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Abstract: The classical information-theoretic measures such as the entropy and the mutual 

information (MI) are widely applicable to many areas in science and engineering. Csiszar 

generalized the entropy and the MI by using the convex functions. Recently, we proposed 

the grid occupancy (GO) and the quasientropy (QE) as measures of independence. The QE 

explicitly includes a convex function in its definition, while the expectation of GO is a 

subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, 

and Csiszar’s generalized mutual information (GMI). A quality factor (QF) is proposed to 

quantify the sharpness of their minima. Using the QF, it is shown that these measures can 

have sharper minima than the classical MI. Besides, a recursive algorithm for computing 

GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is 

proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is 

shown that these measures are good criteria for determining the optimum delay in strange 

attractor reconstruction. 

Keywords: entropy; mutual information; convex function; quality factor; strange attractor; 

delay-coordinate 
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1. Introduction 

The advent of information theory was hallmarked by Shannon’s seminal paper [1]. In that paper, 

some fundamental measures of information were established, among which is the entropy. The entropy 

is a concept that originally resided in thermodynamics and statistical physics as a measure of the 

degree of disorder [2]. For a different purpose, Shannon used the entropy to measure the amount of 

information. He also proposed the prototype of mutual information (MI) to measure the amount of 

information transmitted through a communication channel. The Shannon MI can be viewed as the 

Kullback divergence (also known as the relative entropy) between the joint probability density 

function (PDF) and the product of marginal PDFs. It reaches its minimum, zero, if and only if the 

variables are independent. Hence MI can be viewed as a measure of independence. Since the 1960s, 

generalizations of the Shannon entropy and MI have attracted the attention of many researchers, 

yielding various forms of non-Shannon information-theoretic measures [2–9]. For example, Renyi 

suggested some properties that the entropy should satisfy, such as the additivity, and proposed a class 

of entropies with a parameter. The Shannon entropy is the limit of these entropies when the parameter 

approaches 1 [3]. Harvrda and Charvat proposed a generalization of the Shannon entropy that is 

different from the Renyi’s entropy, which is called structural -entropy [4]. Using convex functions, 

Csiszar proposed the f-divergence [5], which is a generalization of the relative entropy. A generalized 

version of Shannon MI, which is referred to as generalized mutual information (GMI) in this paper, 

can be readily derived from f-divergence [5]. Tsallis postulated a generalized form of entropy [6]. 

Kapur also gave many definitions of entropies [7]. More recently, we proposed the grid occupancy 

(GO) [8] and the quasientropy (QE) [9] as measures of independence. The QE, which explicitly 

includes a convex function, is a general enough definition that includes the -entropy, Tsallis entropy, 

and some of the Kapur’s entropies as special cases. For the GO, it can be shown that its expectation is 

a subclass of QE [8]. 

As we can see, many information-theoretic measures involve convex functions. Thus, it is 

interesting to pose the question that how different convex functions affect the behavior of the related 

measures. Previous studies were usually carried out on a restricted type of convex function. For 

example, Tsallis studied the power function [6]. In this paper, however, we study the effect of 

arbitrary convex functions. We propose a quality factor (QF) to quantify the sharpness of the minima 

of GO, QE, and GMI. We show that the order of QF with respect to l, the number of quantization 

levels, correctly predicts the sharpness of minima. Especially, some convex functions yield QFs with 

higher order than that of the minus Shannon entropy and MI, which implies that the related measures 

have sharper minima than the minus Shannon entropy and MI do. 

Nowadays, applications of entropy and information theory have extended, far beyond the original 

scope of communication theory, to a wide variety of fields such as statistical inference, non-parametric 

density estimation, time series analysis, pattern recognition, biological, ecological and medical 

modeling and so on [10–15]. In this paper, besides the above theoretical results, we also deal with a 

specific application of the independence measures to chaotic time series analysis, the background of 

which is described as follows. In many cases, the commonly seen one-dimensional scalar signals or 

time series are observations of a certain variable of a multivariate dynamical system. An interesting 

property of dynamical systems is that their multivariate behavior can be approximately “reconstructed” 
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from observations of just one variable by a method called state space (phase portrait) reconstruction. 

For chaotic systems, this method is also termed strange attractor reconstruction, which has become a 

fundamental approach in chaotic signal analysis. Basic reconstruction can be done using delay 

coordinates [16]. Namely, we take the current observed value of the time series and the values after 

equally spaced time lags  , 2 , 3 … to obtain “observations” of several reconstructed variables 

where   is the delay. If   is not appropriate, the effect of reconstruction might not be good. So we 

should consider how to choose a proper delay. Since reconstruction aims at releasing the information 

of the whole system “condensed” in one variable, generally the reconstructed variables should be as 

independent as possible. Thus, a measure of independence can be used as a criterion for choosing  . 

For example, Fraser and Swinney used the first minimum of the Shannon MI for choosing delay 

according to Shaw’s suggestion. They proposed a recursive algorithm for computing Shannon MI, and 

they showed that the MI is actually more advantageous than the correlation function that only takes 

into account second order dependence [17]. In this paper, we shall develop a recursive algorithm for 

computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing Shannon 

MI. In addition, we are going to show that GO, QE, and GMI are even better criteria for choosing   

than the Shannon MI. It should be noted that this paper is by no means a thorough treatment of all the 

measures of independence, there are many not covered such as the Hilbert-Schmidt independence 

criterion proposed by Gretton et al. [18] and the distance correlation proposed by Szekely et al. [19]. 

The rest of the paper is organized as follows. In Section 2, we first give the definition of 

quasientropy (QE), and then derive the quality factor (QF) of QE. In Section 3, we illustrate the 

principle of grid occupancy (GO), introduce the relation between GO and QE, and define the QF of 

GO based on the QF of QE. Section 4 reveals the relation between QE and the generalized mutual 

information (GMI), and deduces the QF of GMI, also from the QF of QE. The recursive algorithm for 

computing GMI is mentioned in Section 4, while the details are placed in the Appendix for better 

organization of the paper. Section 5 is devoted to a study of the order of QF with respect to l, the 

number of quantization levels, elucidating the cases when this order is higher than, equal to, and lower 

than that of the MI’s. These theoretical results are verified by the numerical experiments on delay 

reconstruction of the Rössler and the Lorenz attractors presented in Section 6. Finally, Section 7 

concludes the paper. In the following, the word “entropy,” when appears alone, refers to the Shannon 

entropy and, the phrase “MI,” when appears alone, refers to the Shannon MI, as is the common usage. 

2. Quality Factor (QF) of Quasientropy (QE) 

2.1. Quasientropy 

Let us consider the problem of how to measure the independence of several variables. We denote by 

 rq   the cumulative distribution function (CDF) of variable r .      Prob  
u

r rq u r u p v dv


    , 

where  Prob A  denotes the probability that event A occurs, and  rp   is the probability density 

function (PDF) of r . Without loss of generality, consider two continuous variables 1r  and 2r . In the 

past one or two decades, the study of copulas has become a blooming field of statistical research [20]. 

Copula is the joint CDF of the transformed variables by their respective CDFs. The rationale of the 

study of copulas is that, to study the relation between two or more variables, we should nullify the 
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effect of their marginal distributions and concentrate on their joint distribution. Based on this principle, 
we transform 1r  and 2r  by their respective CDFs as follows: 

 
11 1rz q r ,            

22 2rz q r      (1) 

then,      1 2, 0,1 0,1z z   , and we have [8,9]: 

Lemma 1. 1r  and 2r  are independent if and only if  1 2,z z  is uniformly distributed in    0,1 0,1 . 

Lemma 1 shows that we can measure the independence of 1r  and 2r  by measuring the uniformity of 

the distribution of  1 2,z z  in    0,1 0,1 . To this end, let us partition the region    0,1 0,1  into an 

l l  uniform grid, and denote by  ,i j  the  ,i j th square in the grid: 

   1 1
, , ,

i i j j
i j

l l l l
            

,        , 1, , 1, ,i j l l    (2) 

Denote by  ,p i j  the probability that  1 2,z z  belongs to  ,i j , i.e., 

       1 2, Prob  , ,  p i j z z i j   (3) 

then, the QE for measuring the independence of 1r  and 2r  is defined as [9]: 

     1 2
1 1

, ,
l l

i j

r r f p i j
 

  (4) 

where  f   is a differentiable strictly convex function on  0,1 l . Clearly, when   logf u u u , QE is 

nothing but the entropy of  ,p i j  up to a minus sign. When      21 1qf u l u q   , up to a 

minus sign, QE becomes the Tsallis entropy [6] of  ,p i j . 

Due to the Jensen’s inequality, we have [9]: 

   2
1 2 2

1
,r r l f

l
    

 
 (5) 

with equality if and only if  ,p i j  is uniform in    1, , 1, ,l l  . 

If 1r  and 2r  are independent, then  1 2,z z  is uniform in    0,1 0,1  and, thus,  ,p i j  is uniform in 

   1, , 1, ,l l  . Then the equality in (5) holds and  1 2,r r  reaches its minimum  2 21l f l . 

Conversely, if 1r  and 2r  are not independent, then there exists 0l  such that for any 0l l ,  1 2,r r  

cannot reach its minimum [9]. Thus, for a large enough l , the minimal  1 2,r r  implies independent 

1r  and 2r . 

2.2. Quality Factor (QF) of QE 

There are infinitely many strictly convex functions. Let us consider the effect of different convex 

functions on the performance of QE. In [9], we proved that: 

      2
1 2

1
, 0r r l l f lf

l
      

 
 (6) 
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In order to better differentiate between independence and “near” independence, it is preferable that QE 

have high sensitivity around its minimum to the variance of the uniformity of probability density. 
Thus, we write  ,p i j  in the following form: 

    2

1
, ,p i j p i j

l
   ,         , 1, , 1, ,i j l l    (7) 

Then, the Taylor expansion of (4) gives [9]: 

     22
1 2 2 2

1 1

1 1 1
, ,

2

l l

i j

r r l f f p i j
l l


 

              
  (8) 

Based on (5), (6), and (8), we can define the quality factor (QF) of QE as: 

   
   

2

2 2
2

1

1 1
0

f
l

Q f u
l l f lf l f

l l



  
 
        
   

 (9) 

where, the numerator is twice the amplification rate of the variance between  ,p i j  and the uniform 

probability distribution in (8), and the denominator is the maximum dynamic range of  1 2,r r  

derived from (6) and (5). The greater the QF, the more sensitive is QE to the change in the uniformity 

of probability distribution around its minimum and, thus, the sharper is the shape of the minimum 

of QE. 

An illustration of the QF of QE is shown in Figure 1. Suppose that QE is plotted versus 

  2

1 1

,
l l

i j

p i j
 

   , and   is the angle that is tangent to the curve of QE at the minimum of QE, then: 

 
2 tan

max min
Q


 





 (10) 

Clearly, when Q  is large (small), QE is sharp (blunt) around its minimum. 

Figure 1. Illustration of quality factor (QF) of QE. 
 


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3. QF of Grid Occupancy (GO) 

In [8], we described an interesting phenomenon that independence can be measured by simply 
counting the number of occupied squares: Given N  realizations (observed points) of  1 2,r r  denoted 

by     1 2,r t r t , 1, ,t N  , where 1N  , let: 

     
11 1rz t q r t ,       

22 2rz t q r t ,     1, ,t N   (11) 

and let: 

         0 0 1 0 2 01     if  ,  1   s.t.  z , , ,
,

0                          otherwise,            

t t N t z t i j
m i j

     


 (12) 

where  ,i j  is as defined in (2), and      , 1, , 1, ,i j l l   . Then, the independence measure GO 

is defined as: 

  
 

1 1
1 2 2

,

,

l l

i j

m i j

r r
l

   


 (13) 

A visual illustration of GO is depicted in Figure 2. Figures 2a and 2b plot 500 observed points of 

two independent variables  1 2,r r  and two dependent variables  # #
1 2,r r , respectively. Figures 2c  

and 2d plot 500 observed points of  1 2,z z  and  # #
1 2,z z , respectively, where  

11 1rz q r ,  
22 2rz q r , 

 #
1

# #
1 1r

z q r , and  #
2

# #
2 2r

z q r . It is easy to see that the points in Figure 2c are uniformly distributed 

whereas those in Figure 2d are not. Partition the region    0,1 0,1  in Figures 2c and 2d into a grid of 

l l , say, 10 10 , same-sized squares. A square is said to be occupied if there is at least one point in it. 

Then, being uniform is the most efficient way to occupy maximum number of squares, and this is 

confirmed in Figures 2e and 2f where the situations of Figures 2c and 2d are shown, respectively. (The 

occupied squares are shaded.) The grid occupancy (GO) defined in (13) is exactly minus the ratio of 

occupied squares. As Figures 2e and 2f clearly show,    # #
1 2 1 2, 0.99 , 0.89r r r r      . Therefore, 

1r  and 2r  are more independent than #
1r  and #

2r . 

Indeed, we can prove that the expectation of GO is a subclass of QE [8]: 

      
   

2

1 2 1 2 1 1
, , N

u
f u

l

E r r r r 
 


    (14) 

where  E   denotes the mathematical expectation. Therefore, we can define the QF of GO as: 

 
 

2

1 1
N

u
Q Q

l 

  
  

 
 

 
2

2

2

1
1 1

1 1
1 1 1 1

N

N N

N N
l

l l
l l


   
 

               
       

 (15) 
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Figure 2. Illustration of grid occupancy (GO). (a) 1r  and 2r  are independent. (b) #
1r  and #

2r  

are dependent. (c)  1 2,z z  transformed from  1 2,r r  is uniform. (d)  # #
1 2,z z  transformed 

from  # #
1 2,r r  is not uniform. (e)  1 2, 0.99r r   . (f)  # #

1 2, 0.89r r   . 
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(e) (f) 

 
Since Q  is not easy to be analyzed, we study it using numerical methods as shown in Figure 3. We 

vary l  from 2 to 1,000. For each l , find the N , denoted maxN , that maximizes Q  to ,maxQ . In  

Figure 3, we can find: 

 
2

max

5

4
N l

   
 

,  
2

2
,max

4

5
Q l l

   
 

  (16) 
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Figure 3. Numerical study of QF of GO. Left: maxN  versus l . Right: ,maxQ  versus l . 
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4. QF of Generalized Mutual Information (GMI) 

4.1. QF of GMI 

Let us now consider the generalized mutual information (GMI) proposed by Csiszar [5]: 

        
   

1 2

1 2

1 2

1 2

,
, r r

r r
r r

p u v
r r p u p v f dudv

p u p v


 

 

 
   

 
   (17) 

where  f   is strictly convex on  0, . Clearly, when   logf u u u , GMI reduces to the classical MI: 

      
   

1 2

1 2

1 2

1 2

,
, , log r r

r r
r r

p u v
I r r p u v dudv

p u p v

 

 
    (18) 

Like MI, GMI is invariant under componentwise invertible transformations [21]. Therefore: 

       
1 2

1 1

1 2 1 2 0 0
, , ,z zr r z z f p u v dudv      (19) 

where 1z  and 2z  are as defined in (1), and we have utilized the following facts [9]: 

  
1

1zp u  ,  0,1u  ,      
2

1zp v  ,  0,1v   (20) 

It is easy to verify that: 

 
      

1 2

1 1

1 20 0
1 1

, 1 1
lim , ,

1 1

l l

z z
l

i j

p i j
f f p u v dudv r r

l l
l l




 

 
 

    
 
 

    (21) 

where  ,p i j  is as defined in (3). As we are mainly concerned about the situation when l  is fairly 

large, according to (21), we can define the QF of GMI as: 

    2

2

f ul
Q f u Q

l 

 
 
 
 

 
       

3 1

1 0 1

l f

l f f l lf




  
   (22) 
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We have developed a recursive algorithm for computing GMI. The algorithm is described in the 

Appendix, where some related issues are also addressed. 

4.2. Existence of GMI 

From (19),   
1 2

,z zf p u v  being continuous on    0,1 0,1  is a sufficient condition to ensure the 

existence of GMI. Sometimes, however,   
1 2

,z zf p u v  might not be continuous, so let us investigate 

the existence of GMI in more depth. As already done in (22), the 
 

1 1

, 1 1
1 1

l l

i j

p i j
f

l l
l l

 

 
 

  
 
 

  in (21) can be 

treated as the QE with convex function  2
2

1
f ul

l
. Thus, (5) and (6) can be applied to this QE, 

which yield: 

 
     2 2 2 2 2

2 2 2 2
1 1

,1 1 1 1 1 1 1
0

1 1

l l

i j

p i j
l f l f l l f l l f l

l l l l l l l
l l

 

 
                 

    
 

  (23) 

Namely, 

        
1 1

, 1 1 1
1 0 1

1 1

l l

i j

p i j f l
f f f

l l l l
l l

 

 
           

  
 

  (24) 

Taking the limit as l   and applying (21), we get: 

        
1 21 , 0 lim

l

f l
f r r f

l



    (25) 

Equation (25) gives the lower and upper bounds of GMI. The lower bound is reached when 1r  and 2r  

are independent [5]. The upper bound is reached when, for example, 1 2r r , which is one of the most 

dependent cases. When   logf u u u , (24) gives the lower and upper bounds of Shannon MI of  

l -level uniformly quantized versions of 1z  and 2z , denoted  1 2,lI z z , as follows: 

  1 20 , loglI z z l   (26) 

When 1 2z z z  ,  , loglI z z l , which reaches the upper bound shown in (26). The MI of 

continuous variables is the limit of the MI of their quantized versions as the number of quantization 
levels goes to infinity [9]. Therefore, when 1 2r r r   and thus 1 2z z z  , 

    , , limlog
l

I r r I z z l


     (27) 

We see that the MI between a continuous variable and itself is infinity. This is because that  ,zzp u v  

is infinite along the diagonal u v  and causes the integration in (19) to diverge. Compared with the 
Shannon MI, there are more stable forms of GMI. For example, when    expf u u  , (25) becomes: 
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    1 2exp 1 , 1r r    (28) 

This shows that the GMI with    expf u u   is lower bounded by  exp 1  (about 0.3679) and 

upper bounded by 1 and never diverge. It takes the finite value, 1, even for the most dependent case. 

5. Orders of QFs with Respect to l 

Table 1 shows the Q ’s and Q ’s of some convex functions and their orders with respect to l  as 

l  . The function sin u , which appears in the last line, is not convex on  0, , so it cannot be 

used in GMI and Q  does not exist. However, it is convex on  0,1 , so it can be used in QE and Q  

can be calculated. Note the Q  and Q  of au  ( 0 1a  ), and the Q  of ua  ( 0 1a  ). Their orders 

are all  2l , which are higher than  2 lnl l , the order of the minus entropy and the MI. For the 

case of GO, (16) already shows that it can have the QF of  2l . This means that, when l  is large 

enough, these measures will have sharper minima than the minus entropy and the MI. 

Table 1. QFs of QE and GMI. 

 f u    Q f u    Q f u  

au  ( 0 1a  ) 
   

2
2

1

1

1 a

a a l
l

l 





  

   
2

2
1

1

1 a

a a l
l

l 





  

logu u  
2 2

ln ln

l l

l l

 
  

 
  

2 2

ln ln

l l

l l

 
  

 
  

au  ( 1a  ) 
   

2
3

1

1

1
a

a

a a l
l

l








  

   
2

3
1

1

1
a

a

a a l
l

l








  

ua  ( 0a  , 1a  )  
2

2

1
2

11
2 2

lnl

l l

a a
l

l l la l a



  

  
 2

3 2

3

0 1
ln

1 1
l

l

l a
l a a

ll a al a
a

  
        
  




 

sin u   
2

2

2
2

sin
1

sin sin

l

l l
l l



 

 
 
  

       
   

  

6. Numerical Experiments 

In this section, we show some numerical results of applying GO, QE, and GMI to delay 
reconstruction of strange attractors. Figure 4 shows the time evolution     ,x t y t  of Rössler chaotic 

system [20], where t  is the sampling number. The sampling time interval is 100 . The observed 

sequence  e t  is obtained by adding a white noise uniformly distributed in  0.1,0.1  to  x t . We use 

    ,e t e t   to reconstruct the original chaotic attractor, where   is the delay to be determined. We 

examine the curves of     ,e t e t  ,     ,e t e t  , and     ,e t e t   versus  .   can be 

chosen at the minima of these curves. So we hope these curves provide apparent minima.  
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Figure 4. The Rössler attractor. 
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Figure 5 shows these curves where several different convex functions are used for QE and GMI. 

We can see that the order of QF correctly predicts the shape of minima: The higher (lower) the order, 

the sharper (blunter) the minima. Figures 5b–5g are plots of QE, where we have arranged them so that 

their orders of QFs decrease from high to low. Observing Figures 5b–5g, we can see the process that 

the minima of these curves of QE vary from sharp to blunt, and until very vague. In [9], it is shown 
that the order of QF should be at least  l  to ensure that   keeps a well-defined minimum as l  

increases. The orders of QFs of Figures 5b–5d are all higher than  l . The minima in these plots are 

all very prominent. Figure 5c is minus the entropy of  ,p i j  (labeled H  in the plot). Adding 

2 22 log 2log 100 13.29 bitsl    to its ordinate approximately leads to the plot of MI shown in  

Figure 5i. The QFs of Figures 5e and 5f are both  l . Hence the shapes of their minima are basically 

identical. The order  l  reaches the theoretical lower bound proposed in [9]. However, we can see 

that the neighboring areas of the minima are too flat and the positions of minima are not easy to locate. 
This is due to that  e t  and  e t   cannot be completely independent. Therefore, generally we 

should choose convex functions whose orders of QFs are higher than  l . Figure 5e is indeed the 

variance between  ,p i j  and the uniform probability distribution. Figure 5e shows that such form of 

variance, though easily conceived of, is obviously not a good measure of independence. The shape of 
the QE plot of   2f u u  is identical with Figure 5e. According to Table 1, under the precondition 

1a  , the smaller a , the higher the order of QF of au . Thus the nearer a  approaches 1, the better the 

effect of QE. For instance, Figures 5d and 5e show that the effect of 1.001u  is better than that of 2u . 
Tsallis proved that the limit of his entropy is the Shannon entropy when the parameter q  in his entropy, 

which corresponds to the a  in   af u u  here, approaches 1 [6]. Figures 5c and 5d are good 

manifestations of that statement. We can see that the shapes of curves in Figures 5c and 5d look very 

close. What is more, that statement can be testified by the order of QFs. The order of QF of au  where 

1a  ,  3 al  , is lower than but approaches the order of QF of logu u ,  2 lnl l , as a  approaches 1. 

We have used in Figure 5g the sine function sin u . This can be traced back to Kapur who used 
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trigonometric functions to create entropies [7]. The QF of sin u  is of constant order  1 . 

Therefore, the neighborhoods of the minima in Figure 5g are even more flat than those in Figures 5e 

and 5f, and the positions of minima are hardly located. Finally, we can see that the minima in Figures 

5a, 5b, and 5h, whose order is  2l , are sharper, and their positions are more definite than those in 

Figures 5c and 5i whose order is  2 lnl l . Namely, these measures outperform the minus entropy 

and the MI in the prominence of minima. Of course, the minima in Figures 5a–5d, 5h, and 5i are all 

distinct enough, and their positions coincide. The first (leftmost) minimum, 47  , is a good choice of 

the delay for reconstruction. To verify this point, Figures 6a, 6b, and 6c show the delay portraits using 

the first (leftmost) minimum, a non-minimum, and the seventh minimum, respectively. Compared with 

Figure 4, it is clear that Figure 6a reproduces well the folding structure of the original Rössler attractor. 

Figure 5. GO, QE, and GMI of delay-coordinate variables of Rössler chaotic system 

versus delay  . All plots are calculated using 65,536 sample points. 100l   is used for GO 
and QE. Delay is measured in sampling numbers. The convex functions  f u ’s used in 

(b)–(i) and the orders of QFs of (a)–(i) are labeled in their captions. 
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Figure 6. Delay reconstruction portraits of the Rössler attractor using time delays 

corresponding to (a) the first minimum, (b) a non-minimum, and (c) the seventh minimum, 

respectively, of the curves in Figures 5a–5d, 5h, and 5i. 
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The covariance function reflects the correlation between signals and sometimes can also be used for 

choosing   [23]. However, generally speaking, the independence measures GO, QE, and GMI, like 

MI, are better criteria than the covariance. To illustrate this point, let us see the second example, which 
is on the Lorenz system [22,24]. The sampling time interval is 1000 . The observed sequence  e t  is 

also obtained by adding noise to  x t . Figures 7a and 7b plot the curves of     ,e t e t   and the 

auto-covariance function     cov ,e t e t   versus  . Figure 8 shows that the reconstruction portrait 

with the first minimum of GO reproduces the double wing structure of the Lorenz attractor fairly well. 

The results are similar when using the QE or GMI. By contrast, none of the minima of the covariance 

function in Figure 7b are good choices. For instance, Figure 8c is the delay portrait using the first 

minimum of covariance function. It looks much more complex than Figures 8a and 8b. Actually, the 

curve of covariance function misses the best choice of  , which appears earlier than its first minimum. 

Figure 7. GO and auto-covariance function of reconstructed variables of the Lorenz 

attractor versus  . 50000N   sample points are used in both. 200l   in GO. 
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Figure 8. Comparison of reconstruction effects of the Lorenz attractor. The reconstruction 

delays of (b) and (c) are the first minima of GO and auto-covariance function in Figure 7, 

respectively. 
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(a) The original attractor. (b) Reconstruction using 51 . (c) Reconstruction using 214 .

 

Note that GO and QE are much more efficient to compute than MI and GMI so that they work well 

with real-time applications such as independent component analysis [8] and blind source separation [9]. 

MI and GMI, however, can give more accurate estimate of the degree of independence. 

7. Conclusions 

We have studied some convex functions based measures of independence. Essentially, the 

independence of variables is equivalent to the uniformity of the joint PDF of the variables obtained by 

transforming the original variables by their respective CDFs. The MI just uses the convex function 
logu u  to penalize the nonuniformity of this joint PDF, and thus measures the independence. Similarly, 

the QE uses an arbitrary convex function to penalize the nonuniformity of the dicretized version of this 

PDF. Since any convex functions can appear in it, the QE is a broad enough definition that actually 

includes quite a few existing definitions of entropies. In this paper, we have focused on how different 

selections of convex functions affect the performance of the corresponding independence measure. 

When the QE is plotted versus the variance from the uniform distribution, the QF of QE is twice the 

slope of QE at its minimum over the dynamic range of QE and, therefore, indicates the sharpness of 

QE around its minimum. The expectation of GO is a subclass of QE, and the Csiszar’s GMI is the limit 

of a special form of QE as the number of quantization levels approaches infinity. Based on these two 

facts, the definition of QF can be generalized to be made also applicable for GO and GMI. The order 

of QF with respect to the number of quantization levels well predicts the sharpness of the minima of 

these measures of independence. Furthermore, it indicates that GO, QE, and GMI can have more 

prominent minima than the minus entropy and the MI. 

Besides theoretical study, we have also applied the convex functions based measures of 

independence to chaotic signal processing. Initiated by Fraser and Swinney, the MI has become the 

most widely used criterion for choosing delay in strange attractor reconstruction. However, there is no 

evidence to show that it is the optimum criterion. Indeed, GO, QE, and GMI are good alternative and 

sometimes even better criteria for choosing delay. We have proposed a recursive algorithm for 

computing GMI that is a generalization of Fraser and Swinney’s algorithm for computing MI. In 



Entropy 2011, 13                            

 

 

834

addition, we have conducted numerical experiments on chaotic systems that well exemplify the theory 

of QF that we have developed. 

Finally we note that whether a measure of information is good or not is application dependent. In 

some applications, a sharp minimum might not be crucial. We shall describe such application in a 

forthcoming paper. Future work also includes applying the convex function based measures to real 

world problems such as EEG analysis. To conclude, the results presented in this paper is instructive in 

understanding the behavior of convex functions based information measures and helping selecting the 

most suitable measures for various applications. 
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Appendix: Recursive Algorithm for Computing GMI and Related Issues 

A. Recursive Algorithm for Computing GMI 

Recall (21) and rewrite it as follows: 

 
      

1 2

1 1

1 20 0
1 1

, 1 1
lim , ,

1 1

l l

z zl
i j

p i j
f f p u v dudv r r

l l
l l




 

 
 

    
 
 

    (29) 

where  ,p i j  is as defined in (3). Thus, when l  is fairly large,     2 2
1 2 1 1
, ,  

l l

i j
r r f p i j l l

 
  . 

Alternatively, a more delicate approach can be taken. Namely, different numbers of quantization levels 
are used according to the bumpiness of 

1 2z zp  in different local regions. Larger l  should be taken in 

more fluctuant regions to avoid the estimated   from being too small, whereas smaller l  should be 

taken in rather flat regions to avoid the estimated   from being too large due to limited sample size. 

Specifically, let 2ml  , 0,1,2,m   , then: 

 
    

2 2

1 2
1 1

,  4
 ,

4

m m m

m m
i j

f p i j
r r 

 

   as m   (30) 
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As shown in Figure 9, each square in the 2 2m m  grid consists of four squares in the 1 12 2m m   grid. 

Let us denote a certain square in the 2 2m m  grid by S  and denote the four squares  in the 1 12 2m m   
grid that constitute S  by 1S , 2S , 3S , and 4S . Also, let: 

   1 2Prob  ,  z z S P   

   1 2Prob  ,  i iz z S P  ,        1,  2,  3, 4i   (31) 

If  1 2,z z  is uniformly distributed over S , then: 

 1 2 3 4 4

P
P P P P     

 
   14

1
1

4 4
     

4 4

m m
i

m m
i

f P f P 




 
   (32) 

Namely, 

 Component of m  on S  = Component of 1m   on S  (33) 

Hence there is no need to further divide S  into 1S , 2S , 3S , and 4S . Thus, the following recursive 

algorithm for computing  1 2,r r  is obtained. 

Figure 9. Each square in the 2 2m m  grid is composed of four squares in the 1 12 2m m   grid. 

 
1S 2S

3S 4S
S

 
 

Let  ,m i j  denote the square in the i th column and the j th row of the 2 2m m  uniform grid over 

   0,  1 0,  1 , i.e., 

   1 1
, ,   ,   

2 2 2 2m m m m m

i i j j
i j            

 (34) 

and let: 

       1 2, Prob  , ,  m mp i j z z i j   (35) 

Then, 

     1 2 0, 1,  1r r F   (36) 

where, if 
1 2z zp  is uniform in  ,m i j , then 

      ,  4 ,m
m mF i j f p i j   (37) 
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If 
1 2z zp  is not uniform in  ,m i j , then we further divide  ,m i j  into four squares in the 1 12 2m m   

grid, noting that: 

    1
0, 1
0, 1

,   2 ,  2m m
k
d

i j i k j d  



    (38) 

yielding: 

      
1 1

1
0 0

1
, 2 ,  2

4m m
k d

F i j F i k j d  
 

    (39) 

It is easy to verify that, when   logf u u u , the above algorithm reduces to Fraser and Swinney’s 

recursive algorithm for computing MI [17]. 

B. Uniformity Test 

In the above recursive algorithm for computing GMI, we need to judge whether 
1 2z zp  is uniform in 

 ,m i j . This can be done using the 2  test proposed in [17]. However, the 20% confidence level in 

[17] was chosen arbitrarily. Experiments show that the uniformity test with the 20% confidence level 

may be too stringent and cause the GMI estimate to be too large. To solve this problem, we here 

propose a simple method for choosing the confidence level. We mix two independent variables, 1s  and 

2s , with identical distributions by a 2 2  rotation matrix with rotation angle   to get two variables, 1r  

and 2r , i.e., 

 1 1

2 2

   cos sin
  

sin cos

r s

r s

 
 

    
        

 (40) 

The MI of 1r  and 2r  is then a function of  , i.e., 

    1 2,I I r r   (41) 

Referring to the 2  distribution table, we choose five confidence levels, 20, 10, 5, 2, and 1%, to 

estimate  I  . If 1s  and 2s  have some standard distributions, then standard values of  I   are easy to 

obtain. Examining in turn the two cases where 1s  and 2s  are both uniform variables and both 

Laplacian variables, we can spot that the 5% confidence level produces the minimum estimation error 

in both cases. Comparing the estimation results using 20% and 5% confidence levels with the standard 

curves, we can see that the results with the 20% confidence level are obviously too large, whereas 

those with the 5% confidence level are quite accurate, as shown in Figures 10 and 11. Therefore, 5% is 

a better choice for the confidence level. 
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Figure 10. MI of rotational mixtures of two independent identical uniform variables versus 

rotation angle. 
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(a) Standard values (b) 20% confidence level estimates (c) 5% confidence level estimates

Figure 11. MI of rotational mixtures of two independent identical Laplacian variables 

versus rotation angle. 
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C. Practical Implementation 

In computing GO, QE, and GMI, the original variables should be transformed by their CDFs. In 

practice, the analytical forms of CDFs are usually unknown. However, the lack of analytical CDFs 

does not impede the computation of these measures. Using the definition of CDF, if we sort the N  
observations of variable r  denoted by    1 , ,r r N  in ascending order and among them  r t  is in 

the i th place, then i N  is an unbiased estimate of   rq r t . Indeed, when computing GO and QE, we 

may directly map the sample points of  1 2,r r  to the indices of the squares that the corresponding 

sample points of  1 2,z z  belong to [8,9]. When computing GMI, a sample point of  1 2,r r  is first 

mapped to an order pair  ,i j . Then the square that  ,i j  belongs to is determined according to the 

present partitioned grid. These operations (mainly sorting) do not involve floating point operations and 
can achieve high efficiency. The  ,p i j  (  ,mp i j ) in QE (GMI) is estimated by the ratio of the 

sample points in the square  ,i j  (  ,m i j ) to the total number of sample points. 
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D. Output of the Recursive Algorithm of GMI 

If 1r  and 2r  are independent,  1 2,z z  will be uniform in    0,1 0,1 . The recursive algorithm for 

computing GMI will terminate at the 0m   hierarchy and produce the minimal output  1f . The 

maximal output is generated for the most dependent case, e.g., 1 2r r . Assume that we use 2kN   

sample points of two same variables 1 2r r  to compute GMI. The corresponding sample points of 

 1 2,z z  will line up along the diagonal. The 2  uniformity tests, no matter using 20, 10, or 5% 

confidence levels, all lead to the same final partition that divides the sample points of  1 2,z z  into 

every four points in a square. For example, Figure 12 shows the case of 16N   sample points. In this 

case, the computation of GMI proceeds as follows: 

              0 1 1 1 1

1
1,1 1,1 1,2 2,1 2,2

4
F F F F F              

               2 2 2 2

1 1
1,1 1,2 2,1 2,2 0 0

4 4
F F F F f f              

 

           2 2 2 2

1
3,3 3,4 4,3 4,4

4
F F F F           

 

                   1 1 1
4 0 0 4 0 0 4 0 0 4

4 4 4
f f f f f f f f f f

                     
 

   3 1
0 4

4 4
f f        (42) 

Figure 12. Partition of 16N   sample points of  1 2,z z  of two same variables. 

 
 

The result of (42) can be generalized to the case of 2kN  sample points: 

    1 1
1 0 2

2 2
m

m m
f f     

 
 (43) 

where: 

 22 log 2m k N     (44) 
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Thus, we obtain the lower and upper bounds of GMI computed using the recursive algorithm 

as follows. 

        1 2

1 1
1 , 1 0 2

2 2
m

m m
f r r f f      

 
 (45) 

We can check whether overflow might occur with (45) when a convex function such as   uf u a  

( 1a  ) is used. 
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