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Abstract: An investigation of commercial engines with finite capacity low- and high-price 
economic subsystems and a generalized commodity transfer law [ ( )mn P∝ Δ ] in 
commodity flow processes, in which effects of the price elasticities of supply and demand 
are introduced, is presented in this paper. Optimal cycle configurations of commercial 
engines for maximum profit are obtained by applying optimal control theory. In some 
special cases, the eventual state—market equilibrium—is solely determined by the initial 
conditions and the inherent characteristics of two subsystems; while the different ways of 
transfer affect the model in respects of the specific forms of the paths of prices and the 
instantaneous commodity flow, i.e., the optimal configuration. 
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1. Introduction 

In the realm of finite time thermodynamics, two issues are of essential importance—one is to 
determine the extremum of objective function and study the interrelation of different objective 
functions, the other is to determine the optimal thermodynamic process for given optimization 
objectives [1–16]. Curzon and Ahlborn [17] demonstrated that the efficiency at maximum power point 
is 1 /C A L HT Tη = −  for an endoreversible Carnot heat engine operating between two constant 
temperature reservoirs with Newtonian heat transfer law [ ( )q T∝ Δ ]. Procaccia and Ross [18] 
proved that in all acceptable cycles, an endoreversible Carnot cycle with larger compression ratio can 
produce maximum power, i.e., the Curzon-Ahlborn cycle [17] is the optimal configuration with only 
First and Second Law constraints. Ondrechen et al. [19] studied the optimal cycle configuration of an 
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endoreversible heat engine with a finite thermal capacity reservoir and Newtonian heat transfer law for 
maximum work output. Chen et al. [20] investigated effects of heat leakage on the optimal cycle 
configuration of a heat engine with a finite thermal capacity reservoir and Newtonian heat transfer law 
for maximum work output. Linetskii and Tsirlin [21], and Andresen and Gordon [22] considered the 
minimum entropy generation of heat transfer process with Newtonian heat transfer law in heat 
exchanger. Based on reference [22], Badescu [23] optimized the heat transfer process with Newtonian 
heat transfer law for minimum lost available work by choosing the hot bath side as referee 
environment. Xia et al. [24] optimized the heat transfer process with Newtonian heat transfer law in 
heat exchanger for entransy dissipation minimization. Nevertheless, generally, heat transfer does not 
necessarily obey Newtonian heat transfer law, and it may follow other laws. Heat transfer laws not 
only influence the performance of given thermodynamic processes [25–29], but also influence the 
optimal configurations of thermodynamic processes for given optimization objectives. Yan et al. [30] 
investigated the optimal cycle configuration of an endoreversible heat engine with a finite thermal 
capacity reservoir and the linear phenomenological heat transfer law [ 1( )q T −∝ Δ ] for maximum 
work output. Chen et al. [31] investigated effects of heat leakage on the optimal cycle configuration of 
a heat engine with a finite thermal capacity reservoir and the linear phenomenological heat transfer law 
for maximum work output. Some studies on the optimal configuration of variable- temperature heat 
reservoir heat engine for maximum power output were also performed, with the generalized radiative 
heat transfer law [ ( )nq T∝ Δ ] [32], generalized convective heat transfer law [ ( ) mq T∝ Δ ] 
[33], mixed heat resistance [34], and generalized heat transfer law [ ( ( ) )n mq T∝ Δ ] [35], 
respectively. Andresen and Gordon [36] and Badescu [37] further optimized a class of heat transfer 
processes, with generalized radiative heat transfer law for minimum entropy generation [36] and 
minimum lost available work [37], respectively. Based on the generalized heat transfer law 
[ ( ( ) )n mq T∝ Δ ], Chen et al. [38] and Xia et al. [39] derived the optimal temperature 
configurations of heat transfer processes for minimum entropy generation [38] and minimum lost 
available work [39]. Xia et al. [40] further investigated the minimum entransy dissipation of heat 
transfer processes with the generalized radiative heat transfer law. 

In the realm of thermodynamics, a thermodynamic system can be described by extensive variables 
(such as mass, volume, internal energy, and entropy) and intensive variables (such as temperature, and 
pressure); and heat flux is generated by temperature difference. Similarly, in the realm of economics, 
variables can also be classified into extensive ones (such as labor, capital, and good) and intensive 
ones (such as price); moreover, commodity flow is generated by price difference. The striking 
resemblance of thermodynamics and economics has drawn much attention [2,4,6,7,10,41–49]. 
Rozonoer [41–43] studied the analogies between reversible thermodynamics and economics in detail, 
and proposed the term “resource economics” for the analysis of economic system using a 
thermodynamic approach. Based on the analogies between economics and thermodynamics, Saslow 
[45] developed economic analogies to the free energy, Maxwell relations, and the Gibbs-Duhem 
relationship. Salamon et al. [46], Berry et al. [4], Tsirlin [7,10,14], and Mironova et al. [6] addressed 
the research lines and methods of finite-time thermodynamics into economic analyses. They 
considered the finite rate commodity flow, and investigated the minimal expenses of resource 
exchange processes with linear commodity transfer law [ ( )n P∝ Δ ] and maximal profit rates of 
constant flow and reciprocal commercial engines (which are analogous to constant flow and reciprocal 
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heat engines operating between infinite heat reservoirs in thermodynamics). De Vos [48–50] 
investigated the analogies among endoreversible heat engines, chemical engines and commercial 
engines. Based on a generalized commodity transfer law [ ( )mn P∝ Δ ], where the exponent m is 
closely related to the price elasticity of supply and demand, De Vos [49,50] further investigated the 
optimal performances of endoreversible commercial engines. Martinas [51] investigated the 
similarities and differences between irreversible thermodynamics and irreversible economics. Tsirlin 
[52], Tsirlin et al. [53–55], and Amelkin et al. [56] established an analogy between the processes in 
microeconomics and irreversible thermodynamics, and defined a physical quality in economics that 
could be used to measure the irreversibility of commodity exchange processes, i.e., capital dissipation, 
which is analogous to the physical quality of entropy generation in thermodynamics. Amelkin [57] 
investigated limit performances of a class of resource exchange processes in complex open 
microeconomic systems including sequential structure and parallel structure. Tsirlin and Kazakov [58] 
investigated the optimal cycle configuration of a commercial engine with a finite capacity economic 
subsystem and the linear transfer law for maximum profit.  

This paper will further discuss the issue of commercial engine with a more generalized model by 
relaxing the assumption of linear transfer law. Actually, commodity flow in this model is assumed to 
follow the generalized transfer law [ ( )mn P∝ Δ ] [48–50], which in economics represents 
possibility of different preferences. By applying the methods of finite time thermodynamics, this paper 
will provide the optimal cycle configuration of the commercial engine and give a straightforward and 
intuitive demonstration of price convergence in the model.  

2. Model Description 

The model of the commercial engine with finite capacity low-price economic subsystem and finite 
capacity high-price economic subsystem is illustrated in Figure 1. Both commodity flow and money 
flow are present in the model; the former flows from the low-price side to the high-price side and the 
latter flows in the opposite direction. In this paper, commodity flow is considered and it is measured in 
monetary terms.  

Taxation, in particular VAT (value added tax) would give similar loss terms for the monetary flows 
in the opposite direction. It can be seen as the heat leakage in an irreversible heat engine model [28]. In 
the endoreversible commercial engine model discussed herein, it is neglected just as did for the 
endoreversible heat engine model [26,27]. 

The capacity of the low-price economic subsystem is constant 1C . The commodity price in the 
subsystem is P1, whose initial value is given by P1(0) = P10. In addition, the dynamics of P1 satisfies 
the equation: 

1 1 1/ /C d P d t d N d t= −  (1)

which is an analogy to the dynamics of temperature of a heat reservoir with finite thermal capacity. It 
is a reasonable analogy because the behavior of P1 described by Equation (1) is compatible with the 
common assumption in economics of diminishing marginal utility. Similarly, for the finite capacity 
high-price subsystem, the capacity is constant 2C , commodity price is 2P  with initial value  
P2(t1) = P20 (t1 is the initial time for selling) and dynamics:  
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2 2 2/ /C d P d t d N d t= −  (2)

Figure 1. Commercial engine model. 

 
 

To consider the cases where one side or both sides have infinite capacity, one merely needs to 
slightly modify the results of model in this paper by taking the limit C → ∞ . Furthermore, the 
commodity prices of the commercial engine corresponding to low-price and high-price sides are 1 'P  
and 2 'P , respectively, with 1 1 ' 2 ' 2P P P P< < < . 

Different from the linear transfer law ( )n P∝ Δ  adopted in [58], commodity flows in the present 
model are generalized to follow the generalized transfer law ( )mn P∝ Δ [48–50]: 

1 1 2 2
1 1 1 ' 1 1 ' 1 1 2 2 ' 2 2 2 2 ' 2( , ) ( ) s g n ( ) , ( , ) ( ) s g n ( )m m m mn P P P P m n P P P P mα α= − = − (3)

where 1 1 1 '( , )n P P  and 2 2 ' 2( , )n P P  are commodity flows corresponding to low-price and high-
price sides of the commercial engine, 1 ( )tα  and 2 ( )tα  are the corresponding transfer coefficients, 
and exponents 1m  and 2m  are indicators of price elasticity of supply or demand. To elucidate, 
elasticity is a measure of the responsiveness of supply or demand to price changes, mathematically: 

1 1 2 2
1 2

1' 1' 2 ' 2 '

/ /,
/ /

dn n dn n
dP P dP P

ε ε= = −  (4)

Substituting Equation (3) into Equation (4) yields:  

1 2

1 1 2 2

1 1' 2 2 '
1 2

1' 1 2 2 '

,
m m

m m m m

m P m P
P P P P

ε ε= =
− −  (5)

A one-to-one relationship between the exponent and elasticity is established above. It should be 
noted that m1 and m2 don’t necessarily have to be the same, because different m’s may represent 
different preferences of suppliers and demanders.  

The amount of commodity exchange in the low-price side and high price side are denoted as �N1 

Finite capacity high-price economic 
subsystem 2C , 2P  

Commercial engine I  

2 2
2 2 2 ' 2 2 2 ' 2( , ) ( ) sgn( )m mn P P P P mα= −  

1 1
1 1 1' 1 1 1 1( , ) ( ) sgn( )m mn P P P P mα ′= −  

1P′  

2P ′

Finite capacity low-price economic 
subsystem 1C , 1P  
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and �N2, respectively. They are given by: 

1 1
1 1 1 1' 1 1' 1 10 0

( , ) ( )[ ( ) ( )]sgn( )m mN n P P dt t P t P t m dt
τ τ

αΔ = = −� �  (6)

2 2
2 2 2' 2 2 2 2' 20 0

( , ) ( )[ ( )]sgn( )m mN n P P dt t P P t m dt
τ τ

αΔ = = −� � (7)

where τ is the given cycle period. Additionally, market equilibrium condition requires that:  

1 2N N NΔ = Δ = Δ  (8)

It is further assumed that purchase and selling are separate and successive processes. At time 
t ( 10 t t< < ), the commercial engine purchases commodity from the low-price subsystem; and at 
time t ( 1t t τ< < ), the commercial engine sells commodity to the high-price subsystem. 
Therefore, 1 ( )tα  and 2 ( )tα  have the following forms: 

1 1 1
1 2

1 2 1

, 0 0, 0
( ) , ( )

0, ,
t t t t

t t
t t t t

α
α α

τ α τ
≤ ≤ ≤ ≤� �

= =� �≤ ≤ ≤ ≤� �  
(9)

where �1 and �2 are positive constants. 
Finally, profit gained by the commercial engine is given by: 

2' 2 2' 2 1' 1 1 1'0
[ ( ) ( , ) ( ) ( , )]I P t n P P P t n P P dt

τ
= −�  (10)

3. Optimization 

The optimization problem for the commercial engine is to maximize its profit with the constraints 
of market equilibrium conditions and the predetermined dynamics of prices in the two economic 
subsystems. Mathematically, the problem amounts to determine the optimal paths of P1' and P2', the 
optimal values of t1 and �N to maximize Equation (10) subject to Equations (1), (2) and (8). 

Following the method adopted in [58], optimization problem is decomposed into two sub-problems. 

3.1. Problem 1 

1
1 1

1 1' 1 1 1'0
max ( )sgn( )

t m mI P P m P dtα− = − −�  (11)

s.t 
1 1

1 1 1 ' 1 1 1/ ( ) s g n ( ) /m md P d t P P m Cα= − (12)
1

1 1
1 1' 1 1 10
( )sgn( )

t m mP P m dt N Nα − = Δ = Δ�  (13)

Equation (12) is obtained by substituting Equation (6) into Equation (1). Substituting Equation (12) 
into Equations (11) and (13) yields: 

1 1

10

( )

1 1 ' 1m ax
P t

P
I C P dP− = −�  (14)

1 1

10

( )

1 1

P t

P
C dP N= Δ�  (15)
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Equation (12) itself can be transformed to: 

1 1

1 110

( ) 1
1 1

1 1 ' 1 1( ) sgn( )
P t

m mP

C dP t
P P mα

=
−�  (16)

The problem now becomes maximizing Equation (14) subject to Equations (15) and (16). The 
corresponding modified Lagrangian function is given by: 

1 1

2
1 1 1' 1

1 1' 1 1( ) sgn( )m mL C P
P P m

λλ
α

� �
= − + +� 	−
 �

 (17)

where 1λ  and 1λ  are Lagrangian multipliers. 
First order condition with respect to P1� yields  

1 1 1( 1) / 2
1 ' 1 1 1 '

m m mP P k P −− =  (18)

where k1 is a constant to be determined. 
Combining Equation (18) with Equation (12) yields:  

1 1 1 1 1

1 1

( 1) / 2 ( 1) / 2 ( 1) /
1 ' 1 1 1 1 1 ' 1 ' 1 1 '

( 1) / 2
1 1 1' 1 1 1 '

sgn( ) ( )
( 1) / 2

m m m m m

m m

dP m k m P P k P
dt C m P m k P

α + − −

−

−
= ⋅

− −  (19)

The dynamics of P1� are uniquely characterized by Equation (19), which, combined with  
Equations (18), (13) and the initial value of P1, determines the paths of both P1� and P1. 

3.2. Problem 2 

2 2

1
2 2 2 ' 2 2 'max ( ) sgn( )m m

t
I P P m P dt

τ
α+ = −�  (20)

s.t. 
1 1

2 2 2 2 2 2/ ( ) s g n ( ) /m md P d t P P m Cα ′= − − (21)

2 2

1
2 2 2 ' 2 2( ) sgn( )m m

t
P P m dt N N

τ
α − = Δ = Δ� (22)

Equation (21) is obtained by substituting Equation (7) into Equation (2). Substituting Equation (21) 
into Equations (20) and (22) yields: 

2

20

( )

2 2 ' 2max
P

P
I C P dP

τ+ = − �  (23)

2

20

( )

2 2

P

P
C dP N

τ
− = Δ� (24)

Equation (21) itself can be transformed to:  

2

2 220

( ) 2
2 1

2 2 2 2( ) sgn( )
P

m mP

C dP t
P P m

τ
τ

α ′

− = −
−�  (25)

The problem now becomes maximizing Equation (23) subject to Equations (24) and (25). The 
corresponding modified Lagrangian function is given by: 

2 2

4
2 2 2 ' 3

2 2 2 2

[ ]
( ) sgn( )m mL C P
P P m

λλ
α ′

= − + +
−  (26)
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where �3 and �4 are Lagrangian multipliers. First order condition with respect to P2� yields:  
2 2 2( 1) / 2

2 2 2 2 '
m m mP P k P −

′− =  (27)

where k2 is a constant to be determined. 
Combining Equation (27) with Equation (21) yields:  

1 2 2 1 1

2 2

( 1) / 2 ( 1) / 2 ( 1) /
2 ' 2 2 2 2 2 ' 2 ' 2 2 '

( 1) / 2
2 2 2 ' 2 2 2 '

sgn( ) ( )
( 1) / 2

m m m m m

m m

dP m k m P P k P
dt C m P m k P

α + − −

−

+
= − ⋅

+ −  (28)

The dynamics of P2� are uniquely characterized by Equation (28), which, combined with  
Equations (22), (27) and the initial value of P2, determines the paths of both P2� and P2. In sum, the 
optimal paths of P1� and P2� are described by Equations (19) and (28). However, analytical solutions to 
these differential equations exist only for a few exponents such as 1 and �1. For other exponents which 
do not admit analytical solutions, numerical method should be adopted. 

To further determine the optimal values of �N, t1, and I, one merely needs to substitute the paths of 
P1�, P1, P2� and P2 into Equation (10) and solve the system of first order conditions. 

4. Special case with 1 1m =  and 2 1m =

4.1. Analytical Solutions 

For problem 1, Equations (19), (18) and (13) are simplified to 1' 1 1

1

dP k
dt C

α
= , 1 1 1P P k′ − = and 

1

1 1 10
( )

t
P P dt Nα ′ − = Δ� , respectively, in this case. Solving the system gives the paths of P1 and P1�, 

respectively: 

1 1 1 1 0( / )P N C t t P= Δ +  1( 0 )t t≤ ≤  (29)

1 1 1 1 0 1 1( / ) /P N C t t P N tα′ = Δ + + Δ  1( 0 )t t≤ ≤ (30)

For problem 2, Equations (28), (27) and (22) are simplified to 
2 ' 2 2

2

dP k
dt C

α
= , 2 ' 2 2P P k− = and 

1
2 2 2( )

t
P P dt N

τ
α ′− = Δ� , respectively, in this case. Solving the system gives the paths of  

P2 and P2�, respectively: 

2 2 1 1 2 0[ / ( ) ] ( )P N C t t t Pτ= − Δ − − +  1( )t t τ≤ ≤  (31)

2 2 1 1 2 0 2 1[ / ( ) ] ( ) / ( )P N C t t t P N tτ α τ′ = − Δ − − + − Δ −  1( )t t τ≤ ≤ (32)

Substituting Equations (29), (30), (31) and (32) into Equation (10) yields: 

2 0 1 0 2 1 2 1 1 1( ) [ (1 / 2 1 / 2 1 / ( ) 1 / ]I P P N C C t t Nα τ α= − Δ − + + − + Δ (33)

First order condition �I / �t1 = 0 yields: 
2*

1
1 2

t
α τ

α α
=

+
 (34)
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Substituting Equation (29) into the First order condition �I / �(�N) = 0 yields:  

* 20 10
2

1 2 1 2 1 2

( )
(1 / 1 / ) 2( ) / ( )

P P
N

C C
τ

τ α α α α
−

Δ =
+ + +

 (35)

Therefore: 
2

20 10
max 2

1 2 1 2 1 2

( )
2 (1 / 1 / ) 4( ) / ( )

P P
I

C C
τ

τ α α α α
−

=
+ + +

 (36)

Substituting Equations (34) and (35) into Equations (29), (30), (31) and (32) yields, respectively: 

20 10 1 2*
1 102

1 2 1 2 1 2 1 2

( )( )
[ (1/ 1/ ) 2( ) / ( )]

P P
P t P

C C C
α α

α τ α α α α
− +

= +
+ + +  1( 0 )t t≤ ≤  (37)

20 10 1 2* 1
1 102

11 2 1 2 1 2 1 2

( )( )
( )

[ (1/ 1 / ) 2( ) / ( )]
P P CP t P

C C C
α α

αα τ α α α α′

− +
= + +

+ + +  1( 0 )t t≤ ≤
 

(38)

20 10 1 2 2*
2 202

2 1 1 2 1 2 1 2 1 2

( )( )
( )

[ (1 / 1 / ) 2( ) / ( )]
P P

P t P
C C C

α α α τ
α τ α α α α α α

− − +
= − +

+ + + +
 1( )t t τ≤ ≤  (39)

20 10 1 2 2* 2
2 202

22 1 1 2 1 2 1 2 1 2

( )( )
( )

[ (1 / 1 / ) 2( ) / ( )]
P P CP t P

C C C
α α α τ

αα τ α α α α α α′

− − +
= − + +

+ + + +
 1( )t t τ≤ ≤  (40)

4.2. Results and Discussion 

It is revealed above that both *
1P  and *

1P ′  increase linearly in the time, while both *
2P  and *

2P ′  
decrease linearly in the time; commodity flows 1 1 1 '( , )n P P  and 2 2 ' 2( , )n P P  are constants over 
time; the optimal exchange time *

1t  is determined only by ratio of the transfer coefficients 1α   
and 2α . 

The most enlightening implication of the result is the convergence of the eventual values of *
1P , 

*
1P ′ , *

2P and *
2P ′ . Mathematically: 

* * * * 1 10 2 20
1 1 1 1 1 1 2

1 2

lim P t lim P t lim P t lim P
C C P

C Cτ τ τ τ
τ′ ′ ′→ ∞ → ∞ → ∞ → ∞

+
= =

+  
(41)

The common limit is exactly equilibrium price which completely clears the market, i.e.: 

1 10 2 20

1 2
e

C C P
P

C C
+

=
+  

(42)

which is a weighted average of the initial prices of two subsystems, and the weights are the 
corresponding capacities. Larger capacity indicates larger market power, therefore equilibrium price is 
more biased to the initial price of the party with larger capacity. Especially, if one side has infinite 
capacity, the equilibrium price will be the same as its initial price. 

Additionally, The convergence of P1�* and P2�* also indicates that the instantaneous profit gained by 
the commercial engine diminishes to 0 as the cycle period approaches infinity, which further indicates 
that the total profit earned cannot be infinite. Equation (36) serves as an apt substantiation of this point: 
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2
20 10

max
1 2

( )
lim

2(1 / 1 / )
P P

I
C Cτ → ∞

−
=

+  
(43)

Finally, price convergence denies long-existing price discrepancy in a pure exchange market without 
exogenous interventions. Another simple but profound implication is that the profit-maximizing 
behavior of a commercial engine induces an optimal outcome for the market. In other words, the 
commercial engine, motivated by its own interest, acts as catalyst in the process of reducing price 
discrepancy and reaching market equilibrium. However, its existence cannot be permanent since its 
profit diminishes to 0 with time. In this perspective, the commercial engine can be viewed as an 
arbitrager whose profit-seeking action results in price parity; and the whole model simulates the 
dynamic process of the determination of equilibrium price. 

5. Special Case with 1 1m = −  and 2 1m = −

5.1. Analytical Solutions 

For problem 1, Equations (19), (18) and (13) are simplified to 11' 1 1 1
1

1

( 1)dP k k P
dt C

α −
′

−
= , 

1 1 1
1 ' 1 1 1 'P P k P− − −− =  and 

1 1 1
1 1' 10
( )

t
P P dt Nα − −− − = Δ� , respectively. Solving the system gives the paths 

of P1 and P1�, respectively: 
2 2 2

1 10 1 10
1

1

( 2 )Nt N CP t C t P
P

Ct
Δ Δ + +

= (44)

2 2 2
1 1 10 1 10

1 2
1 1 10

2 ( 2 )
2 ( 2 )

Nt N CP t C t P
P

C t N NCP
α

α′

Δ Δ + +
=

− Δ + Δ  
(45)

For problem 2, Equations (28), (27) and (22) are simplified to
 

12 ' 1 2 2
2

2

( 1)dP k k P
dt C

α −
′

+
= , 

1 1 1
2 2 2 2 'P P k P− − −

′− =  and 
1

1 1
1 2 2( )

t
P P dt N

τ
α − −

′− − = Δ� , respectively. Solving the system gives the paths 

of P2 and P2�, respectively: 
22 2 2

2 20 1 1 2 1 20
2

2 1

( 2 )( )( ) ( )
( )

N NC P t t t C t P
P

C t
τ τ

τ
Δ − Δ − − + −

=
−  

(46)

22 2 2
2 2 20 1 1 2 1 20

2 2
2 20 2 2 1

2 ( 2 )( )( ) ( )
2 2 ( )

N NC P t t t C t P
P

N NC P C t
α τ τ

α τ′

Δ − Δ − − + −
=

−Δ + Δ + −  
(47)

Substituting Equations (44), (45), (46) and (47) into Equation (10) yields: 
2 2

2 1 2 20 1 1 1 10
2 2

2 20 2 2 1 1 10 1 1 1

( )( 2 ) ( 2 )
2 2 ( ) 2 2

t N N C P t N N C P
I

N NC P C t N NC P C t
α τ α

α τ α
− Δ − Δ Δ + Δ

= +
Δ − Δ − − Δ + Δ −  

(48)

The optimal *
1t  and *NΔ are jointly determined by first order conditions 1/ 0I t∂ ∂ =  and 

/ ( ) 0I N∂ ∂ Δ = . However, the system of polynomials cannot be solved explicitly.  
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5.2. Results and Discussion  

This section focuses on discussing the behaviors of *
1P , *

1P ′ , *
2P and *

2P ′  as τ →∞ . From 
Equations (44) and (46) one can obtain: 

* *
* 1 10

1 1 10
1 1

( )
N C P NP t P

C C
Δ + Δ= = + (49)

* *
* 2 20

2 20
2 2

( )
N C P NP P

C C
τ − Δ + −Δ= = +

 
(50)

They depend on �N* which cannot be solved explicitly. 
To proceed, first suppose there does exist an optimal solution where *

1P , *
1P ′ , *

2P and *
2P ′ converge 

eventually. Then �N* is bounded; and thus as τ →∞ , Equation (48) becomes: 
2 2

2 20 1 10

2 1

2 2
lim

2 2
N NC P N NC P

I
C Cτ → ∞

Δ − Δ Δ + Δ
= +

− −  
(51)

First order condition lim / ( ) 0I N
τ →∞

∂ ∂ Δ =  yields: 

* 20 10

1 2

lim
1 / 1 /

P P
N

C Cτ → ∞

−
Δ =

+  
(52)

To check whether the �N* determined by Equation (52) supports such an optimal solution, 
substitute Equation (52) into Equations (49) and (50): 

* * 1 10 2 20
1 1 2

1 2

lim P t lim P
C C P

C Cτ τ
τ

→ ∞ → ∞

+
=

+  
(53)

Since 1 1 ' 2 ' 2P P P P< < < , there must be:  

* * * * 1 10 2 20
1 1 1 1 1 1 2

1 2

lim P t lim P t lim P t lim Pe
C C P

P
C Cτ τ τ τ

τ′ ′ ′→ ∞ → ∞ → ∞ → ∞

+
= = =

+  
(54)

It is revealed that all four prices share common limit; therefore convergence of prices is actually an 
optimal solution to this problem. The corresponding maximum profit is given by: 

2
20 10

max
1 2

( )
lim

2(1 / 1 / )
P P

I
C Cτ → ∞

−
=

+  
(55)

Comparing the results of this case with 1 2 1m m= = −  with those of the previous case with 
1 2 1m m= = , one finds that the equilibrium price eP , the optimal amount of commodity exchange 

*NΔ , and the maximum profit m a xI
 
are the same. It should be noted that this phenomenon is not a 

coincidence. Actually, in this model, the eventual state—market equilibrium—is solely determined by 
the initial conditions and the inherent characteristics of two subsystems; while the different ways of 
transfer (reflected by different values of 1m  and 2m ) affect the model in respects of the specific forms 
of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration. 
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6. Conclusions 

Commercial engines with finite capacity low-price economic subsystems and a generalized 
commodity transfer law [ ( )mn P∝ Δ ] during commodity flow processes, in which the effects of the 
price elasticities of supply and demand are introduced, are investigated in this paper. The optimal cycle 
configurations of the commercial engines for maximum profit are obtained by applying optimal 
control theory. The optimal cycle configuration of the commercial engine with the linear transfer law 
[ n P∝ Δ ] is that both the price estimation of finite capacity low-price economic subsystem and the 
commodity-buying price of the commercial engine change with time linearly and the difference 
between them is a constant, and the selling price of the commercial engine is a constant when it 
exchanges commodity with the infinite capacity high-price economic subsystem. The optimal cycle 
configuration of the commercial engine with the transfer law [ 1( )n P −∝ Δ ] is that both the price 
estimation of finite capacity low-price economic subsystem and the commodity-buying price of the 
commercial engine change with time non-linearly and the ratio between them is a constant, and the 
selling price of the commercial engine is a constant when it exchanges commodity with the infinite 
capacity high-price economic subsystem. The research in this paper further extends the research lines 
and methods of finite time thermodynamics to applications in fields of non-conventional 
thermodynamics. It is worthwhile to note that several authors [60–64] have criticized finite time 
thermodynamics (emphasis on the endoreversible model and the corresponding study results) in recent 
years. The responses to those articles can be seen in [65–69], especially, Chen et al. [67]. 
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