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Abstract: Mutual information is one of the mostly used measures for evaluating image
similarity. In this paper, we investigate the application of three different Tsallis-based
generalizations of mutual information to analyze the similarity between scanned documents.
These three generalizations derive from the Kullback–Leibler distance, the difference
between entropy and conditional entropy, and the Jensen–Tsallis divergence, respectively.
In addition, the ratio between these measures and the Tsallis joint entropy is analyzed. The
performance of all these measures is studied for different entropic indexes in the context of
document classification and registration.
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1. Introduction

Based on the capability of scanners to transform a large amount of documents to digital images, the
automatic processing of administrative documents is a topic of major interest in many office applications.
Some examples are noise removal, image extraction, or background detection. Other processes, such as
document clustering or template matching, require the definition of document similarity. Document
clustering aims to classify similar documents in groups and template matching consists in finding the
spatial correspondence of a given document with a template in order to identify the relevant fields of
the document.

According to [1], the definition of the similarity between documents can be divided into two main
groups based respectively on matching local features, such as the matching of recognized characters [2]
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or different types of line segments [3], and extracting global layout information, such as the use of a
spatial layout representation [4] or geometric features [5]. In this paper, instead of extracting specific
pieces of information or analyzing the document layout, we propose to use global measures to evaluate
the similarity between two image documents. The similarity between two images can be computed using
numerous distance or similarity measures. In the medical image registration field, mutual information
has become a standard image similarity measure [6]. In this paper we investigate three different
generalizations of this measure based on Tsallis entropy. As it was previously noted in [7], the main
motivation for the use of non-extensive measures in image processing is the presence of correlations
between pixels of the same object in the image that can be considered as long-range correlations.
Although our analysis can be extended to a wide variety of document types, in this paper we focus
our attention on invoice classification. In our experiments, we show the good performance of some of
the proposed measures using an invoice database composed by colored images.

This paper is organized as follows. Section 2 briefly reviews some previous work on information
theory and its use in image registration and document classification. Section 3 presents three
generalizations of mutual information that will be applied to document classification. Section 4 presents
our general framework for document processing. Section 5 analyzes the obtained results in invoice
classification and registration. Finally, Section 6 presents conclusions and future work.

2. Related Work

In this section, we review some basic concepts on information theory, image registration and
document image analysis.

2.1. Information-Theoretic Measures

Let X be a finite set, let X be a random variable taking values x ∈ X with distribution
p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values y ∈ Y . The Shannon entropy
H(X) of a random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x) (1)

The Shannon entropy H(X) measures the average uncertainty of random variable X . If the logarithms
are taken in base 2, entropy is expressed in bits. The conditional entropy is defined by

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y) (2)

where p(x, y) = Pr[X = x, Y = y] is the joint probability and p(x|y) = Pr[X = x|Y = y] is the
conditional probability. The conditional entropy H(X|Y ) measures the average uncertainty associated
with X if we know the outcome of Y . The mutual information (MI) between X and Y is defined by

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3)

MI is a measure of the shared information between X and Y .
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An alternative definition of MI can be obtained from the definition of the informational divergence
or Kullback–Leibler distance (KL). The distance KL(p, q) between two probability distributions p and
q [8,9], that are defined over the alphabet X , is given by

KL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
(4)

The conventions that 0 log(0/0) = 0 and a log(a/0) = ∞ if a > 0 are adopted. The informational
divergence satisfies the information inequality KL(p, q) ≥ 0, with equality if and only if p = q. The
informational divergence is not strictly a metric since it is not symmetric and does not satisfy the triangle
inequality. Mutual information can be obtained from the informational divergence as follows [8]:

I(X;Y ) = KL(p(x, y), p(x)p(y)) (5)

Thus, mutual information can also be seen as the distance between the joint probability distribution
p(x, y) and the distribution p(x)p(y), i.e., the distance of the joint distribution to the independence.

Mutual information can be also expressed as a Jensen–Shannon divergence. Since Shannon entropy
is a concave function, from Jensen’s inequality, we can obtain the Jensen–Shannon inequality [10]:

JS(π1, . . . , πn; p1, . . . , pn) = H

(
n∑
i=1

πipi

)
−

n∑
i=1

πiH(pi) ≥ 0 (6)

where JS(π1, . . . , πn; p1, . . . , pn) is the Jensen–Shannon divergence of probability distributions
p1, p2, . . . , pn with prior probabilities or weights π1, π2, . . . , πn, fulfilling

∑n
i=1 πi = 1. The

JS-divergence measures how ‘far’ are the probabilities pi from their likely joint source
∑n
i=1 πipi and

equals zero if and only if all pi are equal. Jensen–Shannon’s divergence coincides with I(X;Y ) when
{πi} is equal to the marginal probability distribution p(x) and {pi} are equal to the rows p(Y |xi) of the
probability conditional matrix of the information channel X → Y . Then, MI can be redefined as

I(X;Y ) = JS(p(x1), . . . , p(xn); p(Y |x1), . . . , p(Y |xn)) (7)

A generalization of the Shannon entropy was given by Tsallis in [11]:

HT
α (X) =

1

α− 1

(
1−

∑
x∈X

p(x)α
)

(8)

where α > 0 and α 6= 1. HT
α (X) is a concave function of p for α > 0 and HT

α (X) = H(X) when
α→ 1 (and natural logarithms are taken in the definition of the Shannon entropy).

2.2. Image Registration

Image registration is treated as an iterative optimization problem with the goal of finding the spatial
mapping that will bring two images into alignment. This process is composed of four elements (see
Figure 1). As input, we have both fixed X and moving Y images. The transform represents the spatial
mapping of points from the fixed image space to points in the moving image space. The interpolator
is used to evaluate the moving image intensity at non-grid positions. The metric provides a measure
of how well the fixed image is matched by the transformed moving one. This measure forms the
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quantitative criterion to be optimized by the optimizer over the search space defined by the parameters
of the transform.

Figure 1. Main components of the registration process.

The crucial point of image registration is the choice of a metric. One of the simplest measures is the
sum of squared differences (SSD). For N pixels in the overlap domain ΩA,B of images A and B, this
measure is defined as

SSD =
1

N

∑
i∈ΩA,B

| A(i)−B(i) |2 (9)

where A(i) and B(i) represent the intensity at a pixel i of the images A and B, respectively, and N
the number of overlapping pixels. When this measure is applied, we assume that the image values are
calibrated to the same scale. This measure is very sensitive to a small number of pixels that have very
large intensity differences between images A and B. Another common image similarity measure is the
correlation coefficient (CC), which is defined as

CC =

∑
i∈ΩA,B

(A(i)− Ā)(B(i)− B̄)

[
∑
i∈ΩA,B

(A(i)− Ā)2
∑
i∈ΩA,B

(B(i)− B̄)2]
1
2

(10)

where Ā is the mean pixel value in image A |ΩA,B
and B̄ is the mean of B |ΩA,B

. While the SSD makes
the implicit assumption that the images differ only by Gaussian noise, the CC assumes that there is a
linear relationship between the intensity values in the images [12].

From the information theory perspective, the registration between two images X and Y (associated
with the random variables X and Y , respectively) can be represented by an information channel
X → Y , where its marginal and joint probability distributions are obtained by simple normalization of
the corresponding intensity histograms of the overlap area of both images [13]. The most successful
automatic image registration methods are based on the maximization of MI . This method, almost
simultaneously introduced by Maes et al. [13] and Viola et al. [14], is based on the conjecture that
the correct registration corresponds to the maximum MI between the overlap areas of the two images.
Later, Studholme et al. [15] proposed a normalization of mutual information defined by

NMI(X;Y ) =
I(X;Y )

H(X, Y )
(11)

which is more robust than MI , due to its greater independence of the overlap area. Another theoretical
justification of its good behavior is that NMI is a true distance. Different measures derived from the
Tsallis entropy have also been applied to image registration [16–19].
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2.3. Document Image Similarity

In the context of document image analysis, image similarity is mainly used for classification purposes
in order to index, retrieve, and organize specific document types. Nowadays, this task is especially
important because huge volumes of documents are scanned to be processed in an automatic way. Some
automatic solutions based on optical character recognition (OCR), bank check reader, postal address
reader and signature verifier, have already been proposed but a lot of work has still to be done to classify
other types of documents such as tabular forms, invoices, bills, and receipts [20]. Chen and Blostein [21]
presented an excellent survey on document image classification.

Many automatic classification techniques of image documents are based on the extraction of specific
pieces of information from the documents. In particular, OCR software is especially useful to extract
relevant information in applications that are restricted to a few specific models where the information
can be located precisely [22]. However, many applications require to deal with a great variety of
layouts, where relevant information is located in different positions. In this case, it is necessary to
recognize the document layout and apply the appropriate reading strategy [23]. Several strategies
have been proposed to achieve an accurate document classification based on the layout analysis and
classification [1,4,5,23–25].

An invoice is a commercial document issued by a seller, containing details about the seller, the buyer,
products, quantities, prices, etc., and usually a logo and tables. Hamza et al. [20] identify two main
research directions in invoice classification. The first one concerns data-based systems and the second
one concerns model-based systems. Data-based systems are usually used in heterogeneous document
flows and extract different information from documents, such as tables [26], graphical features such as
logos and trademarks [27], or the general layout [23]. On the contrary, model-based systems are used in
homogeneous document flows, where similar documents arrive generally one after the other [28–31].

In this paper, we focus our attention on capturing visual similarity between different document images
using global measures that do not require the analysis of the document layout. In the literature of
document image classification, different measures of similarity have been used. Appiani et al. [23]
design a criterion to compare the structural similarity between trees that represent the structure of a
document. Shin and Doermann [24] use a similarity measure that considers spatial and layout structure.
This measure quantifies the relatedness between two objects, combining structural and content features.
Behera et al. [32] propose to measure the similarity between two images by computing the distance
between their respective kernel density estimation of the histograms using the Minkowski distance or the
intersection of the histograms.

3. Generalized Mutual Information

We review here three different mutual information generalizations based on the Kullback–Leibler
distance, the difference between entropy and conditional entropy, and the Jensen–Tsallis divergence,
respectively.
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3.1. Mutual Information

From Equation (5), we have seen that mutual information can be expressed as the Kullback–Leibler
distance between the joint probability distribution p(x, y) and the distribution p(x)p(y). On the other
hand, Tsallis [33] generalized the Kullback–Leibler distance in the following form:

KLTα(p, q) =
1

α− 1

(
1−

∑
x∈X

p(x)α

q(x)α−1

)
(12)

Thus, from Equations (5) and (12), Tsallis mutual information can be defined [33,34] as

MITα (X;Y ) = KLTα (p(x, y), p(x)p(y))

=
1

1− α

1−
∑
x∈X

∑
y∈Y

p(x, y)α

p(x)α−1p(y)α−1

 (13)

Although a simple substitution ofMI forMITα can be used as an absolute similarity measure between
two images, we focus our interest on a relative one. Such a decision is motivated by the better behavior
of NMI with respect to MI [15]. Then, the generalization of NMI can be given by

NMITα (X;Y ) =
MITα (X;Y )

HT
α (X, Y )

(14)

Although NMITα (X;Y ) is a normalized measure for α → 1, this is not true for other α values as
NMIT can take values greater than 1. This measure is always positive and symmetric.

3.2. Mutual Entropy

Another way of generalizing mutual information is the so-called Tsallis mutual entropy [35]. The
Tsallis mutual entropy is defined for α > 1 as

MET
α (X;Y ) = HT

α (X)−HT
α (X|Y ) = HT

α (Y )−HT
α (Y |X)

= HT
α (X) +HT

α (Y )−HT
α (X, Y ) (15)

This measure is positive and symmetric and Tsallis joint entropy HT
α (X, Y ) is an upper bound [35].

Tsallis mutual entropy represents a kind of correlation between X and Y .
As in [35], the normalized Tsallis mutual entropy can be defined as

NMET
α (X;Y ) =

MET
α (X;Y )

HT
α (X, Y )

(16)

Normalized mutual entropy takes values in the interval [0..1], taking the value 0 if and only if X and Y
are independent and α = 1, and taking the value 1 if and only if X = Y [35].

3.3. Jensen–Tsallis Information

Since Tsallis entropy is a concave function for α > 0, the Jensen–Shannon divergence can be extended
to define the Jensen–Tsallis divergence:

JTα(π1, . . . , πn; p1, . . . , pn) = HT
α

(
n∑
i=1

πipi

)
−

n∑
i=1

πiH
T
α (pi) (17)
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As we have seen in Equation (7), Jensen–Shannon divergence coincides with I(X;Y ) when {π1, . . . , πn}
is the marginal probability distribution p(x), and {p1, . . . , pn} are the rows p(Y |x) of the probability
conditional matrix of the channel. Then, for the channelX → Y , a generalization of mutual information,
which we call Jensen–Tsallis Information (JTIT ) can be expressed by

JTITα (X → Y ) = JTα(p(x); p(Y |x)) = HT
α (
∑
x∈X

p(x)p(Y |x))−
∑
x∈X

p(x)HT
α (Y |x)

= HT
α (Y )−

∑
x∈X

p(x)HT
α (Y |x) (18)

For the reverse channel Y → X , we have

JTITα (Y → X) = JTα(p(x); p(Y |x)) = HT
α (X)−

∑
y∈Y

p(y)HT
α (X|y) (19)

This measure is positive and, in general, non-symmetric with respect to the reversion of the channel.
Thus, JTITα (X → Y ) 6= JTITα (Y → X). An upper bound of this measure is given by the Tsallis
joint entropy: JTITα ≤ HT

α (X, Y ). The Jensen–Tsallis divergence and its properties have been studied
in [17,36].

Similar to the previous measures, a normalized version of JTITα can be defined as

NJTITα (X → Y ) =
JTITα (X → Y )

HT
α (X, Y )

(20)

This measure will also take values in the interval [0, 1].

4. Overview

Large organizations and companies deal with a large amount of documents, such as invoices and
receipts, which are usually scanned and stored in a database as image files. Then, some information of
these images, such as the seller, the date, or the total amount of the invoice, is integrated in the database
via manual editing or OCR techniques.

A critical issue for document analysis is the classification of similar documents. The documents
of the same class can share some interesting information such as the background color, the document
layout, the position of the relevant information on the image, or metadata, such as the seller. Once
one document is grouped into a class, an specific processing for extracting the desired information can
be designed depending on these features [23]. A simple way to define a class consists in taking a
representative image. Then, we can create a database with the representative images and every new entry
in the database is grouped into the class that the similarity between the new image and the representative
image is maximum. A general scheme of our framework is represented in Figure 2. There are two
different groups of images. The first one, formed by the reference images, is given by a document set
where all documents are different between them and where each document represents a document type
that identifies a class. This group of documents forms the document database. The second one, composed
by the input images, is given by a set of documents that we want to use as classifier input with the aim of
finding their corresponding class within the database of the reference images. Note that each input image
has one, and only one, reference image, and different input images can have the same reference image.
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Figure 2. Document classification pipeline.

The main goal of this paper is to analyze the application of the Tsallis-based generalizations of mutual
information presented in the previous section to the document classification process. In the experiments
of document classification carried out in this paper, we do not apply any spatial transform to the images
as we assume that they are approximately aligned.

Another objective of this paper is to analyze the performance of the Tsallis-based generalizations of
mutual information in aligning two documents. This is also a critical point since it allows us to find the
spatial correspondence between an input document and a template. The registration framework used in
this paper is represented in Figure 1.

5. Results and Discussion

To evaluate the similarity between two document images, the similarity measures presented in
Section 3 have been implemented in Visual C++ .NET. In our experiments, we have dealt with a color
invoice database, where 24-bits per pixel (8-bits for each RGB color channel) are used. These images
usually present a complex layout, including pictures, logos, and highlighted areas. The database is
composed by 51 reference invoices and 95 input invoices to be classified. It is required that each input
invoice has one and only one reference invoice of the same type in the database. This reference invoice
is similar (i.e., from the same supplier) but not identical to the input invoice. In our first experiment on
invoice classification, we assume that the images to be compared are fairly well aligned.

The reference and input invoices have been preprocessed using the method presented in [37] with the
aim of correcting the skew error introduced during the scanning process. Although the skew error is
corrected, they still present small translation errors between them. Preliminary experiments have shown
that the best classification results are obtained for resolutions with height between 100 and 200 pixels.
Note that this fact greatly speeds up the computation process as computation time is proportional to
image resolution. In our experiments, all images have been scaled from the original scanning resolution
(around 2500 × 3500 pixels) to a height of 100 pixels, conveniently adjusting the image width to keep
the aspect ratio of the images.

Let us remember that the main objective is to calculate the degree of similarity between each input
invoice and all reference invoices. In this way, an ordered list of reference invoices, called similarity list,
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can be obtained from the degree of similarity (from the highest to the lowest) between both the input and
the reference invoices. Thus, we interpret that the first reference invoice of the list is the class assigned
to the input invoice.

Next, two performance measures are considered for comparison purposes: the percentage of success
and the classification error. The percentage of success is given by the number of correctly classified
input invoices (i.e., the corresponding reference image of the input invoice has been set to the first place
in the similarity list) over the total number of inputs. Given an input invoice, the classification error is
determined by the position of the corresponding reference invoice in the similarity list. If the reference
invoice is chosen properly, this will be located at position 0 of the list.

Table 1 shows the two performance values for each measure and different α values. Note that the
values for theMET andNMETmeasures are not shown for α < 1 since these measures are only defined
for α > 1. For α = 1, the corresponding Shannon measures are considered in all cases. The first
parameter represents the classification success in percentage and the second, in parentheses, represents
the mean of classification error of the misclassified input invoices. As it can be seen, we can observe that
the measures have a different behavior with respect to the α values. While MIT and NMIT achieve the
best classification success for α values between 0.4 and 1.2, the rest of the measures (MET , NMET ,
JTIT , NJTIT ) perform better for α values between 1.0 and 1.4. For these values, the normalized
measures classify correctly all the documents. In general, the normalized measures perform much better
than the corresponding non normalized ones. We have also tested the performance of SSD and CC
measures and we have obtained a classification success of 70.53% and 88.42%, respectively. Note that
these results are worse than the ones obtained using the proposed Tsallis-based measures.

Table 1. The percentage of classification success and the mean of classification error of the
misclassified input invoices (in parentheses) for different measures and α values.

α values MIT NMIT MET NMET JTIT NJTIT

0.2 96.84 (1.67) 92.63 (1.29) 71.58 (6.26) 69.47 (9.00)
0.4 98.95 (2.00) 100.0 (0.00) 80.00 (2.58) 81.05 (3.39)
0.6 98.95 (1.00) 100.0 (0.00) 90.53 (1.67) 89.47 (1.30)
0.8 98.95 (1.00) 100.0 (0.00) 94.74 (1.40) 94.74 (1.00)
1.0 98.95 (2.00) 100.0 (0.00) 98.95 (2.00) 100.0 (0.00) 98.95 (2.00) 100.0 (0.00)
1.2 98.95 (2.00) 100.0 (0.00) 87.37 (2.58) 100.0 (0.00) 97.89 (1.00) 100.0 (0.00)
1.4 97.89 (1.50) 97.89 (1.00) 78.95 (6.40) 100.0 (0.00) 97.89 (1.50) 100.0 (0.00)
1.6 94.74 (1.40) 94.74 (1.00) 72.63 (8.27) 97.89 (1.50) 96.84 (1.33) 97.89 (1.00)
1.8 89.47 (2.10) 90.53 (1.56) 67.37 (9.65) 93.68 (2.50) 96.84 (1.33) 97.89 (1.00)
2.0 87.37 (2.33) 86.32 (2.15) 63.16 (10.66) 91.58 (4.86) 96.84 (1.33) 97.89 (1.00)
2.2 75.79 (2.13) 77.89 (2.10) 54.74 (10.23) 88.42 (6.64) 96.84 (1.33) 97.89 (1.00)
2.4 67.37 (2.61) 70.53 (2.50) 52.63 (10.78) 86.32 (8.31) 96.84 (1.33) 97.89 (1.00)
2.6 65.26 (3.06) 66.32 (2.97) 46.32 (10.55) 85.26 (9.50) 96.84 (1.33) 97.89 (1.00)
2.8 64.21 (3.50) 64.21 (3.38) 42.11 (10.60) 81.05 (8.67) 96.84 (1.33) 97.89 (1.00)
3.0 63.16 (3.80) 64.21 (3.79) 38.95 (10.93) 77.89 (8.67) 97.89 (1.50) 100.0 (0.00)

The classification error (shown between parentheses in Table 1) allows us to evaluate to what extent
the classification is wrong when an invoice is misclassified. If this value is low, the system could suggest
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a short list of class candidates and the user could select the correct one, while if this value is high that
is not recommendable. From the results, we can conclude that, for a high range of α values, methods
identify the correct class in the first positions (for almost all cases the mean classification error is lower
than 5). Thus, the short list can be taken into account for the final user interface design. The classification
error obtained using SSD and CC measures is 20.25 and 6.73, respectively. Note also that Tsallis-based
measures clearly outperform SSD and CC measures.

Our second experiment analyzes the capability of the Tsallis-based proposed measures to align two
similar documents in the same spatial coordinates. In this case, two different features, robustness and
accuracy, have been studied.

First, the robustness has been evaluated in terms of the partial image overlap. This has been done
using the parameter AFA (Area of Function Attraction) introduced by Capek et al. [38]. This parameter
evaluates the range of convergence of a registration measure to its global maximum, counting the
number of pixels (i.e., x − y translations in image space) from which the global maximum is reached
by applying a maximum gradient method. Note that this global maximum may not necessarily be the
optimal registration position. The AFA parameter represents the robustness with respect to the different
initial positions of the images to be registered and with respect to the convergence to a local maximum
of the similarity measure that leads to an incorrect registration. The higher the AFA, the wider the
attraction basin of the measure. In this experiment, the images have been scaled to a height of 200 pixels,
conveniently adjusting the width to keep the aspect ratio. In Figure 3, the left plot represents the results
for the MIT , MET , and JTITmeasures with different α values and the right plot represent the results
for their corresponding normalized measures. As it can be seen, the best results are achieved for α values
greater than 1 for all the measures, being the mutual entropy the one that reaches the best results. As in
the previous experiment, the normalized measures also perform better than the non normalized ones.

Figure 3. AFA parameter values with respect to the α value for the MIT , MET , and
JTITmeasures (left) and the corresponding normalized measures (right). AFA parameter
evaluates the range of convergence of a registration measure to its global maximum.
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The second feature that we will analyze for the alignment experiment is the accuracy. In this case,
the general registration scheme of Figure 1 has been applied, where we have used the Powell’s method
optimizer [39], a rigid transform (which only considers translation and rotation, but not scaling), and a
linear interpolator. The registration process is applied to 18 images of the same class that are aligned
with respect to a common template (scaling them to a height of 800 pixels and keeping the aspect
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ratio). For each image with its original resolution (around 2500 × 3500 pixels), 14 points have been
manually identified and converted to the scaled space of a height of 800 pixels. The same process has
been done with the template image. In order to quantify the registration accuracy, the points of each
image have been moved using the final registration transform. The mean error, given by the average
Euclidean distance between these moved points and the corresponding points in the template, has also
been computed. In Figure 4, for each measure and each α value, the mean error is plotted. In this case,
we can not derive a general behavior. MITperforms better for α = 1.6, whileNMIT for α = 0.4. In this
case, the non normalized measure performs better than the normalized one. Both MET and NMETdo
not outperform the corresponding Shannon measures (α = 1). Finally, Jensen–Tsallis information have
a minimum in α = 0.6 and the accuracy diminishes when the α value increases. Among all measures,
the normalized Jensen–Tsallis information achieves the best results, obtaining the minimum error (and
thus the maximum accuracy) for α = 0.3.

Figure 4. Mean error at the final registration position for different measures and α values
for the MIT , MET , and JTITmeasures (left) and the corresponding normalized measures
(right).
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As a conclusion, for document classification, the best results have been obtained by the normalized
measures, using α values between 0.4 and 1.2 forNMIT and between 1 and 1.4 forNMET andNJTIT .
For document registration, the most robust results have been obtained by NMETwith α = 1.3 and the
most accurate ones have been achieved by NJTITwith α = 0.3.

6. Conclusions

In this paper, we have analyzed the behavior of different similarity measures based on Tsallis
entropy applied to document processing. Three different generalizations of mutual information, based
respectively on Kullback–Leibler distance, the difference between entropy and conditional entropy, and
the Jensen–Tsallis divergence, and their ratio with the Tsallis joint entropy have been tested. Two
types of experiments have been carried out. First, the proposed measures have been applied to invoice
classification, showing different behavior depending on the measure and the entropic index. Second, the
document registration has been studied in terms of robustness and accuracy. While the highest robustness
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is achieved for entropic indices higher than 1, the highest accuracy has been obtained for entropic indices
clearly lower than 1.

In our future work, we will analyze the performance of the measures analyzed for different typologies
of documents, such as scientific papers or journal pages, and further tests will be conducted on
larger databases.
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