signal is reconstructed in terms of the sampling theorem; see e.g., [8].



The case [image: there is no content] can be found already in [9] (see also [5,7,10]), [6, p. 15 ff]), where the remainder (6) was given in the equivalent form:


(R0,σWKSf)(t):=1[image: there is no content]∑k=−∞∞1−e−i2kσt∫(2k−1)σ(2k+1)σ[image: there is no content](v)eivtdv(t∈[image: there is no content])








Theorem 3.2 for arbitrary [image: there is no content] is contained in [11], where it was deduced as a particular case of a unified approach to various sampling representations. This general approach also covers the following two results on the reconstruction of the Hilbert transform [image: there is no content] and its derivatives in terms of samples of f; see [5,11].



The Hilbert transform or conjugate function of f∈[image: there is no content]([image: there is no content])∩C([image: there is no content]), defined by the Cauchy principal value:


[image: there is no content](t):=limδ→0+1π∫|u|>δf(t−u)udu=PV1π∫−∞∞f(t−u)udu








plays an important role in electrical engineering (see [12, p. 267 ff.], [13]). For the Hilbert transform, also often called “one of the most important operators in analysis”, one may consult [2, Chap. 8, 9], [14,15]. It defines a bounded linear operator from [image: there is no content]([image: there is no content]) into itself, and one has:


[image: there is no content]^(v)=(−isgnv)[image: there is no content](v)a.e.



(8)




Furthermore, if f∈[image: there is no content] for some [image: there is no content], then by the Fourier inversion formula Equation (1) for each t∈[image: there is no content],


[image: there is no content](s)(t)=1[image: there is no content]∫−∞∞[image: there is no content](v)(−isgnv)(iv)seivtdv=1[image: there is no content]∫−∞∞[image: there is no content]^(v)(−isgnv)eivtdv



(9)




the latter equality holding provided [image: there is no content]∈[image: there is no content]([image: there is no content]). This formula also shows that [image: there is no content](s)=[image: there is no content]˜; thus derivation and taking Hilbert transform are commutative operations.



Noting (2) and (8), we see that the Fourier transform of the Hilbert transform of the sinc-function is given by:


sinc˜^(v)=1[image: there is no content](−isgnv)rect(v)a.e.








and one easily obtains from the case [image: there is no content] in (9) that the Hilbert transform of the sinc-function is given by:


sinc˜(t)=1−cosπtπt=sin2πt2πt2,t∈[image: there is no content]∖{0}0,[image: there is no content]



(10)







Moreover, one has the representation:


sinc˜(s)(t)=1[image: there is no content]∫−ππ(−isgnv)(iv)seivtdv(t∈[image: there is no content];s∈N0)



(11)







Since the Hilbert transform is a bounded linear operator from [image: there is no content]([image: there is no content]) into itself, which commutes with differentiation, the following sampling representation follows immediately from (5) by taking the Hilbert transform of each side.



Theorem 3.3. 

Let [image: there is no content], where [image: there is no content]. Then, for each [image: there is no content],


[image: there is no content](s)(t)=∑k=−∞∞f[image: there is no content]σddt(s)sinc˜σtπ−k(t∈[image: there is no content])



(12)




the series converging absolutely and uniformly for t∈[image: there is no content] as well as in [image: there is no content]([image: there is no content])-norm.





This formula enables one to compute [image: there is no content](s)(t) in term of samples of f itself; for the case [image: there is no content] see [5,6,7,16], and for arbitrary s see [11]. The extended version of this result reads (see [11]):



Theorem 3.4. 

Let f∈[image: there is no content] for some [image: there is no content], and let ηs:[image: there is no content]→C be the 2[image: there is no content]t∈[image: there is no content] by:


ηs(t,v):=sgn(v)vse−itv(−π<v≤π)








Then one has the approximate sampling representation:


[image: there is no content](s)(t)=∑k=−∞∞f[image: there is no content]σddt(s)sinc˜σtπ−k+(R˜s,σWKSf)(t)(t∈[image: there is no content])



(13)




with the remainder [image: there is no content] given by:


(R˜s,σWKSf)(t):=is−1[image: there is no content]∫|v|≥σ[image: there is no content](v)sgn(v)vs−σπsηst,vσeivtdv(t∈[image: there is no content])



(14)




In particular, there holds:


(R˜s,σWKSf)(t)=2π∫|v|≥σvs[image: there is no content](v)dv=2πdist1([image: there is no content],[image: there is no content])=o(1)(σ→∞)



(15)









The integral on the right-hand side of (7) and (15) is the distance of [image: there is no content] from the space [image: there is no content]. Its behaviour for [image: there is no content] depends on the smoothness properties of f, and was extensively studied in [1]; recall Section 2.1. This leads to the following estimates for the remainders [image: there is no content] and [image: there is no content].



Corollary 3.5. 

If f∈[image: there is no content], [image: there is no content], then for any [image: there is no content] and t∈[image: there is no content],


(Rs,σWKSf)(t)≤2πdist1([image: there is no content],[image: there is no content])≤cs,r∫σ∞v−1/2ωr[image: there is no content],v−1,[image: there is no content]([image: there is no content])dv(σ>0)








In particular, if in addition [image: there is no content]∈Lipr(α,[image: there is no content]([image: there is no content])) for [image: there is no content], then:


(Rs,σWKSf)(t)=Oσ−α+1/2(σ→∞)













Corollary 3.6. 

Let [image: there is no content], f∈Wr,2∩C([image: there is no content]) for some [image: there is no content]. Then: for t∈[image: there is no content],


(Rs,σWKSf)(t)≤cs,rσ−r+s+1/2∥f(r)∥[image: there is no content]([image: there is no content])(σ>0)








If moreover f(r)∈Lip1(α,[image: there is no content]([image: there is no content])), [image: there is no content], then


(Rs,σWKSf)(t)=Oσ−r−α+s+1/2(σ→∞)













Corollary 3.7. 

If [image: there is no content], then for [image: there is no content], positive [image: there is no content], and t∈[image: there is no content],


(Rs,σWKSf)(t)≤cd,sσse−πdσ∥f∥H2(Sd)













The three corollaries remain true, if [image: there is no content] is replaced by [image: there is no content].




4. Boas-type Formulae for Higher Derivatives


In [17] (see also [3]) Boas established a differentiation formula that may be presented as follows.



Let [image: there is no content], where [image: there is no content]. Then, for [image: there is no content], we have:


f′(t)=1h∑[image: there is no content](−1)k+1π(k−12)2ft+hk−12



(16)







When f is a trigonometric polynomial of degree n, i.e., [image: there is no content], then [image: there is no content] and so (16) applies. In this case, by virtue of the periodicity of f, the series in (16) can be condensed to a finite sum. The resulting formula was obtained by M. Riesz in 1914 [18]. In fact, Riesz’s interpolation formula for trigonometric polynomials reads:


Tn′(t)=∑k=12n(−1)k−1αkTn(t+τk)(t∈[image: there is no content])



(17)




where [image: there is no content] and [image: there is no content] for [image: there is no content]. Since [image: there is no content], (17) implies the classical Bernstein inequality:


Tn(s)C[image: there is no content]≤nsTnC[image: there is no content](s∈N)



(18)







Analogously to the proof of (18), Boas’ formula (16), also known as generalized Riesz interpolation formula (as Isaac Pesenson informed us), can be used to prove the basic Bernstein inequality for functions f∈[image: there is no content], namely ∥[image: there is no content]∥Lp([image: there is no content])≤σs∥f∥Lp([image: there is no content]), [image: there is no content], which will be treated extensively in Section 6.



There exist families of differentiation formulae for higher derivatives holding in Bernstein spaces; see [6, § 3.2]. Which of them should we consider as a generalization of Boas’ formula? In the applications of (16) the following properties are crucial:

	(a)

	
The formula applies to all entire functions of exponential type σ that are only bounded on [image: there is no content].




	(b)

	
The sample points are uniformly spaced according to the Nyquist rate and are located relatively to the argument t of the derivative.




	(c)

	
The coefficients do not depend on t.




	(d)

	
The coefficients decay like [image: there is no content] as [image: there is no content].




	(e)

	
When the sample points are arranged in increasing order, then the associated coefficients have alternating signs.









In the case of higher derivatives, a Boas-type formula should also have the properties (a) to (e).



The Boas-type formulae to be established will be deduced as applications of the Whittaker–Kotel’nikov–Shannon sampling theorem for higher order derivatives (Theorem 3.1). Another approach by contour integration methods of complex function theory will be presented in Section 4.1.



In view of Leibniz’s rule, the basic term [image: there is no content] in (5) can be written as follows:


sinc(s)(t)=1πtsinπt(s)=∑j=0ssj(sinπt)(j)1πt(s−j)=∑j=0ssjπjsinπt+jπ2(−1)s−j(s−j)!πts−j+1=(−1)ss!πts+1∑j=0ssinπt+jπ2(−1)j(πt)jj!











Expressing now [image: there is no content] in terms of [image: there is no content] and [image: there is no content], we can rewrite [image: there is no content] in the more handy form:


sinc(s)(t)=(−1)ss!πts+1sinπt∑ν=0⌊s2⌋(−1)ν(πt)2ν(2ν)!−cosπt∑ν=0⌊s−12⌋(−1)ν(πt)2ν+1(2ν+1)!



(19)




where the right hand side is naturally thought to be continuously extended at [image: there is no content] by:


sinc(s)(0)=0,sodd(−1)s/2πss+1,seven(s∈N0)








This can be easily obtained from (3) or the power series expansion:


sinct=∑j=0∞(−1)j(2j+1)!(πt)2j(t∈[image: there is no content])











Further, it follows easily from (19) that:


(2s−1)sinc(2s−2)12−k=k−12sinc(2s−1)12−k(k∈Z)



(20)






2ssinc(2s−1)(−k)=ksinc(2s)(−k)(k∈Z)



(21)




In view of (3) there holds the Fourier expansion (cf. [2, Proposition 4.1.5]):


∑k=−∞∞sinc(s)(t−k)eikx=∑k=−∞∞1[image: there is no content]∫−ππ(iv)se−i(k−t)vdveitx=(ix)seitx(|x|<π;t∈[image: there is no content];s∈N0)








and, in particular, for [image: there is no content] and [image: there is no content],


∑k=−∞∞sinc(s)(t−k)=0(t∈[image: there is no content])



(22)







As an application, we now come to two Boas-type formulae, one for derivatives of odd order and one for those of even order.



Theorem 4.1. 

Let [image: there is no content] for some [image: there is no content], and define for [image: there is no content],


[image: there is no content]:=(−1)k+1sinc(2s−1)12−k=(2s−1)!π(k−12)[image: there is no content]∑j=0s−1(−1)j(2j)!πk−122j(k∈Z)



(23)






[image: there is no content]



(24)




Then there hold the representations:


[image: there is no content](t)=1h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]ft+hk−12(t∈[image: there is no content])



(25)






[image: there is no content](t)=1h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]f(t+hk)(t∈[image: there is no content])



(26)









Proof. 

The identities (23) and (24) follow immediately from (19), noting that [image: there is no content] and [image: there is no content].



For (25) and (26) we will give two proofs. The first one applies only to [image: there is no content], which seems to be the more interesting case in engineering applications, whereas the second one also covers the larger space [image: there is no content].



First assume that [image: there is no content], i.e., [image: there is no content]. Setting [image: there is no content] in (5), then by the definition of [image: there is no content],


[image: there is no content]12=∑k=−∞∞f(k)sinc(2s−1)12−k=∑k=−∞∞f(k)(−1)k+1[image: there is no content]



(27)




Now, if [image: there is no content] for arbitrary [image: there is no content], then (25) follows by applying (27) to the function [image: there is no content], which belongs to [image: there is no content].



For even order derivatives, one obtains from (5) for [image: there is no content] and [image: there is no content],


[image: there is no content]








The proof can now completed along the same lines as in the case of odd order derivatives.



In order to extend (25) and (26) to [image: there is no content], one may apply the [image: there is no content]-result just proved to the function [image: there is no content], [image: there is no content], which belongs to [image: there is no content], and then let [image: there is no content]. This density argument can be avoided by the following alternative proof. To this end, let [image: there is no content], and let [image: there is no content]∈[image: there is no content] be defined by:


[image: there is no content](u):=f(u)−f(0)u,u∈[image: there is no content]∖{0}f′(0),u=0








By Leibniz’s rule one has:


[image: there is no content](t)=t[image: there is no content](t)(s)=sf1(s−1)(t)+tf1(s)(t)(t∈[image: there is no content];s∈N)








Since [image: there is no content]∈[image: there is no content], we can apply (5) to the terms on the right-hand side to obtain:


[image: there is no content](t)=s∑k=−∞∞[image: there is no content](k)sinc(s−1)(t−k)+t∑k=−∞∞[image: there is no content](k)sinc(s)(t−k)(t∈[image: there is no content];s∈N)



(28)







Now, we have to distinguish between odd and even order derivatives. Replacing s by [image: there is no content] and setting [image: there is no content] in (28), we obtain in view of (20),


[image: there is no content]12=(2s−1)∑k=−∞∞[image: there is no content](k)sinc(2s−2)12−k+12∑k=−∞∞[image: there is no content](k)sinc(2s−1)12−k=∑k=−∞∞[image: there is no content](k)k−12sinc(2s−1)12−k+12∑k=−∞∞[image: there is no content](k)sinc(2s−1)12−k=∑k=−∞∞f(k)−f(0)sinc(2s−1)12−k(s∈N)








Further, noting (22) and the definition of [image: there is no content], we end up with:


[image: there is no content]12=∑k=−∞∞f(k)sinc(2s−1)12−k=∑k=−∞∞f(k)(−1)k+1[image: there is no content](s∈N)



(29)




To complete the proof for odd order derivatives, let now [image: there is no content] for arbitrary [image: there is no content] and apply (29) to the function [image: there is no content], where [image: there is no content].



For even order derivatives one starts again with (28), replaces s by [image: there is no content] and sets [image: there is no content]. In view of (21), (22) and (24), one then obtains:


[image: there is no content](0)=2s∑k=−∞∞[image: there is no content](k)sinc(2s−1)(−k)=∑k=−∞∞[image: there is no content](k)ksinc(2s)(−k)=∑k=−∞∞f(k)−f(0)sinc(2s)(−k)=∑k=−∞∞f(k)(−1)k+1[image: there is no content](s∈N)








Finally, apply this equation to the function [image: there is no content].        ☐





Representation (25) can also be found in [19, Corollary 5], where it was proved by contour integral methods.



For [image: there is no content], (25) is the classical Boas formula (16), and (26) reads:


[image: there is no content]








The case [image: there is no content] in (25) gives:


f(3)(t)=1h3∑k=−∞∞(−1)k+16π(12−k)41−π2212−k2ft+hk−12(t∈[image: there is no content])











It is easily seen that formulae (25) and (26) both have the properties (a) to (d), but it is not immediately clear whether (e) holds. We need to know the signs of the numbers [image: there is no content] and [image: there is no content]. For this, we represent these numbers by an integral with an integrand that does not change sign.



Proposition 4.2. 

(a) For [image: there is no content], [image: there is no content] the numbers [image: there is no content] of (23) have the representation:


[image: there is no content]=(−1)s−1(2s−1)(2s−2)π(k−12)[image: there is no content]∫0[image: there is no content]t2s−31+(−1)ksintdt



(30)




In particular,


(−1)s−1[image: there is no content]>0(s∈N;k∈Z)



(31)




(b) For [image: there is no content] the numbers [image: there is no content] of (24) have the representation:


[image: there is no content]=(−1)s−12s(2s−1)πk[image: there is no content]∫0[image: there is no content]t[image: there is no content]1−(−1)kcostdt(k∈Z∖{0})



(32)




In particular,


(−1)s−1[image: there is no content]>0(s∈N;k∈Z)



(33)









Proof. 

First we note that the sum on the right-hand side of (23) is the Taylor polynomial of the cosine function of degree [image: there is no content] with respect to the origin, evaluated at [image: there is no content]. Next we recall Taylor’s formula for a function f with the remainder represented by an integral. It states that:


f(x)=∑ν=0[image: there is no content]f(ν)(0)ν!xν+∫0x(x−t)[image: there is no content](2s−2)![image: there is no content](t)dt



(34)




see, e.g., [20, p. 88, Theorem 6]. Applying this formula to [image: there is no content] with [image: there is no content], we see that (23) may be rewritten as:


[image: there is no content]=(−1)s+1(2s−1)π(k−12)[image: there is no content]∫0[image: there is no content]t−k−12π[image: there is no content]sintdt








By a change of variables, we obtain:


[image: there is no content]=(−1)s+k(2s−1)π(k−12)[image: there is no content]∫0[image: there is no content]t[image: there is no content]costdt











Now an integration by parts, taking [image: there is no content] as a primitive of [image: there is no content], yields:


[image: there is no content]=(−1)s+k−1(2s−1)(2s−2)π(k−12)[image: there is no content]∫0[image: there is no content]t2s−3(−1)k+sintdt








for [image: there is no content]. From this, (30) follows immediately.



Except for a set of measure zero, the integrand in (30) is positive on the interval of integration if the upper limit [image: there is no content] of the integral is positive, and is negative if that limit is negative. This shows that the integral in (30) is always positive. Hence (31) holds for [image: there is no content], and in view of [image: there is no content] for [image: there is no content] as well.



Regarding (32), we note that the sum on the right-hand side of (24) is the Taylor polynomial of degree [image: there is no content] of the sine function evaluated at [image: there is no content]. Using again (34) and proceeding as in the proof of (a), we arrive at (32) and (33).         ☐





Now (31) and (33) show that formulae (25) and (26) have also the property (e) and so they are Boas-type formulae in our sense.



One may ask, why we started with [image: there is no content] in the proof of (25), and with [image: there is no content] in the proof of (26). If one begins with [image: there is no content] in the case of odd order derivatives, one would end up with formulae, the coefficients of which behave like [image: there is no content] for [image: there is no content]. Moreover, they are valid in [image: there is no content] for [image: there is no content] only, but not in [image: there is no content]. Hence they are not Boas-type formulae in our sense. For [image: there is no content] such a formula can be found in [7, p. 60 (87)].



4.1. An Alternative Approach by Methods of Complex Analysis


Formulae (25) and (26) of Theorem 4.1 can also be derived by contour integration without employing the sampling theorem and without requiring a process that leads from [image: there is no content] to [image: there is no content].



Denote by [image: there is no content] the positively oriented rectangle with vertices at [image: there is no content] For [image: there is no content], we first consider the meromorphic function:


K1,s(z):=(2s−1)!f(z)z[image: there is no content]cos(πz)∑j=0s−1(−1)j(2j)!(πz)2j








It has a simple pole or a removable singularity at [image: there is no content] for [image: there is no content], a pole of order at most [image: there is no content] at zero and no other singularities. Noting that the sum is a truncated Taylor expansion of [image: there is no content] around [image: there is no content], we conclude that:


z[image: there is no content](2s−1)!K1,s(z)=f(z)1+Oz[image: there is no content](z→0)








By a well-known formula for the residue at a pole of order at most [image: there is no content], this implies that:


[image: there is no content]








Furthermore, it is easily verified that:


resK1,s,k−12=(−1)k[image: there is no content]fk−12








with [image: there is no content] given by (23).



Now, for [image: there is no content], it is readily seen that:


maxz∈Q(N)|K1,s(z)|=ON−2(N→∞)








Hence by the residue theorem,


0=limN→∞12πi∫Q(N)K1,s(z)dz=[image: there is no content](0)+∑k=−∞∞(−1)k[image: there is no content]fk−12








which implies (25) by a transformation of the argument of f.



Analogously, one considers:


K2,s(z):=(2s)!f(z)z[image: there is no content]sin(πz)∑j=0s−1(−1)j(πz)2j+1(2j+1)!








Here [image: there is no content] is a pole of order at most [image: there is no content] and,


z[image: there is no content](2s)!K2,s(z)=f(z)1−(−1)s(πz)[image: there is no content](2s+1)!+O(z[image: there is no content](z→0)








which gives:


res(K2,s,0)=[image: there is no content](0)+(−1)s+1π[image: there is no content][image: there is no content]f(0)








while,


res(K2,s,k)=(−1)k[image: there is no content]f(k)(k∈Z∖{0})








with [image: there is no content] given by (24). This time, for [image: there is no content], we find that:


0=limN→∞12πi∫Q(N+12)K2,s(z)dz=[image: there is no content](0)+(−1)s+1π[image: there is no content][image: there is no content]f(0)+∑k=−∞k≠0∞(−1)k[image: there is no content]f(k)








which implies (26) by a transformation of the argument of f.




4.2. Variants


If we abandon property (e) of a Boas-type formula and admit a correction at t by the value of f or that of its first derivative, we can improve upon property (d) by establishing formulae with coefficients that decay like [image: there is no content] as [image: there is no content]. Such formulae are of interest in numerical applications since the truncated series will need less terms for achieving certain accuracy.



The following formula (35) was already obtained in [19, Corollary 5] by methods of complex analysis; formula (36) is new.



Corollary 4.3. 

Let [image: there is no content] for some [image: there is no content] and let [image: there is no content]. Then, in the notation of Theorem 4.1,


[image: there is no content](t)=(−1)sπh[image: there is no content]f(t)+[image: there is no content]h[image: there is no content]∑k=−∞∞[image: there is no content]k−12ft+hk−12(t∈[image: there is no content])



(35)






f(2s+1)(t)=(−1)sπh[image: there is no content]f′(t)+[image: there is no content]h[image: there is no content]∑k=−∞k≠0∞(−1)k+1[image: there is no content]kf(t+hk)(t∈[image: there is no content])



(36)









Proof. 

Obviously the function [image: there is no content] belongs to [image: there is no content] and, as is seen by Taylor expansion around 0, we have


g(r)(0)r!=f(r+1)(0)(r+1)!(r∈N)








Thus applying (25) to g at [image: there is no content], we obtain


[image: there is no content](0)=[image: there is no content]h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]f(h(k−12))−f(0)k−12








For [image: there is no content] this formula holds with [image: there is no content] and yields


(−1)sπ[image: there is no content]=−2s∑k=−∞∞(−1)k+1[image: there is no content]k−12








Thus,


[image: there is no content](0)=(−1)sπh[image: there is no content]f(0)+[image: there is no content]h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]k−12fh(k−12








which gives (35) by shifting the argument of f.





Analogously, applying (26) to g at [image: there is no content], we obtain:


f(2s+1)(0)=−[image: there is no content]h[image: there is no content][image: there is no content]f′(0)+[image: there is no content]h[image: there is no content]∑k=−∞k≠0∞(−1)k+1[image: there is no content]f(hk)−f(0)k








For the sinc function, this formula holds with [image: there is no content] and yields:


0=−(2s+1)∑k=−∞k≠0∞(−1)k+1[image: there is no content]k








Thus,


f(2s+1)(0)=−[image: there is no content]h[image: there is no content][image: there is no content]f′(0)+[image: there is no content]h[image: there is no content]∑k=−∞k≠0∞(−1)k+1[image: there is no content]kf(hk)








which gives (36) by substituting the value of [image: there is no content] and shifting the argument of f.     ☐





5. Extensions to Non-Bandlimited Functions


Theorem 5.1. 

Let [image: there is no content][image: there is no content]. Then [image: there is no content] exists, and for [image: there is no content], [image: there is no content] formula (25) extends to:


[image: there is no content](t)=1h[image: there is no content]∑[image: there is no content](−1)k+1[image: there is no content]ft+hk−12+(R2s−1,σBoasf)(t)(t∈[image: there is no content])



(37)




where,


(R2s−1,σBoasf)(t)=i(−1)s+1[image: there is no content]h[image: there is no content]∫|v|≥σ(hv)[image: there is no content]−ϕ[image: there is no content](hv)[image: there is no content](v)eivtdv



(38)




ϕ[image: there is no content] being the [image: there is no content]-periodic function defined by:


ϕ[image: there is no content](v):=v[image: there is no content],−π<v≤π(2π−v)[image: there is no content],−π<v≤3π



(39)




In particular,


(R2s−1,σBoasf)(t)≤1+3−2s+1[image: there is no content]∫|v|≥σ|v|[image: there is no content][image: there is no content](v)dv=1+3−2s+1[image: there is no content]dist1([image: there is no content],[image: there is no content])



(40)









Proof. 

First assume [image: there is no content], i.e., [image: there is no content], and let:


[image: there is no content](t):=1[image: there is no content]∫|v|≥π[image: there is no content](v)eitvdv



(41)




Then [image: there is no content] and so (25) applies to this difference, i.e.,


[image: there is no content]








and we find that for [image: there is no content],


(R2s−1,πBoasf)(0)=f1(2s−1)(0)−∑k=−∞∞(−1)k+1[image: there is no content][image: there is no content]k−12



(42)







>From (41) there follows:


f1(2s−1)(0)=1[image: there is no content]∫|v|≥π(iv)[image: there is no content][image: there is no content](v)dv








and,


[image: there is no content]k−12=1[image: there is no content]∫|v|≥π[image: there is no content](v)ei(k−1/2)vdv(k∈Z)








When we use these expressions for the calculation of (42), an interchange of summation and integration is permitted by Levi’s theorem. Hence,


(R2s−1,πBoasf)(0)=1[image: there is no content]∫|v|≥π[image: there is no content](t)(iv)[image: there is no content]−∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)vdv



(43)




Consider now the function [image: there is no content]. Obviously [image: there is no content] when [image: there is no content], and so (25) applies to [image: there is no content] for these values of v, i.e., for [image: there is no content],


gv(2s−1)(0)=(iv)[image: there is no content]=∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)v(|v|≤π)








This means that:


∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)v=i(−1)s+1ϕ[image: there is no content](v)(|v|≤π)



(44)




Noting that the left-hand side of (44) is a [image: there is no content]-periodic function satisfying, in addition,


ϕ[image: there is no content](v+2nπ)=(−1)nϕ[image: there is no content](v)(n∈Z)








we see from the definition (39) of ϕ[image: there is no content] that (44) even holds for all v∈[image: there is no content], and inserting this into (43),we now obtain (37) with remainder (38) for [image: there is no content] and [image: there is no content].



For arbitrary [image: there is no content] and t∈[image: there is no content] one applies this particular case to the function [image: there is no content]. Since fh^(v)=h−1[image: there is no content](v)eivt/h, the general form (38) of the remainder now follows by a change of variable.



Since |v[image: there is no content]−ϕ[image: there is no content](v)|≤(1+3−2s+1)|v|[image: there is no content] for all v∈[image: there is no content], the first relation in (40) follows immediately. The second is a consequence of [1, Proposition 15].       ☐





Theorem 5.2. 

Let [image: there is no content], [image: there is no content]. Then [image: there is no content] exists and for [image: there is no content], [image: there is no content] formula (26) extends to:


[image: there is no content](t)=1h[image: there is no content]∑[image: there is no content](−1)k+1[image: there is no content]f(t+hk)+(R2s,σBoasf)(t)(t∈[image: there is no content])








where,


(R2s,σBoasf)(t)=(−1)s[image: there is no content]h[image: there is no content]∫|v|≥σ(hv)[image: there is no content]−ϕ[image: there is no content](hv)[image: there is no content](v)eivtdv



(45)




ϕ[image: there is no content] being the [image: there is no content]-periodic function defined by:


ϕ[image: there is no content](v):=v[image: there is no content],for|v|≤π



(46)




In particular,


(R2s,σBoasf)(t)≤1[image: there is no content]∫|v|≥σv[image: there is no content][image: there is no content](v)dv=1[image: there is no content]dist1([image: there is no content],[image: there is no content])



(47)









Proof. 

We proceed as in the proof of Theorem 5.1. With [image: there is no content] as defined by (41) we have:


(R2s,πBoasf)(0)=f1(2s)(0)−∑k=−∞∞(−1)k+1[image: there is no content][image: there is no content](k)








Noting that,


f1(2s)(0)=1[image: there is no content]∫|v|≥π(iv)[image: there is no content][image: there is no content](v)dv










[image: there is no content](k)=1[image: there is no content]∫|v|≥π[image: there is no content](v)eikvdv(k∈Z)








it follows that,


(R2s,πBoasf)(0)=1[image: there is no content]∫|v|≥π[image: there is no content](t)(iv)[image: there is no content]−∑k=−∞∞(−1)k+1[image: there is no content]eikvdv








Applying now (26) to [image: there is no content], where [image: there is no content], we find:


gv(2s)(0)=(iv)[image: there is no content]=∑k=−∞∞(−1)k+1[image: there is no content]eikv(|v|≤π)










ϕ[image: there is no content](v):=1i[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]eikv=v[image: there is no content](|v|≤π)








which yields (45) and (46) for [image: there is no content] and [image: there is no content]. The general case follows again by applying this particular case to [image: there is no content].



Since ϕ[image: there is no content] is a [image: there is no content]-periodic function, we have |ϕ[image: there is no content](v)|≤π[image: there is no content] for all v∈[image: there is no content]. This yields the first relation in (47), and the second one is again a consequence of [1,Proposition 15].      ☐





Counterparts of Corollaries 3.5–3.7 are also valid in the instance of the error [image: there is no content].



For [image: there is no content], Theorem 5.1 reduces to [1, Theorem 5]. The graphs of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are shown in Figure 1, Figure 2, Figure 3 and Figure 4, respectively.


Figure 1. The graph of π−1[image: there is no content].



[image: Entropy 14 02192 g001]





Figure 2. The graph of π−2[image: there is no content].



[image: Entropy 14 02192 g002]





Figure 3. The graph of π−3[image: there is no content].



[image: Entropy 14 02192 g003]





Figure 4. The graph of π−4[image: there is no content].



[image: Entropy 14 02192 g004]















6. Extended Bernstein Inequalities for Higher Order Derivatives


We now come the matter sketched at the beginning of Section 4. The well-known Bernstein inequality states:



For f∈[image: there is no content], [image: there is no content], [image: there is no content], there holds:


∥[image: there is no content]∥Lp([image: there is no content])≤σs∥f∥Lp([image: there is no content])(s∈N)



(48)







The case [image: there is no content] is usually proved with help of Boas’ formula (16), and the general case then by iteration; see [3, Section 11.3]. Boas’ formulae for higher order derivatives enables us now to prove (48) directly for arbitrary [image: there is no content]. Indeed, we have by (25),


∥[image: there is no content]∥Lp([image: there is no content])≤1h[image: there is no content]∑k=−∞∞|[image: there is no content]|∥f∥Lp([image: there is no content])



(49)




The series on the right-hand side can be evaluated as follows. Since sin(σ·)∈[image: there is no content], formula (25) applies to this function. For [image: there is no content] it yields that:


(−1)s−1σ[image: there is no content]=1h[image: there is no content]∑[image: there is no content][image: there is no content]=(−1)s−1h[image: there is no content]∑k=−∞∞|[image: there is no content]|



(50)




where (31) has been used in the last step. Combining this equation with (49), we obtain (48). For derivatives of even order one uses (26) and proceeds analogously.



In this section we employ Theorems 5.1 and 5.2 to extend Bernstein’s inequality for higher derivatives to non-bandlimited functions by adding an “error term”. For this aim, properties (a)–(e) of a Boas-type formula, specified in Section 4, will be crucial.



Theorem 6.1. 

Let [image: there is no content], [image: there is no content], [image: there is no content], and suppose that v[image: there is no content][image: there is no content](v) belongs to Lp′([image: there is no content]) as a function of v. Then, for any [image: there is no content], we have:


∥[image: there is no content]∥Lp([image: there is no content])≤σ[image: there is no content]∥f∥Lp([image: there is no content])+∥R2s−1,σBoasf∥Lp([image: there is no content])



(51)




with [image: there is no content] defined by (38). Furthermore,


∥R2s−1,σBoasf∥Lp([image: there is no content])≤(2π)1/2−1/p′1h[image: there is no content]∫|v|≥σ(hv)[image: there is no content]−ϕ[image: there is no content](hv)[image: there is no content](v)p′dv1/p′



(52)






≤43(2π)1/2−1/p′∫|v|≥σv[image: there is no content][image: there is no content](v)p′dv1/p′=43(2π)1/2−1/p′distp′([image: there is no content],[image: there is no content])













Proof. 

Consider (37) as a function of t and apply ∥·∥Lp([image: there is no content]) on both sides. Using the triangle inequality on the right-hand side and noting that ∥f∥Lp([image: there is no content]) does not change under a shift of the argument of f, we find that:


∥[image: there is no content]∥Lp([image: there is no content])≤1h[image: there is no content]∑[image: there is no content]|[image: there is no content]|·∥f∥Lp([image: there is no content])+∥R2s−1,σBoasf∥Lp([image: there is no content])








Inserting (50) for the series on the right-hand side, we obtain (51).



Next we observe that (R2s−1,σBoasf)(−·) is the Fourier transform of the function:


g:v⟼i(−1)s−1h[image: there is no content](hv)[image: there is no content]−ϕ[image: there is no content](hv)[image: there is no content](v)








The hypotheses imply that g∈L1([image: there is no content])∩Lp′([image: there is no content]). Thus, using [2, Prop. 5.2.6] and noting that this book uses the notation ∥·∥p=(2π)−1/(2p)∥·∥Lp([image: there is no content]), we conclude that:


∥R2s−1,σBoasf∥Lp([image: there is no content])≤(2π)1/2−1/p′∥g∥Lp′([image: there is no content])=(2π)1/2−1/p′1h[image: there is no content]∫|v|≥σ(hv)[image: there is no content]−ϕ[image: there is no content](hv)[image: there is no content](v)p′dv1/p′≤43(2π)1/2−1/p′∫|v|≥σv[image: there is no content][image: there is no content](v)p′dv1/p′=43(2π)1/2−1/p′distp′([image: there is no content],[image: there is no content])








where we have used that |v[image: there is no content]−ϕ[image: there is no content](v)|≤(1+3−2s+1)|v|[image: there is no content]≤(4/3)|v|[image: there is no content]. This completes the proof.           ☐





By an analogous proof, we deduce from Theorem 5.2 the following result for derivatives of even order.



Theorem 6.2. 

Let [image: there is no content], [image: there is no content], [image: there is no content], and suppose that v[image: there is no content][image: there is no content](v) belongs to Lp′([image: there is no content]) as a function of v. Then, for any [image: there is no content], we have:


∥[image: there is no content]∥Lp([image: there is no content])≤σ[image: there is no content]∥f∥Lp([image: there is no content])+∥R2s,σBoasf∥Lp([image: there is no content])








with [image: there is no content] defined by (45). Furthermore,


∥R2s,σBoasf∥Lp([image: there is no content])≤(2π)1/2−1/p′∫|v|≥σ|v[image: there is no content][image: there is no content](v)|p′dv1/p′=(2π)1/2−1/p′distp′([image: there is no content],[image: there is no content])



(53)









It should be noted that for derivatives of odd order the bound in terms of the distance function is by a factor [image: there is no content] bigger than the corresponding bound for derivatives of even order. However, when [image: there is no content], we can profit from the isometry of the Fourier transform and deduce the same bound in both cases. An obvious modification of the proof in [1,Theorem 11] leads to the following result.



Theorem 6.3. 

Let [image: there is no content], f∈[image: there is no content] and suppose that vs[image: there is no content](v)∈[image: there is no content]([image: there is no content]) as a function of v. Then, for any [image: there is no content], we have


∥[image: there is no content]∥[image: there is no content]([image: there is no content])≤σs∥f∥[image: there is no content]([image: there is no content])+[image: there is no content]([image: there is no content],[image: there is no content])














7. Landau–Kolmogorov Inequalities


In this section we consider the case where f belongs to a Sobolev space and deduce Landau–Kolmogorov inequalities, a very popular and still active field. The proof of the following proposition is essentially contained in that of [1, Proposition 13].



Proposition 7.1. 

Let f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content]. Then for [image: there is no content] with [image: there is no content], we have


[image: there is no content]([image: there is no content],[image: there is no content])≤1σr−s∥f(r)∥[image: there is no content]([image: there is no content])








and


distq([image: there is no content],[image: there is no content])≤cr−s,qσr−s+1/2−1/q∥f(r)∥[image: there is no content]([image: there is no content])








for [image: there is no content] and [image: there is no content], where


[image: there is no content]



(54)







Proposition 7.1 enables us to deduce from Theorems 6.1–6.3 the following corollaries.





Corollary 7.2. 

Let [image: there is no content] and f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content]. Then, for [image: there is no content] and any [image: there is no content], we have:


∥[image: there is no content]∥Lp([image: there is no content])≤σ[image: there is no content]∥f∥Lp([image: there is no content])+43(2π)1/2−1/p′cr−2s+1,p′σr−2s+3/2−1/p′∥f(r)∥[image: there is no content]([image: there is no content])



(55)









Corollary 7.3. 

Let [image: there is no content] and let f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content]. Then, for [image: there is no content] and any [image: there is no content], we have


∥[image: there is no content]∥Lp([image: there is no content])≤σ[image: there is no content]∥f∥Lp([image: there is no content])+(2π)1/2−1/p′cr−2s,p′σr−2s+1/2−1/p′∥f(r)∥[image: there is no content]([image: there is no content])



(56)









Corollary 7.4. 

Let [image: there is no content] and let f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content]. Then, for any [image: there is no content], we have:


∥[image: there is no content]∥[image: there is no content]([image: there is no content])≤σs∥f∥[image: there is no content]([image: there is no content])+σs−r∥f(r)∥[image: there is no content]([image: there is no content])



(57)









Note that for [image: there is no content] Corollary 7.2 reduces to a result in [1, Corollary 16].



The statements of Corollaries 7.2–7.4 can be interpreted as a linearized equivalent form of a Landau–Kolmogorov inequality [21,22]. The equivalence is shown by the following lemma in which [image: there is no content]+:=[image: there is no content]. A more specialized result was mentioned by Stečkin [23]; also see [21, pp. 5–6].



Lemma 7.5. 

Let (x,y,z)∈[image: there is no content]+3,[image: there is no content] and [image: there is no content] Then,


z≤σsx+Cσs−ty



(58)




for all [image: there is no content] if and only if,


z≤Kx1−αyα



(59)




where,


α=standK=Cααα(1−α)1−α



(60)









Proof. 

Suppose that (58) holds. Then we may minimize the right-hand side over σ by using standard calculus. This leads us to (59) with α and K given by Equation (60).



Conversely, suppose that (59) holds with [image: there is no content] and [image: there is no content]. Consider now the function:


F(x,y):=Kx1−αyα








Its Hessian shows that it is concave on [image: there is no content]+2. Hence, at any point (x0,y0)∈[image: there is no content]+2 the tangent plane of F lies above the graph of F, that is,


[image: there is no content]








Setting [image: there is no content], we find by a straightforward calculation that:


[image: there is no content]








Now, setting [image: there is no content] and defining:


[image: there is no content]








we find that:


[image: there is no content]








This shows that:


[image: there is no content]








with C defined by (60). Since λ may take any value in [image: there is no content], the same is true for σ. Hence (59) implies (58).            ☐





Lemma 7.5 can be used to deduce three Landau–Kolmogorov inequalities from (55)–(57). We may state them in a unified form as follows.



Corollary 7.6. 

Let [image: there is no content] and f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content] and [image: there is no content] For [image: there is no content] define:


[image: there is no content]








and,


C(s,r,p):=1,[image: there is no content](2π)1/2−1/p′[image: there is no content],p∈(2,∞],seven43(2π)1/2−1/p′[image: there is no content],p∈(2,∞],sodd








with [image: there is no content] given by (54). Then,


∥[image: there is no content]∥Lp([image: there is no content])≤C(s,r,p)ααα(1−α)1−α∥f∥Lp([image: there is no content])1−α∥f(r)∥[image: there is no content]([image: there is no content])α



(61)









Unfortunately, the constant in (61) is not the best possible. However, the discussion in [24, pp. 442–447], does not extend to results for [image: there is no content]. For [image: there is no content] inequality (61) simplifies to:


∥[image: there is no content]∥[image: there is no content]([image: there is no content])≤r−sss/r+sr−s1−s/r∥f∥[image: there is no content]([image: there is no content])1−s/r∥f(r)∥[image: there is no content]([image: there is no content])s/r








Here the term in square brackets can be replaced by 1. For [image: there is no content] and [image: there is no content], this is shown in [25, § 7.9, No. 261]. For general [image: there is no content] with [image: there is no content], we may use the isometry of the [image: there is no content]-Fourier transform together with Hölder’s inequality and proceed as follows:


∥[image: there is no content]∥[image: there is no content]([image: there is no content])2=∫[image: there is no content]|vs[image: there is no content](v)|2dv=∫[image: there is no content]v[image: there is no content]|[image: there is no content](v)|2s/r·|[image: there is no content](v)|2(1−s/r)dv≤∫[image: there is no content]v[image: there is no content]|[image: there is no content](v)|2s/rpdv1/p·∫[image: there is no content][image: there is no content](v)2(1−s/r)p′dv1/p′=∫[image: there is no content]v2r[image: there is no content](v)2dvs/r·∫[image: there is no content]|[image: there is no content](v)|2dv1−s/r=∥f∥[image: there is no content]([image: there is no content])2(1−s/r)·∥f(r)∥[image: there is no content]([image: there is no content])2s/r











Now, employing Lemma 7.5, we may in turn improve upon Corollary 7.4. This way we obtain:

Corollary 7.7. 

Let [image: there is no content] and let f∈Wr,2([image: there is no content])∩C([image: there is no content]), where [image: there is no content]. Then, for any [image: there is no content], we have


∥[image: there is no content]∥[image: there is no content]([image: there is no content])≤σs∥f∥[image: there is no content]([image: there is no content])+(r−s)r−sssrr1/sσs−r∥f(r)∥[image: there is no content]([image: there is no content])
















8. Boas-type Formulae for the Hilbert Transform


We now establish the counterparts of the theorems of Section 4 and Section 5 in the instance of Hilbert transforms. Although the definition of the Hilbert transform can be extended to signals f∈Lp([image: there is no content]), [image: there is no content], (see [26, p. 126 ff.]), we restrict ourselves to the most important case [image: there is no content].



8.1. Formulae for Bandlimited Functions


The derivatives [image: there is no content] are needed. They are given by (cf. (10)),


sinc˜(s)(t)=1−cosπtπt(s)=∑j=0ssj(1−cosπt)(j)1πt(s−j)=(−1)ss!πts+1−∑j=0ssjπjcosπt+jπ2(−1)s−j(s−j)!πts−j+1=(−1)ss!πts+11−∑j=0scosπt+jπ2(−1)j(πt)jj!











By the cosine addition formula this can be rewritten as:


sinc˜(s)(t)=(−1)ss!πts+11−cosπt∑ν=0⌊s2⌋(−1)ν(πt)2ν(2ν)!−sinπt∑ν=0⌊s−12⌋(−1)ν(πt)2ν+1(2ν+1)!



(62)




where the right hand side is thought to be continuously extended at [image: there is no content] by:


sinc˜(s)(0)=(−1)(s−1)/2πss+1,sodd0,seven(s∈N0)








This can be easily obtained from (11) or the power series expansion:


[image: there is no content]











As an application, we now come two new Boas-type formulae, one for derivatives of odd order and another for those of even order.



Theorem 8.1. 

Let [image: there is no content] for some [image: there is no content] and [image: there is no content]. Then for [image: there is no content],


[image: there is no content](2s−1)(t)=1h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]f(t+hk)(t∈[image: there is no content])



(63)




and for [image: there is no content],


[image: there is no content](2s)(t)=1h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]ft+h(k−12(t∈[image: there is no content])



(64)




Here the coefficients [image: there is no content] and [image: there is no content] are given by:


[image: there is no content]:=(−1)k+1sinc˜(2s−1)(−k)=(−1)sπ[image: there is no content][image: there is no content]k=0(2s−1)!πk[image: there is no content](−1)k−∑j=0s−1(−1)j(2j)!πk2jk∈Z∖{0}



(65)






[image: there is no content]:=(−1)k+1sinc˜(2s)12−k=(2s)!π(k−12)[image: there is no content](−1)k+∑j=0s−1(−1)jπ(k−12)2j+1(2j+1)!(k∈Z)



(66)









Proof. 

The proof follows along the same lines as the first proof of Theorem 4.1, starting with:


[image: there is no content](2s−1)(0)=∑k=−∞∞f(k)sinc˜(2s−1)(−k)








in the case of odd order derivatives, and with:


[image: there is no content](2s)12=∑k=−∞∞f(k)sinc˜(2s)12−k








for even orders.            ☐





For [image: there is no content] one obtains from (64):


[image: there is no content](t)=∑k=−∞∞−1π(k−12)ft+hk−12








and the case [image: there is no content] in (63) gives:


[image: there is no content]′(t)=π2hf(t)+1h∑k=−∞∞−2π(2k+1)2ft+h(2k+1)



(67)




already to be found in [27, p. 203]; see also [11]. The case [image: there is no content] in (64) gives:


[image: there is no content]′′(t)=1h2∑k=−∞∞(−1)k+12(−1)k+(πk−12πk−123ft+hk−12(t∈[image: there is no content])



(68)








8.2. Achieser-type Formulae


Achieser [26, p. 143, (II)] proved an informative formula, which combines the assertions of the first derivative of a signal and that of its Hilbert transform. It may be stated for our definition of the Hilbert transform as follows:



Let [image: there is no content]. Then,


sinαf′(t)−cosα[image: there is no content]′(t)=σ∑[image: there is no content](−1)k+12sin2[image: there is no content]2(α−kπ)2ft+kπ−ασ








We now establish analogous formulae for higher derivatives, distinguishing the cases of odd and even order.



Theorem 8.2. 

Let [image: there is no content] for some [image: there is no content] and [image: there is no content]. Then for α∈[image: there is no content] and [image: there is no content],


sinα[image: there is no content](t)−cosα[image: there is no content](2s−1)(t)=1h[image: there is no content]∑[image: there is no content](−1)k+1[image: there is no content](α)ft+hk−απ



(69)




and,


cosα[image: there is no content](t)+sinα[image: there is no content](2s)(t)=1h[image: there is no content]∑[image: there is no content](−1)k+1[image: there is no content](α)ft+hk−απ



(70)




where,


[image: there is no content](kπ):=(−1)s−1π[image: there is no content][image: there is no content](k∈Z),[image: there is no content](α):=−π[image: there is no content](2s−1)!(α−kπ)[image: there is no content](−1)kcosα−∑j=0s−1(−1)j(2j)!(α−kπ)2j(α≠kπ)








and,


[image: there is no content](kπ):=(−1)s−1π[image: there is no content][image: there is no content](k∈Z),[image: there is no content](α):=−π[image: there is no content](2s)!(α−kπ)[image: there is no content](−1)ksinα−∑j=0s−1(−1)j(2j+1)!(α−kπ)2j+1(α≠kπ)













Proof. 

First let f∈[image: there is no content]. Then,


sinα[image: there is no content]απ−cosα[image: there is no content](2s−1)απ=∑[image: there is no content]sinαsinc(2s−1)απ−k−cosαsinc˜(2s−1)απ−kf(k)








By using the formulae (19) and (62) for calculating the term in square brackets, we find that:


sinαsinc(2s−1)απ−k−cosαsinc˜(2s−1)απ−k=−π[image: there is no content](2s−1)!(α−kπ)[image: there is no content]−cosα+(−1)k∑j=0s−1(−1)j(2j)!(α−kπ)2j=(−1)k+1[image: there is no content](α)








for [image: there is no content] with [image: there is no content](α) as defined in the theorem. The values of [image: there is no content] and sinc.˜(2s−1)(0) show that the left-hand side is equal to the right-hand side for [image: there is no content] as well. Hence we have proved that:


sinα[image: there is no content]απ−cosα[image: there is no content](2s−1)απ=∑[image: there is no content](−1)k+1[image: there is no content](α)f(k)








If [image: there is no content] for an arbitrary [image: there is no content], then applying this result to the function [image: there is no content], we obtain (69). The proof of (70) is strictly analogous.       ☐





Remark 8.3. 

Note that Theorem 8.2 contains the statements of Theorems 4.1 for f∈[image: there is no content]⊂[image: there is no content] and 8.1 for [image: there is no content] as special cases. This follows by observing that:


[image: there is no content](0)=−[image: there is no content],[image: there is no content]π2=[image: there is no content],[image: there is no content](0)=[image: there is no content],[image: there is no content]π2=[image: there is no content]











Next we establish integral representations for the numbers [image: there is no content](α) and [image: there is no content](α), which allow us to determine the signs of these numbers.





Proposition 8.4. 

(a) For [image: there is no content], [image: there is no content] and [image: there is no content] we have the integral represention:


[image: there is no content](α)=(−1)s−1π[image: there is no content](2s−1)(2s−2)(α−kπ)[image: there is no content]∫0[image: there is no content]t2s−3(1−(−1)kcos(t−α)dt



(71)




Furthermore,


(−1)s−1[image: there is no content](α)>0



(72)




for all [image: there is no content][image: there is no content] and α∈[image: there is no content].



(b) For [image: there is no content] and [image: there is no content] we have the integral representation:


[image: there is no content](α)=(−1)s−1π[image: there is no content]2s(2s−1)(α−kπ)[image: there is no content]∫0[image: there is no content]t[image: there is no content](1−(−1)kcos(t−α)dt



(73)




Furthermore,


(−1)s−1[image: there is no content](α)>0



(74)




for all [image: there is no content], [image: there is no content] and α∈[image: there is no content].





Proof. 

Let [image: there is no content] and [image: there is no content]. Writing [image: there is no content] as [image: there is no content] and using Taylor’s formula as given by (34), we readily find that:


[image: there is no content](α)=(−1)s−1π[image: there is no content](2s−1)!(α−kπ)[image: there is no content]∫0[image: there is no content](α−kπ−t)[image: there is no content](2s−2)!sintdt








Now integration by parts and a change of variables yields (71). The integral in (71) is always positive, regardless of whether [image: there is no content] is positive or negative. This shows that (72) holds whenever (71) is valid. For [image: there is no content] and for the exceptional values of α, the validity of (72) can be verified directly.





The proofs of (73) and (74) are analogous except for obvious variations.       ☐




8.3. Extensions to Non-bandlimited Functions


Our next aim is to extend (63) and (64) to larger function spaces.



Theorem 8.5. 

Let [image: there is no content][image: there is no content]. Then [image: there is no content](2s−1) exists and for [image: there is no content], [image: there is no content] formula (63) extends to:


[image: there is no content](2s−1)(t)=1h[image: there is no content]∑[image: there is no content](−1)k+1[image: there is no content]f(t+hk)+(R˜2s−1,σBoasf)(t)(t∈[image: there is no content])








where,


(R˜2s−1,σBoasf)(t)=(−1)s+1[image: there is no content]h[image: there is no content]∫|v|≥σ(sgnv)(hv)[image: there is no content]−χ[image: there is no content](hv)[image: there is no content](v)eivtdv








with χ[image: there is no content] being the [image: there is no content]-periodic function defined by:


χ[image: there is no content](v):=(sgnv)v[image: there is no content]=|v|[image: there is no content](−π<v≤π)



(75)




In particular,


(R˜2s−1,σBoasf)(t)≤1[image: there is no content]∫|v|≥σv[image: there is no content][image: there is no content](v)dv=1[image: there is no content]dist1([image: there is no content],[image: there is no content])













Proof. 

Following the proof of Theorem 5.1 we find that:


(R˜2s−1,πBoasf)(0)=[image: there is no content]˜(2s−1)(0)−∑k=−∞∞(−1)k+1[image: there is no content][image: there is no content](k)










[image: there is no content]˜(2s−1)(0)=1[image: there is no content]∫|v|≥π[image: there is no content](v)(−isgnv)(iv)[image: there is no content]dv








and,


[image: there is no content](k)=1[image: there is no content]∫|v|≥π[image: there is no content](v)eikvdv(k∈Z)








There follows:


(R˜2s−1,πBoasf)(0)=1[image: there is no content]∫|v|≥π[image: there is no content](v)(−isgnv)(iv)[image: there is no content]−∑k=−∞∞(−1)k+1[image: there is no content]eikvdv



(76)




In order to evaluate the infinite series in (76), we have to proceed in a different way from the proof of Theorem 5.1. Indeed, since the function [image: there is no content] does not belong to [image: there is no content]([image: there is no content]) we cannot apply formula (63) to this function.





On the other hand, there holds by (65) and (11),


(−1)k+1[image: there is no content]=sinc˜(2s−1)(−k)=(−1)s+11[image: there is no content]∫−ππ(sgnv)v[image: there is no content]e−ikvdv








i.e., the series in (76) is the (trigonometric) Fourier series of the [image: there is no content]-periodic function (−1)s+1χ[image: there is no content] with χ[image: there is no content] defined by (75). Moreover, since χ[image: there is no content](v) is differentiable, save possibly for [image: there is no content], [image: there is no content], we even have (cf. [2, Proposition 4.1.5]),


∑k=−∞∞(−1)k+1[image: there is no content]eikv=(−1)s+1χ[image: there is no content](v)(a.eon[image: there is no content])








The proof can now be completed as the proof of Theorem 5.1.        ☐



The graphs of [image: there is no content] and [image: there is no content] are shown in Figure 5 and Figure 6 below.


Figure 5. The graph of π−1[image: there is no content].



[image: Entropy 14 02192 g005]





Figure 6. The graph of π−3[image: there is no content].
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Theorem 8.6. 

Let [image: there is no content], [image: there is no content]. Then [image: there is no content](2s) exists and for [image: there is no content], [image: there is no content] formula (64) extends to:


[image: there is no content](2s)(t)=1h[image: there is no content]∑k=−∞∞(−1)k+1[image: there is no content]ft+h(k−12+(R˜2s,σBoasf)(t)(t∈[image: there is no content])



(77)




where,


(R˜2s,σBoasf)(t)=i(−1)s+1[image: there is no content]h[image: there is no content]∫|v|≥σ(sgnv)(hv)[image: there is no content]−χ[image: there is no content](hv)[image: there is no content](v)eivtdv



(78)




Here χ[image: there is no content] is the [image: there is no content]-periodic function defined by:


χ[image: there is no content](v):=(sgnv)v[image: there is no content],−π<v≤πsgn(2π−v)(2π−v)[image: there is no content],−π<v≤3π








In particular,


(R˜2s,σBoasf)(t)≤1+3−2s[image: there is no content]∫|v|≥σv[image: there is no content][image: there is no content](v)dv=1+3−2s[image: there is no content]dist1([image: there is no content],[image: there is no content])













Proof. 

Proceeding as in the proof of Theorem 8.5, we arrive at a formula corresponding to (76), namely,


(R˜2s,πBoasf)(0)=1[image: there is no content]∫|v|≥π[image: there is no content](v)(−isgnv)(iv)[image: there is no content]−∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)vdv



(79)




Noting (66) and (11), we see that the infinite series in (79) can be rewritten as a Fourier series, namely,


∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)v=e−iv/2∑k=−∞∞sinc.˜(2s)12−keikv=(−1)s−1e−iv/2∑k=−∞∞1[image: there is no content]∫−ππ(sgnv)v[image: there is no content]eiv/2e−ikvdveikv








and, using the same arguments on the convergence of Fourier series as above, we obtain:


∑k=−∞∞(−1)k+1[image: there is no content]ei(k−1/2)v=(−1)s−1χ[image: there is no content](v)(0<|v|<π)



(80)




Since the series in (80) defines a [image: there is no content]-periodic function satisfying χ[image: there is no content](v+2nπ)=(−1)nχ[image: there is no content](v) for all [image: there is no content], it follows that (80) holds a. e. on [image: there is no content]. This yields (77) with remainder (78) for [image: there is no content] and [image: there is no content]. The rest of the proof now follows as in the proof of Theorem 5.1.       ☐





The graphs of [image: there is no content] and [image: there is no content] are shown in Figure 7 and Figure 8 below.


Figure 7. The graph of π−2[image: there is no content].
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Figure 8. The graph of π−4[image: there is no content].
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9. Applications


In this section we apply the results of Section 3 and Section 8 to the signal function [image: there is no content], t∈[image: there is no content], having Fourier transform [image: there is no content] and Hilbert transform [image: there is no content]. The extended sampling theorem for the Hilbert transform (Theorem 3.4) takes on the concrete form, first for [image: there is no content]′,


1−t2(1+t2)2−∑k=−∞∞σ2σ2+(kπ)2πσt−ksinπ(σt−k)+cos(π(σt−k))−1π(σt−k)2










≤1[image: there is no content]∫|v|≥σπ2|v|e−|v|dv=(1+σ)e−σ(σ>0)



(81)







In practice, one has to deal with a finite sum rather than with the infinite series. This leads to an additional truncation error, namely,


(Tσ,Nf)(t)=∑|k|≥N+1σ2σ2+(kπ)2πσt−ksinπ(σt−k)+cos(π(σt−k))−1π(σt−k)2








Assuming [image: there is no content] for some constant [image: there is no content], then the terms of the latter series, denoted by [image: there is no content], can be estimated by:


|[image: there is no content]|≤σ2(πk)2|σt−k|+1|σt−k|2≤σ2(2γ+1)π2(γ−1)1|k|3(|k|>N)








This yields for the truncation error:


(Tσ,Nf)(t)≤σ2(2γ+1)π2(γ−1)∑|k|≥N+11|k|3≤2σ2(2γ+1)π2(γ−1)∫N∞1u3du=σ2(2γ+1)π2(γ−1)N−2








Combining the aliasing error in (81) with this estimate for the truncation error, we finally obtain:


1−t2(1+t2)2−∑k=−NNσ2σ2+(kπ)2πσt−ksinπ(σt−k)+cos(π(σt−k))−1π(σt−k)2≤(1+σ)e−σ+σ2(2γ+1)π2(γ−1)N−2(σ>0;N≥γσ|t|)











Thus, we have a pretty precise and practical estimate for the error occurring when the derivative of the Hilbert transform is reconstructed in terms of the Hilbert version of the sampling theorem. Whereas the first term on the right-hand side covers the aliasing error, the second one is due to truncation.



Similarly, the Boas-type theorem for higher order derivatives (Theorem 8.5) takes the form (recall (67)):


1−t2(1+t2)2−π2h−1h∑k=−∞∞2π(2k+1)211+[t+(2k+1)h]2≤1[image: there is no content]∫|v|≥σπ2|v|e−|v|dv=(1+σ)e−σ(σ>0)











For the second order derivative of [image: there is no content] one obtains from Theorem 8.6 for [image: there is no content],


2t3−6t(1+t2)3−1h2∑k=−∞∞(−1)k8π−2πk+2(−1)kπ(2k−1)311+[t+(2k+1)h]2≤1[image: there is no content]∫|v|≥σπ2v2e−|v|dv=(2+2σ+σ2)e−σ(σ>0)











These are the aliasing errors for the reconstruction of derivatives of the Hilbert transform in terms of the Boas-type formulae. In both cases, the truncation errors can be handled in a similar fashion as above.
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A Brief Biography of Karl Willy Wagner


Karl Willy Wagner, born in Friedrichsdorf, a town in the Taunus founded 1687 by the Huguenots (his mother Emilie Zeline, née Gauterin, was a traditional Huguenot), who completed his studies as an electrical engineer at the well-known Technikum Bingen in 1902, worked in 1904–1908 as a research engineer at Berlin’s Siemens & Schuckert. In 1908 he became the assistant to the physicist Hermann Theodor Simon at Göttingen under whom he received his Dr. Phil. in 1910, and in 1912 he earned the Habilitation degree at the TH Berlin. Already in fall 1912 he was appointed Professor and member of the Physikalisch-Technische Reichsanstalt, and its President from 1923 to 1927. Then he became the founding professor of the Institute für Schwingungsforschung (Oscillation Theory) at the TH Berlin, named the Heinrich-Hertz-Institute in 1930.



At a special meeting of the Heinrich-Hertz Institute of January 1936 the Gaudozentenführer (the Nazi boss of Berlin’s universities), Willi Willing (1907–1983), reported that he planned to dismiss Wagner from his offices due to certain financial irregularities: allegedly receiving a Leica camera from the Leitz firm and for driving home in his official car in a roundabout way for coffee. None of the professors present objected, only Dr. Alfred Thoma, Wagner’s assistant, did, stating that these accusations did not represent the facts. As a consequence, he was discharged a few day later. Willing declared Wagner a Volksfeind (state enemy) and fired him.



Willing himself, who had received his doctorate only in 1935, became provisional Director of the Heinrich-Hertz Institute that February 1936.



According to Wagner himself, he was removed from office because he refused to dismiss his Jewish employees, ignoring the Nuremberg laws of September 1935 according to which German universities were to be “cleansed” of their Jewish students and lecturers.



As Dr. Thoma reported, Wagner would have been sent to a concentration camp, if he had not been bedridden with thrombosis at the time. Until 1938 most prisoners of concentration camps, which were an integral feature of the regime as soon as Hitler came to power, and were established all over Germany to handle the masses of people labelled as political/religious opponents and social deviants, were German citizens. Only after the “Kristallnacht” pogroms of November 1938 did the Nazis conduct mass arrests of adult male Jews. To facilitate the genocide of the Jews, the Nazis established “killing centers”, the first being Chelmno in Poland in December 1941.



After his dismissal Wagner returned home to Friedrichsdorf and together with his brother-in-law Friedrich Schmitt founded the “Landgrafen-Zwiebackfabrik”, enabling him to make a living.



In 1949 Wagner became President of the predecessor of the University of Mainz, which he co-founded, and in 1951 became Honorary Professor at Mainz.



He received many honours, the first, in 1919, being the “Cedergrenska guldmedaljen” (Gold Cedergren Medal), awarded every five years by the Royal Institute of Technology in Stockholm, and in 1935 he was elected a corresponding member of the Royal Swedish Academy of Engineering Sciences (korresponderande ledamot Kungl. Ingenjörsvetenskapsakademin) there. He was a referee of Wilhelm Cauer’s milestone thesis of 1926. Already in the fall of 1946, Wagner could again visit his colleagues in Switzerland. A little later, he was invited to lecture in Stockholm, Uppsala and Gothenburg, as well as to a guest-course at the KTH, the Royal Institute of Technology at Stockholm. Wagner’s treatise “Operatorenrechnung und Laplace Transformation” [28] was one of the first to attempt a justification of the operational calculus of Oliver Heaviside (the recipient of the Cedergren Medal in 1924), as well as to make transform methods popular in engineering circles, Fourier transforms being one of them; see [29,30,31,32,33].



Our paper is therefore dedicated to a true man of principles, a renowned electrical engineer, one who was fired from office for not having dismissed his Jewish employees, one of few such cases known in university circles during Nazi times.
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