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Abstract: Since two decades, wavelet packet decompositions have been shown effective

as a generic approach to feature extraction from time series and images for the prediction

of a target variable. Redundancies exist between the wavelet coefficients and between the

energy features that are derived from the wavelet coefficients. We assess these redundancies

in wavelet packet decompositions by means of the Markov blanket filtering theory. We

introduce the concept of joint Markov blankets. It is shown that joint Markov blankets are

a natural extension of Markov blankets, which are defined for single features, to a set of

features. We show that these joint Markov blankets exist in feature sets consisting of the

wavelet coefficients. Furthermore, we prove that wavelet energy features from the highest

frequency resolution level form a joint Markov blanket for all other wavelet energy features.

The joint Markov blanket theory indicates that one can expect an increase of classification

accuracy with the increase of the frequency resolution level of the energy features.

Keywords: feature subset selection; joint Markov blanket; Markov blanket; mutual

information; wavelet packet decomposition



Entropy 2011, 13 1404

1. Introduction

Raw input variables, such as the single samples from time series or the single pixels from images,

are often meaningless to the targeted audience, e.g., an industrial expert or a clinician. The ease of

interpretation can be enhanced by first constructing meaningful features.

A basic approach to construct features from time series and images consists in computing some

general statistical parameters such as the median, the mean, the standard deviation and higher-order

moments. A more thorough approach exists in using basis functions, sometimes called templates, that

can be used to construct features. The prior information about the classes to be predicted is then related

to the choice of the templates. However, generic approaches that generate a library of templates, such

as wavelet packets, have been proposed by Coifman and Meyer [1]. Wavelet packet decompositions

(WPD’s) offer a library of templates that have many desired properties. First of all, WPD’s can be

founded on the mathematical theory of multiresolution analysis [2,3] that allows to represent signals and

images in new bases. The decomposition in a new wavelet packet basis guarantees that no “information”

is lost as the original signals can always be reconstructed from the new basis. Secondly, the templates

in a wavelet packet decomposition are easily interpreted in terms of frequencies and bandwidths [4].

Thirdly, wavelet packet decompositions are more flexible than the discrete wavelet transform and the

Fourier transform. This means that the basis functions that are used in a discrete wavelet transform

(DWT) are also available in the wavelet packet decomposition [3,4].

We refer here to the selection of wavelet coefficients or features derived from the wavelet coefficients

to predict a target variable “C” (e.g., a class label) as feature subset selection. A basis selection algorithm

specifically tuned for wavelet packet decompositions has been first proposed in [5]. This algorithm did

not take into account a target variable, such as a class label, but chose one basis using minimal entropy

as the selection criterion. Algorithms that take the target variable into account were proposed in [6–8].

It was shown [9,10] that dependencies between wavelet features were not taken into account in the

previous algorithms. Dependencies between wavelet features were taken into account more recently

in, e.g., [10–13]. However, a systematic analysis of redundancies between wavelet packet features by

means of Markov blankets, as a solid theoretical framework to assess redundancies, is lacking so far.

The dependencies between wavelet features will allow us to obtain analytical results on the existence

of Markov blankets regardless of the underlying probability distribution of signals and images. In this

article, we infer the redundancies between the wavelet coefficients and between energy features that are

computed from a wavelet packet decomposition by means of the joint Markov blanket theory. These

energy features are regularly computed from wavelet coefficients to scale down the number of features

to select from as, e.g., in [12–14]. Other features such as the variance of the wavelet coefficients have

been used in the literature as well, see, e.g., [15]. The joint Markov blankets proposed in this article are

shown to be a natural result of iteratively applying Markov blanket filtering.

2. Feature Extraction from Wavelet Packet Decomposition

This section introduces the background for feature construction from wavelet packet decompositions.

We will use the terminology of template and basis function interchangeably. Strictly speaking, a template

is a more general terminology, because it does not need to be part of a basis. We use time series to
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develop the theory as it allows for a more simple notation, the results can be easily extended to images.

We represent a single time series by means of a sequence of observations x(t): x(0), x(1), ... x(N − 1),

where “t” refers to the time index and “N” is the number of samples. Time series x(t) can be considered

as being sampled from an “N” dimensional distribution defined over an “N” dimensional variable X(t):
X(0), X(1), ... X(N − 1), we write this “N” dimensional variable in shorthand notation as X0 :N−1 and use

capitals to denote variables.

2.1. Wavelet Coefficient Features

Features are computed from a wavelet packet decomposition by computing the inner product between

the templates and the time series (using a continuous notation, for the ease of notation):

γi,j,k =< x(t), ψj
i (t− 2ik) >=

+∞∫
−∞

x(t)ψj
i (t− 2ik) dt (1)

A feature, in this case a wavelet coefficient, in the wavelet packet decomposition needs to be specified

by the scale index “i”, frequency index “j” and time index “k”. The coefficient γi,j,k can be considered as

quantifying the similarity, by means of the inner product, between time series x(t) and wavelet function

ψj
i (t−2ik) at position 2ik in time. The parameter “i” is the scale index and causes a dilation (commonly

called a “stretching”) of the wavelet function ψj(t) by a factor 2i :

ψj
i (t) =

1√
2i
ψj(

t

2i
) (2)

The wavelet functions ψj
i (t) are recursively defined by means of the low-pass filter h[k] and high-pass

filter g[k]:

ψ2j
i+1(t) =

+∞∑
−∞

h[k]ψj
i (t− 2ik) (3)

and

ψ2j+1
i+1 (t) =

+∞∑
−∞

g[k]ψj
i (t− 2ik) (4)

In order to form an orthonormal system the filters h[k] and g[k] need to satisfy the conjugate mirror filter

condition [3]:

g[k] = (−1)(1−k)h[1− k] (5)

It is the parameter “j” in (2) that determines the shape of the template. In case we choose the 12-tap

Coiflet filter, [16] (see pp. 258–261) we obtain the first 8 different templates ψ0(t), ψ1(t), ψ2(t), ... ψ7(t)

shown in Figure 1. The construction of these basis functions can be found in text books [16].

In Figure 2, we show a graphical representation of the different subspaces that are obtained in a

wavelet packet decomposition. In the discrete wavelet transform the only nodes in the tree that are

considered are W 1
1 ,W 1

2 , W 1
3 , W 1

4 and W 0
4 ; these subspaces are shaded in grey.

The first four subspaces are spanned by the functions {ψ1
1(t − 2k)}k∈Z , {ψ1

2(t − 22k)}k∈Z,

{ψ1
3(t− 23k)}k∈Z and {ψ1

4(t− 24k)}k∈Z respectively. Subspace W 0
4 is spanned by {ψ0

4(t− 24k)}k∈Z. So

in the discrete wavelet transform the signals are only analyzed by means of the time translated functions
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of ψ0
4(t) (ψ0

0(t) is called the scaling function and is shown as the first template in Figure 1) and dilated

and time translated functions of ψ1
0(t) (this function is called the mother wavelet function and is shown as

the second template in the top row of Figure 1). The division in subspaces in Figure 2 also corresponds to

a tiling of frequency space [4]. In Figure 2, only two bases are shown: the gray shaded basis corresponds

with the discrete wavelet transform, the basis marked with diagonals is chosen arbitrarily and is one of

the possible bases in the wavelet packet decomposition. The basis marked with diagonals puts more

emphasis on a finer analysis of the higher frequency part of the signals.

Figure 1. Templates (wavelet packets) corresponding with the 12-tap Coiflet filter.
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Figure 2. Library of wavelet packet functions. Different subspaces are represented by W j
i .

Index “i” is the scale index, index “j” is the frequency index. The depth “I” of this tree is

equal to 4. Every tree within this tree where each node has either 0 or 2 children is called an

admissible tree. Two admissible trees are emphasized, one shaded in grey and one marked

with diagonals. A particular node in the tree can be index by (i,j).
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Retaining any binary tree in Figure 2, where each node has either 0 or 2 children, leads to an

orthonormal basis for finite energy functions, denoted as x(t) ∈ L2(R):

+∞∫
−∞

|x(t)|2 dt < ∞ (6)

Such a tree is called an admissible tree. If the leaves of this tree are denoted by {il, jl}1≤l≤L the

orthonormal system can be written as:

W 0
0 = ⊕L

l=1W
jl
il

(7)

This means that the space W 0
0 , which is able to represent the input space of the time series, can be

decomposed into orthonormal subspaces W jl
il

.

It should be noted that a full wavelet packet decomposition yields many features. A full wavelet

packet decomposition leads to N*(log2N+1) features. This can be seen as follows. From Figure 2, it can

be noted that the number of subspaces at a certain scale “i” is determined by the scale index “i”. The

number of subspaces at scale “i” is equal to 2i . Therefore the frequency index “j” at a certain scale “i”
will be an integer from [0, 2i−1], indicating the starting position of the subspace at scale “i”. As can

be seen from Equation (1) at scale “i” the inner products are computed at discrete time positions 2ik.

Therefore at scale 0, we obtain “N” (length of the signals) coefficients: γ0,0,0, ... γ0,0,N−1. At the next

scale i = 1 we obtain N/2 coefficients in each subspace i.e., γ1,0,0, ... γ1,0,N/2−1 and γ1,1,0, ... γ1,1,N/2−1.

At the highest frequency resolution, i = log2N and we obtain coefficients: γlogN,0,0, ... γlogN,N−1,0. Hence

at each scale there are “N” coefficients and in total there are log2N+1 different scale levels. This leads

overall to N*(log2N+1) different coefficients to select from. When we want to emphasize the variable

that can be associated with the coefficient γi,j,k we use capitals Γi,j,k.

2.2. Wavelet Energy Features

In cases where one can assume that the exact time location “k” of the template is of no importance,

one can, e.g., consider the energy of wavelet coefficients over time for each possible combination of the

scale index “i” and the frequency index “j”:

Ej
i =

N/2i−1∑
k=0

(Γi,j,k)
2 (8)

Then each node in Figure 2 will correspond with 1 energy feature Ej
i . In total there are 1−2log2N+1

1−2
=

2N − 1 nodes and hence 2N − 1 energy features. Such energy features have been previously used in

[8,12–14].

2.3. Dependencies between Wavelet Features

Analytical results of dependencies between wavelet coefficients for specific classes of stochastic

signals have been obtained in [17,18] in case of fractional Brownian motion and for autoregressive

models in [12]. Dependencies between wavelet packet features also exist regardless the underlying

distribution of signals.
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Further on, we use the notation γi,j,k or γi,j[k] interchangeably. The first notation emphasizes the

notion as a characteristic or a feature, while the latter emphasizes the time index “k”.

Although the above definition of the wavelet coefficients γi,j,k in Equation (1) allows for an intuitive

interpretation as a degree of similarity, it was proven in [3] (see Proposition 8.4, p. 334) that these

coefficients at the decomposition can be computed also as:

γi+1,2j[k] =
m=+∞∑
m=−∞

γi,j[m].h[m− 2k] (9)

γi+1,2j+1[k] =
m=+∞∑
m=−∞

γi,j[m].g[m− 2k] (10)

starting from the initialization: γ0,0[k] =< x(t), ψ0
0(t − k) >. Intuitively, the wavelet coefficients

γi+1,2j[k] can be obtained from a convolution of γi,j[m] with h[−m], but followed by a factor 2

subsampling. Along the same line γi+1,2j+1[k] can be obtained from a convolution of γi,j[m] with g[−m],

followed by a factor 2 subsampling. From Equation (9) and Equation (10) it is clear that level “i+1”

coefficients can be computed from level “i” coefficients.

On the other hand, level “i” coefficients can also be computed from level “i+1” coefficients. At the

reconstruction the coefficients can be computed as:

γi,j[k] =
m=+∞∑
m=−∞

h[k − 2m].γi+1,2j[m] +
m=+∞∑
m=−∞

g[k − 2m].γi+1,2j+1[m] (11)

This corresponds with a convolution of h[m] with γi+1,2j[m], but with zeros inserted between the wavelet

coefficients γi+1,2j[m]. The same holds for g[m] with γi+1,2j+1[m].

Because wavelet packet decompositions are orthonormal transformations the energy is preserved and

it holds that:

Ej
i = E2j

i+1 + E2j+1
i+1 (12)

Hence, energy features at level “i” can be expressed as a sum of energy features from level “i+1”.

In order to take into account only the wavelet coefficients at scale “i” that affect wavelet coefficient

γi+1,2j,k at the next scale “i+1” in Equations (9) and (10), we introduce following definition.

Definition 2.1. The level “i” parent coefficients of a wavelet coefficient γi+1,2j,k are the wavelet
coefficients γi,j,m in its parent node for which the filter coefficients h[m-2k] in Equation (9) are different
from 0. Let us denote these level “i” parent features/coefficients as parenti(γi+1,2j,k).

Similarly, the level “i” parent coefficients of a wavelet coefficient γi+1,2j+1,k are the wavelet

coefficients γi,j,m in its parent node for which the filter coefficients g[m-2k] in Equation (10) are different

from 0. These parent features are denoted as parenti(γi+1,2j+1,k). Knowing either h[m] or g[m] these

parent relationships can be derived for each level “i”.

In case of the L-tap Coiflet filters [16], the low-pass and high-pass filters consist of L filter taps

each. Given the low-pass filters h[m] for the Coiflet filters in [16], it can be shown (using Equations (5),

(9) and (10)) that the parents of γi+1,2j,k from level “i” are the L consecutive coefficients γi,j,2k−2L/6,
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γi,j,2k−2L/6+1, . . .γi,j,2k+4L/6−1, see Figure 3. The parents of γi+1,2j+1,k are the L consecutive coefficients

γi,j,2k−(4L/6−2), γi,j,2k−(4L/6−3), . . .γi,j,2k+2L/6+1, see Figure 4.

Figure 3. Parent coefficient relationships for γi+1,2j,k.

i,j,2k-2L/6 … i,j,2k-1 i,j,2k i,j,2k+1 … i,j,2k+(4L/6-1)

i+1,2j,k-1 i+1,2j,k i+1,2j,k+1

Figure 4. Parent coefficient relationships for γi+1,2j+1,k.

i,j,2k-(4L/6-2) … i,j,2k-1 i,j,2k i,j,2k+1 … i,j,2k+(2L/6+1)

i+1,2j+1,k-1 i+1,2j+1,k i+1,2j+1,k+1

Here we used the notations parenti(γi+1,2j,k) and parenti(γi+1,2j+1,k) to emphasize that the parent

coefficients of the even frequencies γi+1,2j,k and the parent coefficients of the odd frequencies γi+1,2j+1,k

may differ, as can be seen from Figures 3 and 4. More generally (without emphasizing differences

between odd and even frequency components), we can write the parents of γi,j,k as: parenti−1(γi,j,k).

Similarly, we introduce the child coefficients of γi,j,k as the coefficients at the next resolution level

“i+1” that affect γi,j,k.

Definition 2.2. The level “i+1” child coefficients of a wavelet feature γi,j,k are the wavelet coefficients
γi+1,2j,m and γi+1,2j+1,m in its child nodes for which the filter coefficients h[k-2m] and g[k-2m] in
Equation (11) are different from 0. Let us denote these level “i+1” child features/coefficients as
childi+1(γi,j,k).

Note that we used the terminology of parent and child nodes as used in wavelet packet trees, these

should not be confused with the terminology used in directed acyclic graphs (DAG’s).

Given the low-pass filters h[m] for the Coiflet filters in [16], it can be shown that for the L-tap

Coiflet filters the child coefficients of γi,j,2k from level “i+1” are the L/2 consecutive coefficients

γi+1,2j,k−(2L/6−1), γi+1,2j,k−(2L/6−2), . . .γi+1,2j,k+L/6 and the L/2 consecutive coefficients γi+1,2j+1,k−L/6,

γi+1,2j+1,k−L/6+1, . . .γi+1,2j+1,k+(2L/6−1) (using Equation (5) and Equation (11)). The child coefficients

for γi,j,2k+1 are the same coefficients in case of the L-tap Coiflet filters. These child coefficients are

shown in Figure 5.

In Figure 5, we used a notation γi,j,2k to indicate that each child node γi+1,2j,m and γi+1,2j+1,m only

consists of half the number of coefficients. More generally, we write the child coefficients of γi,j,k as

childi+1(γi,j,k).
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Figure 5. Child coefficient relationships for γi,j,2k. The child coefficients for γi,j,2k+1 are

the same coefficients in case of L-tap Coiflet filters. The top row coefficients are the odd

frequency child coefficients, the bottom row are the even frequency child coefficients.

i,j,2k

i+1,2j,k-(2L/6-1) … i+1,2j,k-1 i+1,2j,k i+1,2j,k+1 … i+1,2j,k+L/6

i+1,2j+1,k-L/6 … i+1,2j+1,k-1 i+1,2j+1,k i+1,2j+1,k+1 … i+1,2j+1,k+(2L/6-1)

3. Markov Blanket Filtering: A Link with Information-Theoretic Approaches

Markov blanket filtering as an approach to feature elimination was established by [19] and inspired

others in the design of new feature subset selection algorithms such as in [20–22]. Most recent research

aims at finding the Markov boundary (the minimal Markov blanket) of the target variable in feature

sets containing more than ten thousands of variables while still remaining theoretically correct under

the faithfulness condition [23–25]. A seemingly different approach to feature subset selection is that by

means of mutual information that was used in [10,26–32]. As opposed to Markov blanket filtering, which

is due to [19], the origin of the use of mutual information as a feature subset selection criterion is more

unclear. We believe that the first use of mutual information as a feature subset selection criterion can be

traced back to Lewis [33]. However, at that time Lewis did not call the functional used in [33] “mutual

information”. A connection between Markov blanket filtering and the mutual information feature subset

selection criterion was shown independently in [11] an [34].

Previous work using mutual information in [29] has used heuristic concepts of information relevance

and redundancy in feature subset selection, as opposed to the statistical concepts of relevance in [35]

and redundancy in [21] that can be used to obtain optimal subsets. If one makes a statement that: “a

feature is redundant for a feature set with respect to the target variable”, we want to be sure that really

all information about the target variable is covered in that feature set and the considered feature can be

removed without information loss. This is exactly what Markov blanket filtering offers and the reason

we extended it here to joint Markov blankets for inference of redundancies between features extracted

from wavelet packet decompositions.

Let FG be the current feature set, i.e., the feature set obtained after removal of some other features

from the full feature set F, and Fi a feature to be removed from the current feature set FG.

Definition 3.1 ([19,21]). A feature subset Mi ⊂ FG is a Markov blanket for feature Fi iff (if and only if):
p(FG \ {Mi ∪ Fi}, C|Fi,Mi) = p(FG \ {Mi ∪ Fi}, C|Mi).

Hence, a Markov blanket Mi is a feature subset not including Fi that makes Fi independent of all

other features FG \ {Mi ∪Fi} and the target variable “C”: FG \ {Mi ∪Fi} ∪ C. The connection with the

mutual information functional [36] is given in the following, see also [11,34,37]. Read MI(X;Y |Z) as
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the mutual information between X and Y conditioned on Z, where X, Y and Z may be single variables

or sets of variables.

Lemma 3.2. A feature subset Mi ⊂ FG is a Markov blanket for feature Fi iff: MI(Fi;C,FG \ {Mi ∪
Fi}|Mi) = 0.

Proof. The comparison of the probability functions p(FG \ {Mi ∪ Fi}, C|Fi,Mi) and p(FG \ {Mi ∪
Fi}, C|Mi) is performed in information-theoretic sense by means of the Kullback-Leibler distance:

∑
fG,c

p(fG, c)ln

(
p(fG \ {mi ∪ fi}, c|fi,mi)

p(fG \ {mi ∪ fi}, c|mi)

)
(13)

using conditional probabilities this can be written as:

=
∑
fG,c

p(fG, c)ln

(
p(fG \ {mi}, c|mi)

p(fG \ {mi ∪ fi}, c|mi).p(fi|mi)

)
(14)

using the definition of conditional mutual information [36] this is equivalent to:

= MI(Fi;FG \ {Mi ∪ Fi}, C|Mi) (15)

Using a corollary of the information inequality Theorem (2.6.3) in [36], it is known that the conditional

mutual information in this case MI(Fi;FG \ {Mi ∪ Fi}, C|Mi) is equal to 0 iff

p(FG \ {Mi ∪ Fi}, C|Fi,Mi) = p(FG \ {Mi ∪ Fi}, C|Mi).

This result can be related to Theorem 8 in [37]. There it was shown for discrete features Fi that

if MI(Mi;Fi) = H(Fi) then Mi is a Markov blanket for Fi. This can also be easily shown from

Lemma 3.2. Starting from MI(Fi;C,FG \ {Mi ∪ Fi}|Mi), this can be written as:

MI(Fi;C,FG \ {Mi ∪ Fi}|Mi) =

H(Fi|Mi)−H(Fi|Mi, C,FG \ {Mi ∪ Fi}) (16)

Using the condition MI(Mi;Fi) = H(Fi) from Theorem 8 in [37] then it holds that H(Fi|Mi) = 0.

Furthermore, because conditioning reduces entropy it holds that H(Fi|Mi, C,FG \ {Mi ∪ Fi}) ≤
H(Fi|Mi). Because Theorem 8 in [37] assumes discrete features, entropy must be ≥ 0, from which it

follows that H(Fi|Mi, C,FG\{Mi∪Fi}) = 0. Hence, we obtain that MI(Fi;C,FG\{Mi∪Fi}|Mi) = 0.

This proves the Markov blanket condition. The main difference between Lemma 3.2 and Theorem 8

of [37] is that we do not need to assume discrete features.

It needs to be remarked that when dealing with small sample sizes, it has been shown [38] that Markov

blanket filtering may favor the removal of features that are most correlated with the target variable. Of

course, this is the opposite result of what one wants to achieve with Markov blanket filtering. In [38] this

behavior was observed when discretizing the features. It still remains to be explored if such behavior

can also be observed when one uses the continuous features instead.

Markov blanket filtering leads naturally to the definition of a “joint” Markov blanket MS1:n−1 of a set

of features F1:n−1 = F1 ∪ F2. . .∪ Fn−1 (in information-theoretic sense):
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Definition 3.3. A feature subset MS1:n−1 ⊂ F is a joint Markov blanket for features F1:n−1 = F1 ∪ F2

. . .∪ Fn−1 iff: MI(F1:n−1;F \ {F1:n−1 ∪MS1:n−1}, C|MS1:n−1) = 0.

In the future of this article we will use a shorthand notation in the definition of the joint Markov

blanket: MI(F1:n−1;F \ {F1:n−1 ∪ MS1:n−1}, C|MS1:n−1) = 0, because conditioning is on MS1:n−1 ,

this is equivalent to MI(F1:n−1;F \ F1:n−1, C|MS1:n−1) = 0, where the latter equation is called the

shorthand notation.

We show that joint Markov blankets are obtained from performing Markov blanket filtering iteratively.

Theorem 3.4. If MS1:n−1 is a joint Markov blanket for features F1:n−1 = F1 ∪ F2 . . .∪ Fn−1 and Mn is
a Markov blanket for feature Fn then MS1:n−1 ∪ Mn is a joint Markov blanket for F1:n−1 ∪ Fn.

Proof. We need to show that it follows from MI(F1:n−1;C,F \ F1:n−1|MS1:n−1) = 0 (i.e., MS1:n−1 is a

joint Markov blanket for features F1:n−1) and from MI(Fn;C,F \ {F1:n−1 ∪ Fn}|Mn) = 0 (i.e., Mn is

a Markov blanket for feature Fn) then it follows that MI(F1:n−1 ∪ Fn;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪
Mn) = 0.

Using the chain rule for information [36] (Theorem 2.5.2) we can write:

MI(F1:n−1 ∪ Fn;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪Mn) = (17)

MI(F1:n−1;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪Mn ∪ Fn) (18)

+MI(Fn;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪Mn) (19)

Now we show that both (18) and (19) are equal to 0.

For (18), applying the chain rule for information to (18) we obtain:

MI(F1:n−1;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪Mn ∪ Fn) =

MI(F1:n−1;C,F \ F1:n−1|MS1:n−1 ∪Mn ∪ Fn) = (20)

MI(F1:n−1;C,F \ F1:n−1|MS1:n−1)−MI(F1:n−1;Mn ∪ Fn|MS1:n−1) (21)

In (20) the feature Fn is included in F \ {F1:n−1 ∪ Fn}; this does not change the dependencies because

conditioning is also on Fn. Both terms in (21) are equal to 0 zero because MS1:n−1 is a joint Markov

blanket for F1:n−1 with respect to C ∪F\F1:n−1. By definition MS1:n−1 will make F1:n−1 independent of

C ∪ F \ F1:n−1: MI(F1:n−1;C,F \ F1:n−1|MS1:n−1) = 0 (the first term in (21)) and any possible subset

thereof so that: MI(F1:n−1;Mn ∪ Fn|MS1:n−1) = 0 (in the second term Mn ∪ Fn ⊂ F \ F1:n−1).

For (19), applying the chain rule for information on (19) we obtain:

MI(Fn;C,F \ {F1:n−1 ∪ Fn}|MS1:n−1 ∪Mn) =

MI(Fn;C,F \ {F1:n−1 ∪ Fn}|Mn)−MI(Fn;MS1:n−1 |Mn) (22)

Both terms in (22) are equal to 0 because Mn is a Markov blanket for Fn w.r.t. C ∪ F \ {F1:n−1 ∪ Fn}.

This implies MI(Fn;C,F \ {F1:n−1 ∪ Fn}|Mn) = 0 by definition of a Markov blanket and

MI(Fn;MS1:n−1 |Mn) = 0 because MS1:n−1 is a subset of F \ {F1:n−1 ∪ Fn}. Hence, Equation (17)

is equal to 0 and the condition of a “joint” Markov blanket is fulfilled.
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The proof was provided in case the feature to be removed Fn was not part of the joint Markov blanket

found so far M1:n−1. More generally, one may choose Fn ∈ M1:n−1. The proof in this case becomes

more elaborate, but in a similar way as above, it can be shown that the joint Markov blanket in this case

becomes {M1:n−1 \ Fn} ∪ Mn, with Mn a Markov blanket for Fn. For details on the extended proof

when Fn ∈ M1:n−1 the reader is referred to Theorem 2.4 in [11].

In Markov blanket filtering [19], one starts with removing a single feature based on a Markov blanket

found for that feature. Hence, in order to show that iteratively performing Markov blanket filtering leads

to a “joint” Markov blanket for the removed features, we need to show that according to Theorem 3.4 that

the first Markov blanket found in Markov blanket filtering is a “joint” Markov blanket. Suppose that one

finds a Markov blanket M1 for F1: for this feature F1 it holds that MI(F1;C,F \ {M1 ∪ F1}|M1) = 0.

In order for M1 to be a joint Markov blanket it must satisfy: MI(F1:n−1;C,F \ F1:n−1|MS1:n−1) = 0.

If we set n = 2 in the last condition we obtain: MI(F1:2−1;C,F \ F1:2−1|MS1:2−1) = 0, which can be

further simplified to MI(F1:1;C,F \ F1:1|MS1:1) = 0. With F1:1 = F1 ∪ F1 = F1 , and MS1:1 = M1, we

obtain: MI(F1;C,F \ F1|M1) = 0. This condition is satisfied and hence the first Markov blanket is a

special case of a joint Markov blanket. Therefore iteratively performing Markov blanket filtering leads

to “joint” Markov blankets.

4. Joint Markov Blankets in Wavelet Feature Sets

We show the existence of Markov blankets in feature sets extracted from wavelet packet

decompositions. In Section 4.1 the set of all features F consists of the wavelet coefficient variables

Γi,j,k, in Section 4.2 the set consists of all energy features Ej
i .

4.1. Parents or Children Nodes are Joint Markov Blankets

Let us denote by F the set of all wavelet features obtained from a wavelet packet decomposition:

F = {Γi,j,k : 0 ≤ i ≤ log2(N), 0 ≤ j ≤ 2i − 1, 0 ≤ k ≤ N/(2i)− 1}.

Proposition 4.1. The level “i” parent coefficients parenti(Γi+1,2j,k) in Definition 2.1 form a Markov
blanket for Γi+1,2j,k.

Proof. In order to prove that parenti(Γi+1,2j,k) is a Markov blanket for Γi+1,2j,k we have to show:

MI(Γi+1,2j,k;C,F \ {parenti(Γi+1,2j,k) ∪ Γi+1,2j,k}|parenti(Γi+1,2j,k)) = 0 (23)

The proof is obtained by expanding the mutual information in its entropy terms:

MI(Γi+1,2j,k;C,F \ {parenti(Γi+1,2j,k) ∪ Γi+1,2j,k}|parenti(Γi+1,2j,k)) =

H(Γi+1,2j,k|parenti(Γi+1,2j,k))

−H(Γi+1,2j,k|parenti(Γi+1,2j,k), C,F \ {parenti(Γi+1,2j,k) ∪ Γi+1,2j,k}) (24)

The first entropy term in Equation (24), H(Γi+1,2j,k|parenti(Γi+1,2j,k)), is equal to 0. This is due to

the fact that Γi+1,2j,k is a function of parenti(Γi+1,2j,k), according to Equation (9) and Definition 2.1.

Hence the uncertainty left about Γi+1,2j,k after observing parenti(Γi+1,2j,k) is 0. The second term

in Equation (24), H(Γi+1,2j,k|parenti(Γi+1,2j,k), C,F \ {parenti(Γi+1,2j,k) ∪ Γi+1,2j,k}) must also be
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equal to 0 for the same reason. From both terms equal to 0 in Equation (24) we can conclude that

MI(Γi+1,2j,k;C,F \ {parenti(Γi+1,2j,k) ∪ Γi+1,2j,k}|parenti(Γi+1,2j,k)) = 0 and thus parenti(Γi+1,2j,k)

forms a Markov blanket for Γi+1,2j,k.

Corollary 4.2. The level “i” parent coefficients parenti(Γi+1,2j+1,k) form a Markov blanket for
Γi+1,2j+1,k.

The proof occurs in a similar way as in Proposition 4.1.

Corollary 4.3. The level “i+1” child coefficients childi+1(Γi,j,k) in Definition 2.2 form a Markov blanket
for Γi,j,k.

Proof. In order to prove that childi+1(Γi,j,k) is a Markov blanket for Γi,j,k we have to show:

MI(Γi,j,k;C,F \ {childi+1(Γi,j,k) ∪ Γi,j,k}|childi+1(Γi,j,k)) = 0 (25)

Expansion of the mutual information in entropy terms leads to:

MI(Γi,j,k;C,F \ {childi+1(Γi,j,k) ∪ Γi,j,k}|childi+1(Γi,j,k)) =

H(Γi,j,k|childi+1(Γi,j,k))

−H(Γi,j,k|childi+1(Γi,j,k), C,F \ {childi+1(Γi,j,k) ∪ Γi,j,k}) (26)

Similarly as in the proof of Proposition 4.1 the first entropy term H(Γi,j,k|childi+1(Γi,j,k)) = 0 due to

functional dependence of Γi,j,k on childi+1(Γi,j,k). The second term in Equation (26) is equal to zero for

the same reason.

Using Theorem 3.4 iteratively on all wavelet coefficients in a node we can show that child nodes (or

its parent node) form joint Markov blankets.

Proposition 4.4. The set of all wavelet coefficient features in the child nodes {Γi+1,2j,m}0≤m≤N/(2i+1)−1

and {Γi+1,2j+1,m}0≤m≤N/(2i+1)−1 form a “joint” Markov blanket for {Γi,j,k}0≤k≤N/(2i)−1.

Proof. We can start iterative Markov blanket filtering from any coefficient Γi,j,k1 in node (i,j) and remove

this coefficient based on a Markov blanket childi+1(Γi,j,k1) according to Corollary 4.3. Next we can

select a coefficient Γi,j,k2 in node (i,j) and remove this based on a Markov blanket childi+1(Γi,j,k2).

Then according to Theorem 3.4, childi+1(Γi,j,k1) ∪ childi+1(Γi,j,k2) is a joint Markov blanket for

Γi,j,k1 ∪ Γi,j,k2. We can iterate this over all coefficients in node (i,j): {Γi,j,k}0≤k≤N/(2i)−1. Applying

Theorem 3.4 iteratively, we find that a joint Markov blanket for all coefficients in node (i,j) is

formed by:
⋃

0≤k≤N/(2i)−1

childi+1(Γi,j,k), which is equal to the set of all coefficients of node (i+1,2j):

{Γi+1,2j,m}0≤m≤N/(2i+1)−1 and node (i+1,2j+1): {Γi+1,2j+1,m}0≤m≤N/(2i+1)−1. This is due to the fact

that childi+1(Γi,j,k) coefficients only come from node (i+1,2j) and node (i+1,2j+1) according to

Definition 2.2.
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Proposition 4.5. The set of all wavelet coefficient features in the parent node {Γi−1,j,m}0≤m≤N/(2i−1)−1

form a “joint” Markov blanket for {Γi,2j,k}0≤k≤N/(2i)−1 and {Γi,2j+1,k}0≤k≤N/(2i)−1.

Proof. The proof is similar to Proposition 4.4. Applying Markov blanket filtering iteratively to the

coefficients Γi,2j,k and Γi,2j+1,k in nodes (i,2j) and (i,2j+1) one finds (applying Theorems 3.4, 4.1

and Corollary 4.2 iteratively similar as in Proposition 4.4) that:
⋃

0≤k≤N/(2i)−1

parenti−1(Γi,2j,k) ∪

parenti−1(Γi,2j+1,k) is a joint Markov blanket for all coefficients in nodes (i,2j) and (i,2j+1). This is

equal to the set of all coefficients of node (i-1,j): {Γi−1,j,m}0≤m≤N/(2i−1)−1, because the coefficients

parenti−1(Γi,2j,k) and parenti−1(Γi,2j+1,k) only come from node (i-1,j) according to Definition 2.1.

Summarizing the results of Propositions 4.4 and 4.5, we see that all coefficients in a node (i,2j) can

be removed either by existence of its child nodes (i+1,2.2j) and (i+1,2.2j+1) or by existence of its parent

node (i-1,j). Both node (i-1,j) or nodes (i+1,2.2j) and (i+1,2.2j) are guaranteed to form a joint Markov

blanket. It is interesting to note that node (i-1,j) contains N/(2i−1) coefficients and nodes (i+1,2.2j),

(i+1,2.2j+1) jointly contain (N/2i) coefficients which forms a smaller blanket. However, if one selects

node (i-1,j) as a joint Markov blanket for removal of (i,2j), it will also be a joint blanket for (i,2j+1).

4.2. Child Nodes are Joint Markov Blankets for Energy Features

Here, the set of all features F consists of all energy features obtained from a wavelet packet

decomposition: F = {Ej
i : 0 ≤ i ≤ log2(N), 0 ≤ j ≤ 2i − 1}.

In case of the energy features, the analysis of dependencies between features is somewhat simpler. As

shown in Equation (12), energy features at level “i” (E
j
i ) depend functionally on E

2j
i+1 and E

2j+1
i+1 . Hence,

in this case there are only child features that determine level “i” features. This leads to Corollary 4.6

(similar to Corollary 4.3).

Corollary 4.6. Energy features E2j
i+1 and E2j+1

i+1 form a Markov blanket for Ej
i .

Proof. In order for E
2j
i+1 and E

2j+1
i+1 to form a Markov blanket for E

j
i , it needs to be shown that:

MI(Ej
i ;C,F \{Ej

i ∪E2j
i+1∪E2j+1

i+1 }|E2j
i+1∪E2j+1

i+1 ) = 0. Using the expansion of the mutual information

in its entropy terms yields:

MI(Ej
i ;C,F \ {Ej

i ∪ E2j
i+1 ∪ E2j+1

i+1 }|E2j
i+1 ∪ E2j+1

i+1 ) =

H(Ej
i |E2j

i+1 ∪ E2j+1
i+1 )−H(Ej

i |{E2j
i+1 ∪ E2j+1

i+1 }, C,F \ {Ej
i ∪ E2j

i+1 ∪ E2j+1
i+1 }) (27)

The first term in Equation (27) H(Ej
i |E2j

i+1 ∪ E2j+1
i+1 ) is equal to 0 due to functional dependence, the

second term is equal to 0 for the same reason (see also the proof of Proposition 4.1).

For the set of energy features, we obtain following result on which energy features form a “joint”

Markov blanket for all other energy features.

Proposition 4.7. The highest frequency energy features {Ej
log2(N)}0≤j≤N−1 form a joint Markov blanket

for all other energy features F \{Ej
log2(N)}0≤j≤N−1.
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Proof. Iterative elimination of features based on Markov blankets starting from the top of a wavelet tree

(as in Figure 2) proceeds as follows. Starting from the top, feature E0
0 can be removed because E0

1 ∪ E1
1

forms a Markov blanket according to Corollary 4.6. Next, E0
1 can be removed because E0

2 ∪ E1
2 forms

a Markov blanket according to Corollary 4.6. Using Theorem 3.4, E0
2 ∪ E1

2 ∪ E1
1 forms a joint Markov

blanket for E0
0 ∪ E0

1. Next E1
1 can be removed based on E2

2 and E3
2. We then obtain that E0

2 ∪ E1
2 ∪ E2

2 ∪ E3
2

is a joint blanket for E0
0 ∪ E0

1 ∪ E1
1. Hence, iterating this procedure until arriving at {Ej

log2(N)}0≤j≤N−1,

these features form a joint blanket for: {Ej
i }0≤i≤log2(N)−1,0≤j≤2i−1 = F \{Ej

log2(N)}0≤j≤N−1.

4.3. Experiments with Energy Features of Wavelet Packet Decomposition

As shown in the proof of Proposition 4.7, energy features at level i+1, i.e., E0
i+1, ... E2i+1−1

i+1 , form a

joint Markov blanket for the features at level i (as well as for those at levels i-1, ... 0). This implies that

the set {E0
i , ... E2i−1

i } contains no information about the target variable “C” that is not covered yet by

the set {E0
i+1, ... E2i+1−1

i+1 }. The latter implies that MI({E0
i , ...E

2i−1
i };C) ≤ MI({E0

i+1, ...E
2i+1−1
i+1 };C).

Furthermore, we know there is a close relationship between the mutual information and the probability of

error (Pe) for predicting a target variable [30]. In particular, the Kovalevsky upper bound [39] is known

to be a tight upper bound [40] on the probability of error as a function of the mutual information. With

increasing mutual information the upper bound on the probability of error becomes smaller and smaller,

see, e.g., [30]. The consequence is that the probability of error is expected to decrease with increasing

level of the energy features. This behavior may be observed from an increasing testing accuracy when

a classifier is trained with energy features of increasing levels. However, this behavior can be expected

only at the lower levels: 0, 1, 2, 3, ... Indeed the number of energy features at level “i” increases as 2i

and hence the curse of dimensionality [41] may become dominant at higher levels which implies that the

testing performance decreases again. This behavior is dependent on the particular classifier being used

as well as on the ratio of the number of training patterns “N” to the dimensionality “d” of the patterns:

N/d [42–44]. Next, we will illustrate the increasing classification accuracy with increasing level of

the energy features as expected from the joint Markov blankets explained in previous paragraph. We

consider six different time series classification problems. The corrosion data set consists of 4 classes:

absence of corrosion (197 signals), uniform corrosion (194 signals), pitting (214 signals) and stress

corrosion cracking (205 signals). The signals are acoustic emission signals that were obtained during

each of the corrosion processes. A trained classifier can be used to predict which corrosion process is

active based on the emitted acoustic signals. For a background on the origin of the acoustic activity and

the details of the experiments, the reader is referred to [9,10]. We applied the C-SVC (C-Support Vector

Classifier) [45] using the LIBSVM software [46]. For more background information on SVM’s (Support

Vector Machine) see, e.g., [47–50]. We used a linear kernel and a grid search within the training set, see

also [46], to find the best cost parameter C. In the grid search, we performed a 5-fold cross-validation

and varied the cost parameter from C = 2−5, 2−4, ... 215. The testing accuracy was obtained by means of

a 10-fold cross-validation. We used the 12-tap Coiflet filter to compute the energy features. The same

settings were used for the other time series classification problems, unless mentioned otherwise, with

the exception that we dispose of separate training and test sets. The evolution of the testing accuracy as

a function of the level of the energy features is shown in Figure 6. As predicted from the joint Markov
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blanket theory, at the lower levels the classification accuracy is expected to increase, but starting at level

6 (with 26 energy features) the classification accuracy starts to fluctuate which can be partly attributed to

the curse of dimensionality. In order to deal with the curse of dimensionality, one could further apply a

feature subset selection algorithm to the energy features extracted from the highest frequency resolution.

Figure 6. Evolution of the classification accuracy as a function of the level of the energy

features for the corrosion data set.
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The second time series classification problem is the cylinder-bell-funnel class problem defined by

Saito and Coifman [6]. The cylinder, bell and funnel class are defined respectively as [6]:

c(i) = (6 + η).χ[a,b].(i) + ε(i) for cylinder class (28)

b(i) = (6 + η).χ[a,b].(i− a)/(b− a) + ε(i) for bell class (29)

f(i) = (6 + η).χ[a,b].(b− i)/(b− a) + ε(i) for funnel class (30)

where i = 1,...128, a is an integer-valued uniform random variable in the interval [16, 32], similarly

(b-a) follows an integer-valued uniform distribution on the interval [32, 96], η and ε(i) are standard

normal random variables and χ[a,b] is the characteristic function on the interval [a, b]. We generated

100 training times series for each class and 1000 testing time series for each class. The tendency of

increasing performance with increasing level of energy features is largely confirmed in Figure 7.

The face (all) data set consists of 14 different subjects (classes) with 560 training examples and 1690

testing examples. There are 131 time series points for each subject; we restricted this to the first 128 time

series points in order to have a power of two number of samples before applying the WPD. The increasing

performance with increasing energy levels is confirmed in Figure 8. Note that the performance (75.2%)

at the highest energy level (7) is higher than obtained with the 1-NN Euclidean distance classifier (71.4%,

see [51]), but lower than obtained with time warping (80.2%) reported in [51]. This is a typical data set

to test time warping algorithms.
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Figure 7. Evolution of the classification accuracy as a function of the level of the energy

features for the cylinder-bell-funnel data set.
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Figure 8. Evolution of the classification accuracy as a function of the level of the energy

features for the face data set. Training and testing data set are available [51].
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The gun-point data set consists of 2 classes, with 50 time series in the training set and 150 time series

in the testing set [51]. The time series count 150 samples, these have been zero-padded to 256 samples

before applying the WPD. We used the radial basis function (RBF) kernel in the SVM. In the grid search,

we performed a 5-fold cross-validation in which we varied the cost parameter from C = 2−5, 2−4, ... 215

and varied the kernel parameter from γ = 2−15, 2−14, ... 23. At the highest energy level we achieved a
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performance of 92.0%, see Figure 9, which is higher than obtained with the 1-NN Euclidean distance

classifier (91.3%) and than obtained with time warping (91.3%) [51].

Figure 9. Evolution of the classification accuracy as a function of the level of the energy

features for the gun-point data set. Training and testing data set are available [51].
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The Swedish leaf data set consists of 15 classes and contains 500 time series in the training set and

625 time series in the testing set. Figure 10 shows the increasing classification accuracy with increasing

energy levels. The performance at level 8, 88.6%, is higher than the 78.7% for the 1-NN Euclidean

distance classifier and higher than for time warping 84.3% reported in [51].

Figure 10. Evolution of the classification accuracy as a function of the level of the energy

features for the Swedish leaf data set. Training and testing data set are available [51].
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The adiac data set consists of 37 classes, 390 training time series and 391 testing time series [51].

The time series contain 176 samples and these have been zero-padded to 256 samples before applying

the WPD. The increasing accuracy with increasing energy levels is again confirmed as supported by the

joint Markov blanket theory. The result obtained at level 8 (75.4%) in Figure 11 is higher than obtained

with the 1-NN Euclidean distance classifier (61.1%) and time warping (60.9%) [51].

Figure 11. Evolution of the classification accuracy as a function of the level of the energy

features for the adiac data set. Training and testing data set are available [51].
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5. Conclusions

We have argued that within feature subset selection research, wavelet packet decompositions need

special attention due to the existence of many dependencies between features. We extended Markov

blanket filtering to the theory of joint Markov blankets in Theorem 3.4 by exploiting the link between

the information-theoretic mutual information selection criterion and Markov blanket filtering. Analytical

results on the existence of joint Markov blankets were established in some propositions.

It was shown that joint Markov blankets exist for both the wavelet coefficient features and the

energy features, regardless of the underlying distribution within signals and images. In case of wavelet

coefficient features, it was proven in Proposition 4.4 that all wavelet coefficient features in the child nodes

{Γi+1,2j,m}0≤m≤N/(2i+1)−1 and {Γi+1,2j+1,m}0≤m≤N/(2i+1)−1 of {Γi,j,k}0≤k≤N/(2i)−1 form a joint Markov

blanket. In Proposition 4.5 it was shown that the parent node {Γi−1,j,m}0≤m≤N/(2i−1)−1 forms a joint

Markov blanket for {Γi,2j,k}0≤k≤N/(2i)−1 and {Γi,2j+1,k}0≤k≤N/(2i)−1.

For the energy features it was proven in Proposition 4.7 that the highest resolution features

{Ej
log2(N)}0≤j≤N−1 form a joint Markov blanket for all other energy features. In six experiments it

was confirmed that with increasing level of energy features the classification accuracy is expected to

increase as explained by the joint Markov blanket theory. However, this behavior is observed only for
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the lower levels in the corrosion data set. At higher levels, the curse of dimensionality may reduce the

classification accuracy due to the increasing number of energy features.
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