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Abstract: The gravity and magnetic data measured on the Earth’s surface or above it 
(collected from an aircraft flying at low altitude) can be used to assist in geologic mapping 
by estimating the spatial density and magnetization distributions, respectively, presumably 
confined to the interior of a horizontal slab with known depths to the top and bottom. To 
estimate density or magnetization distributions we assume a piecewise constant function 
defined on a user-specified grid of cells and invert the gravity or magnetic data by using 
the entropic regularization as a stabilizing function that allows estimating abrupt changes 
in the physical-property distribution. The entropic regularization combines the minimization 
of the first-order entropy measure with the maximization of the zeroth-order entropy 
measure of the solution vector. The aim of this approach is to detect sharp-bounded 
geologic units through the discontinuities in the estimated density or magnetization 
distributions. Tests conducted with synthetic data show that the entropic regularization can 
delineate discontinuous geologic units, allowing a better mapping of sharp-bounded (but 
buried) geologic bodies. We demonstrate the potential of the entropic regularization to 
assist a geologist in obtaining a geologic map by analyzing the estimated magnetization 
distributions from field magnetic data over a magnetic skarn in Butte Valley, Nevada, 
U.S.A. We show that it is an exoskarn where the ion exchange between the intrusive and 
the host rock occurs along a limited portion of the southern intrusive border. 
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1. Introduction

One of geologists’ objectives is to unravel the geologic history through the knowledge of the 
geologic processes. The evidence necessary to reconstruct the geologic history of a particular  
region require the production of a geologic map, which consists in identifying and demarcating  
geologic units. Because geologic mapping helps in understanding the geologic processes, it is used for  
targeting mineral resources. Hence, the first stage of mineral exploration investigation involves 
geologic mapping.  

To produce a geologic map, geologists combine different types of information such as field, aerial 
and satellite data. This implies bringing together all geologic data collected mainly at the Earth’s 
surface to create a geologic map. Usually, the geologic interpretation of these data leads to the 
identification of lithology, the location of geologic contacts, faults, folds, and other geologic features. 
However, in the absence of outcrops one must resort to indirect measurements such as the ones 
provided by geophysics. Gravity and magnetic data are among the most important geophysical data 
used as a tool in geologic mapping [1–6] by allowing the production of magnetization and density 
contrast maps, respectively, thorough an inversion procedure.  

Research efforts in the last decades have developed inversion methods to estimate physical-property 
contrast distributions (magnetization or density contrast maps) from geophysical data (gravity or 
magnetic data). Most of these gravity or magnetic inversion methods parameterize the Earth’s 
subsurface into a grid of cells distributed inside a horizontal slab with known depths to the top and 
bottom, and estimate the physical-property contrast of each cell element which should retrieve the 
geologic sources and fit the data. The inverse problem of estimating this discrete density or 
magnetization contrast distribution from, respectively, the gravity or the magnetic data is an ill-posed 
problem because its solution is unstable. The standard Tikhonov regularization method [7] is then 
generally used to guarantee a stable solution. Mathematically, it consists of formulating a constrained 
inverse problem, which is solved by the minimization of a function composed by: (1) the data-misfit 
function that measures a norm of the difference between the observed and predicted data, and (2) the 
regularizing function defined in the parameter (model) space that imposes physical or geological 
attributes on a solution. In this way, the solution will be biased by the a priori information introduced 
by the regularizing function [8]. A classical regularizing function used in geophysics, named the  
first-order Tikhonov regularization, imposes a smooth character on the solution. Mathematically, it is 
defined as the −2� norm of the first-order derivatives of the density- or magnetic-contrast distribution 
along two horizontal directions. In this case, the estimated physical-property distribution will be 
spatially smooth. This estimated smooth physical-property distribution leads to a blurred geologic 
map, that is, sharp geologic contacts will be displayed as smooth transitions.  

To estimate nonsmooth physical-property contrast distributions through a user-specified grid of 
cells, we use the gravity or magnetic measurements as geophysical data and the entropic regularization 
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as a stabilizing function that allows estimating sharp discontinuities in the physical-property contrast 
distribution. The entropic regularization consists in minimizing the first-order entropy measure of the 
vector containing the physical-property contrast distribution estimated at a discrete grid of cells  
and simultaneously inhibiting any excessive minimization of the zeroth-order entropy. The latter is a 
necessary imposition to prevent the collapse of the solution into unrealistic density or magnetic 
contrast distributions consisting of predominantly null values and a few unrealistically large 
nonnull values. 

The application of the magnetization-contrast mapping, using the entropic and the first-order 
Tikhonov regularizations, to the magnetic anomaly over Butte Valley, NV, USA, showed an estimated 
source presenting one of its dimensions much larger than the other. This particular shape (which is 
different from the usual ring-like shape of most skarns) and the available geological information, allowed 
to infer that the Butte Valley anomaly is produced by an exoskarn where the ion exchange between the 
intrusive and the host rock occurs along a limited portion of the southern intrusive border. This example 
illustrates that the physical property-contrast mapping, when integrated with pertinent geological 
information, may effectively assist the geologist in elaborating a geological map. 

2. Formulation of the Forward Problem 

Consider a set of homogeneous geologic sources (geologic units) presenting physical-property 
distribution contrasts and horizontal tops and bottoms. The intersection of these sources with the 
topographic surface may be represented by a geological map Figure 1(a). We assume that depths to 
both the top and the bottom are known. This physical-property contrast distribution is assumed to be a 
piecewise constant function defined on a user-specified grid of M 3D vertical prisms juxtaposed in the 
x- and y-directions, which are confined in a single horizontal layer Figure 1(b). We presume that the 
grid encloses all geologic sources and that the tops of all prisms are at the same depth, coinciding, 
respectively, with the known tops of the true sources. The same is assumed for the prisms bottoms. 
The horizontal and vertical dimensions of each 3D prism are set by the interpreter. However, the 
physical property (density or magnetization intensity for a gravity or magnetic source, respectively) 
contrast within each prism is assumed constant but unknown and they are the parameters to be 
estimated from the potential-field data (gravity and magnetic data).  

The discrete forward-modeling operator for the gravity and magnetic data can be expressed in 
matrix notation as: 

d = Am (1) 

where d is an N-dimensional vector whose ith element contains the theoretical gravity or magnetic 
data, m is an M-dimensional vector of the prism’s physical-property contrasts (density or 
magnetization-intensity contrasts of a gravity or magnetic source, respectively referred to one of the 
sources), and A is an N × M matrix of Green’s functions.  

At the ith observation, the gravity and the magnetic field kernels produced by the jth prism with 
unitary physical-property contrast are the elements Aij of A, which are defined by: 
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respectively. In the above equations, γ  is Newton’s gravitational constant, jV  is the volume of the  
jth prism, ir  is the position vector of the ith gravity or magnetic observation, and jr  is the position 
vector of the center of the jth prism. The variables iz  and jz  are the vertical components of the vectors 

ir  and jr , respectively. Specifically in Equation (3), DIL coscos= , DIM sincos= , IN sin= , 
dil coscos= , dim sincos= , and in sin= , where I  is the inclination and D  is the azimuth of the 

geomagnetic field with respect to the x-axis, and i  is the inclination and d  is the azimuth of the source 
magnetization vector with respect to the x-axis. In the above formulation, both the geomagnetic field 
and the magnetization directions are assumed to be constant. The gravity or magnetic data produced by 
each 3D prism can be computed by the algorithm of Blakely [9]. 

Figure 1. Schematic representation of (a) geological map showing four geologic units 
(colored areas) and geologic faults (thick black lines) and (b) interpretation model 
consisting of a set of rectangular, 3D juxtaposed prisms. Each prism has known vertical 
and horizontal dimensions and horizontal top and bottom. The physical properties (density 
or magnetization intensity for a gravity or magnetic source, respectively) contrasts of all 
prisms are the parameters to be estimated from the potential-field data (gravity and 
magnetic data) measured over the Earth surface and produced by a set of unknown 3D 
geologic sources. 

 

3. Formulation of the Inverse Problem Using the Concept of Entropic Regularization 

Let od be a set of N observations of potential-field data (gravity or magnetic data) measured  
over the Earth surface and produced by a set of geologic sources. The inverse problem of estimating  
the associated physical-property distribution m can be formulated as the minimization of the  
data-misfit function: 

2
2||||1 Amd o −=

N
dφ  (4) 
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where 2||.||  is the −2� norm. However, the solution of the problem of estimating the vector m̂ that 
minimizes the data-misfit function dφ [Equation (4)] is neither unique nor stable. Here, to obtain a 
unique and stable physical-property distribution beneath the earth from od , we employ the entropic 
regularization method [10,11]. Mathematically, it consists in the minimization, with respect to 
parameter vector m, of the objective function: 

)()( mm md μφφλ +=  (5) 

where )(mmφ  is the entropic regularization function that involves two entropy measures, and μ  is a 
nonnegative parameter, named regularizing parameter, that controls the trade-off between the data-misfit 
function )(mdφ and the entropic regularization function )(mmφ .  

The entropic regularization function consists of two entropy measures: the zeroth-order entropy 
measure of m , given by: 
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and the first-order entropy measure of m  given by: 
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where ε  is a small positive constant (smaller than 10�8) used to guarantee the definition of the  
entropy measures, L is the number of adjacent pairs of parameters, and tk is the kth element of vector 
t that represents the finite-difference approximation to the first derivative of m along the 
horizontal directions.  

The maximum entropy principle was first proposed as a general inference procedure by  
Jaynes [12,13] on the basis of Shannon’s axiomatic characterization of the amount of information [14]. 
Although the entropic regularization method combines the minimization of )(1 mQ  given in  
Equation (7) with the “maximization” of )(0 mQ  given in Equation (6) with respect to m, it in fact 
does not maximize )(0 mQ . Hence, the maximum entropy principle is not used to incorporate the 
maximum zeroth-order entropy constraint in the inverse problem by optimizing a function )(0 mQ . 
Rather, the “maximization” of )(0 mQ  in our case is used just to prevent its extreme minimization that 
occurs associated with the minimizing )(1 mQ .  

Mathematically, the minimization of the entropy measure of order one, )(1 mQ , and the 
“maximization” of the entropy measure of order zero )(0 mQ of the parameter vector m can be done by 
minimizing the objective function )(mλ given in Equation (5) with the entropic regularization function 
given by: 

)()()( 0011 mmm QQm γγφ −=  (8) 

where �0 and �1 are positive numbers controlling the trade-off between the “maximization” of 
)(0 mQ and the minimization of )(1 mQ . The negative sign imposed on )(0 mQ  in Equation (8) 

guarantees the “maximization” of the zeroth-order entropy measure.  
The minimizer of the nonlinear function )(mλ  given in Equation (5) is obtained iteratively  

by the quasi-Newton method [15,16]. We implemented the quasi-Newton method using the  
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [16,17]. The minimization of the objective 
function )(mλ  [Equation (5)], with respect to the parameter vector m , by using the iterative  
quasi-Newton method, requires a stooping criterion. In our inverse problem using the entropic 
regularization the stopping criterion is based on the invariance of the first-order entropy function )(1 mQ  
[Equation (7)], which, in practice, is assumed to have occurred when the following inequality holds: 
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for five consecutive iterations, where )()(
1 mkQ  is the value of the first-order entropy measure at  

the kth iteration. 
The physical and geologic meaning of the entropic regularization has been explained by [17–19]. 

The minimization of the first-order entropy measure favors an estimated physical-property distribution 
presenting local abrupt discontinuities. However, the minimization of )(1 mQ  implies the minimization 
of )(0 mQ  as well, and, if the latter is not deterred, it will favor unrealistic solutions, consisting of an 
estimated physical-property contrast distribution with predominantly null values and a few 
unrealistically large nonnull values. So, the minimization of )(0 mQ  should be deterred. To counteract 
the minimization of )(0 mQ , it should be “maximized” not to attain in fact a maximum, but to prevent 
its excessive minimization. Thus, a judicious combination of the minimization of first-order entropy 
with maximization of zeroth-order entropy favors an estimated physical-property distribution 
characterized by regions with virtually constant physical property separated by sharp discontinuities.  

In Equation (8) the variable �1 controls the number of discontinuities in the estimated  
physical-property distribution. An optimum value for �1 is the largest positive value producing no more 
oscillations or discontinuities than those expected for the physical-property distribution being 
interpreted. The variable �0 must be assigned the smallest value necessary to prevent an estimated 
physical-property distribution presenting unrealistic pattern with predominantly null values and a few 
unrealistically large nonnull values. Among the numerous estimated physical-property contrast 
distributions fitting the data with acceptable precision, the entropic regularization favors an estimated 
physical-property distribution with locally smooth regions separated by abrupt discontinuities. 

4. Numerical Results

To evaluate the performance of the entropic regularization method, we present two tests using 
synthetic data. In the first one, we use gravity data produced by a simulated geologic contact. In the 
second test, we employ magnetic data produced by two closely spaced simulated intrusions. In these 
tests the gravity and the magnetic data were contaminated with pseudorandom Gaussian noise with 
zero mean and different standard deviations. Here, we compare the performance of the entropic 
regularization method with a common regularizing function used in geophysics, named first-order 
Tikhonov regularization, that imposes a smooth character on the solution by minimizing the −2� norm 
of the first-order derivative of the parameters along the horizontal directions [7,20–25].  
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4.1. Gravity Sources  

A geologic contact is the surface separating two geologic units. It is the most important feature in a 
geologic map and the geologic-contact mapping can benefit from the inversion of gravity data. Here, 
we evaluate the performance of the entropic regularization by applying it to the noise-corrupted 
gravity data [solid gray lines in Figure 2(a)] with a standard deviation of the pseudorandom noise of 
0.01 mGal produced by a simulated geologic contact whose true theoretical density distribution is 
shown in Figure 2(b). The maximum data amplitude is 1.75 mGal. We simulated two adjacent 
geologic units (not shown) using two juxtaposed slabs with the same top depth of 0.0105 km and the 
same bottom depth of 0.2105 km, separated by a geologic contact. The density contrasts of these slabs 
with the main host rocks are 0.3 g/cm3 [blue region in Figure 2(b)] and 0.1 g/cm3 [green region in 
Figure 2(b)]. Hence, we simulated a geologic contact as a boundary surface between these two rocks 
where there is an abrupt lithological change around x = 0.4 km. 

Figure 2. Test simulating a geologic contact. (a) Noise-corrupted gravity data in mGal 
(solid gray lines) produced by the true density-contrast distribution shown in b and fitted 
gravity data (dashed black lines) produced by the estimated density-contrast distribution 
shown in d using the entropic regularization. (b) True theoretical density-contrast 
distribution simulating a geologic contact. (c) Estimated density-contrast distribution 
produced by the first-order Tikhonov regularization. (d) Estimated density-contrast 
distribution produced by the entropic regularization with 1γ = 1.8 and  0γ = 1.2.  

 

 

 
The interpretation model consists of a 16 × 24 grid of vertical prisms in the x- and y-directions, 

respectively, with the same horizontal dimensions of 0.05 km and tops and bottoms located at depths 
of 0.0105 and 0.2105 km, respectively. We impose that the top and base of the prisms coincide with 
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the corresponding top and base of the simulated anomalous sources and presume their depths are 
known. The noise-corrupted gravity data were inverted using the first-order Tikhonov regularization 
and the entropic regularization with �1 = 1.8 and �0 = 1.2. The values assigned to �1 and �0 were 
obtained by trial and error. Provisionally we assign to �0 a small positive value, including zero, and to 
�1 a large positive value. If the solution collapses into a source whose horizontal dimensions are 
substantially smaller than those expected for the true source, we must increase the value assigned to �0. 
If the solution shows undefined discontinuities, we must increase �1. On the other hand, if the solution 
shows several discontinuities, we must decrease �1. Figure 2(c,d) shows the perspective views of the 
estimated density maps produced by the first-order Tikhonov regularization and by the entropic 
regularization, respectively.  

The estimated density map produced via the first-order Tikhonov regularization [Figure 2(c)] 
displays the geologic contact as a smooth transition from one geological domain to another. This 
transition region extends 300 m along the x-direction and its presence in Figure 2(c) is inferred from 
the gradient changes between the x-coordinates 0.3 and 0.6 km. Consequently, the first-order Tikhonov 
regularization fails to map an abrupt geologic contact such as the one simulated in this test  
[Figure 2(b)]. On the other hand, the density map estimated by the entropic regularization [Figure 2(d)] 
displays steeper gradients close to the sources’ boundary, allowing a better delineation of the abrupt 
geologic contact whose horizontal projection is located at x = 0.4 km. Figure 2(a) shows in dashed 
black lines the fitted gravity data produced by the density distribution estimated through the entropic 
regularization [Figure 2(d)]. The corresponding anomaly using the first-order Tikhonov regularization 
(not shown) fits the data equally well. Figure 3 shows the absolute differences between the estimated 
density-contrast distribution produced by the entropic regularization [Figure 2(d)] and the estimated 
density-contrast distribution produced by the first-order Tikhonov regularization [Figure 2(c)]. For 
most of the area, this difference is about 0.0 g/cm3. Larger differences (up to ± 0.05 g/cm3) coincide 
with the geologic contact around x = 0.4 km. 

Figure 3. Test simulating a geologic contact. Absolute differences between the estimated 
density-contrast distribution produced by the entropic regularization [Figure 2(d)] and the 
estimated density-contrast distribution produced by the first-order Tikhonov regularization 
[Figure 2(c)]. 
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4.2. Magnetic Sources  

We applied the entropic regularization method to the magnetic data produced by two sources (not 
shown) whose adjoining vertical borders are separated by 3 km in the y-direction. Both sources have 
horizontal dimensions of 6 and 8 km along the x- and y-directions, respectively, and their top and base 
at 5 and 8 km, respectively. These sources are uniformly magnetized by induction only, in the vertical 
direction with intensity of 1 A/m and they simulate stocks intruded into nonmagnetic sediments or 
metasediments. Figure 4(a) displays in solid gray lines the simulated noise-corrupted magnetic data 
produced by these sources whose the maximum amplitude is 56 nT. The standard deviation of the 
pseudorandom noise is 0.5 nT. Figure 4(b) shows the magnetization map of these sources.  

Figure 4. Test simulating two magnetic sources. (a) Noise-corrupted magnetic data in nT 
(solid gray lines) produced by the true magnetization-contrast distribution shown in b and 
fitted magnetic data (dashed black lines) produced by the estimated magnetization-contrast 
distribution shown in (d), using the entropic regularization. (b) True theoretical 
magnetization-contrast distribution simulating two magnetic sources. (c) Estimated 
magnetization-contrast distribution produced by the first-order Tikhonov regularization. 
(d) Estimated magnetization-contrast distribution produced by the entropic regularization 
with �1 = 20 and �0 = 3.  

 

 
We used an interpretation model consisting of a 22 × 22 grid of vertically magnetized prisms, 1 km 

wide (in both x- and y-directions) with top and base at 5 and 8 km, respectively. The noise-corrupted 
magnetic data were inverted using the first-order Tikhonov regularization and the entropic 
regularization with �1 = 20 and �0 = 3. The values assigned to �1 and �0 were obtained by trial and error. 
Provisionally we assign to �0 a small positive value including zero and to �1 a large positive value. If 
the solution collapses into a source whose horizontal dimensions are substantially smaller than those 
expected for the true source, we must increase the value assigned to �0. If the solution shows undefined 
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discontinuities, we must increase �1. On the other hand, if the solution shows several discontinuities, 
we must decrease �1.  

Figure 4(c,d) shows the magnetization maps produced by the first-order Tikhonov regularization 
and by the entropic regularization, respectively. The first-order Tikhonov regularization correctly 
locates the sources but not their borders. The estimated magnetizations are severely smoothed, 
overestimated above the sources centers, and underestimated elsewhere. Moreover, the estimated 
magnetizations do not fall off to zero in the area between the sources, wrongly evidencing that the 
sources might be connected. The presence of four embryonic maxima in Figure 4(c) may also lead to 
the erroneous qualitative interpretation that there are four instead of two anomalous sources. Finally, 
there is a wide region of negative estimated magnetizations around the sources borders. On the other 
hand, differently from the first-order Tikhonov regularization, the entropic regularization leads to a 
striking improvement in correctly delineating the sources borders on the horizontal plane. Figure 4(d) 
shows an estimated magnetic distribution displaying steeper borders, and flat and nearly horizontal 
values (reflecting the source’s homogeneity) over the source. It also presents a noticeable decrease in 
the negative values as compared with the estimated magnetic distribution using the first-order 
Tikhonov regularization [Figure 4(c)]. Furthermore, the magnetization map in Figure 4(d) presents a 
well-defined trough between the sources allowing a better source individualization. Figure 4(a) shows 
the fitted anomaly (dashed black lines) produced by the magnetization distribution estimated through 
the entropic regularization [Figure 4(d)]. The corresponding anomaly using the first-order Tikhonov 
regularization (not shown) fits the data equally well. 

Figure 5(a,b) shows, respectively, the behavior of functions )(0 mQ  and )(1 mQ  when minimizing 
)(1 mQ  and maximizing )(0 mQ . 

Figure 5. Test simulating two magnetic sources. Decay of functions )(0 mQ  (a) and )(1 mQ  

(b) along the iterations for the solution shown in Figure 4(d). 

  

5. Application to Real Data 

Here, we discuss an interpretation of the magnetic data from Butte Valley Stock, NV, USA shown 
by Silva et al. [18] that compare the estimated magnetization-contrast distribution produced by the 
entropic regularization method with that produced by the first-order Tikhonov regularization. The 
Butte Valley Stock is a buried skarn located on the southern border of a nonmagnetic intrusive body 
emplaced in nonmagnetic sedimentary rock. A skarn is a metamorphic rock that is formed by chemical 
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processes related mainly to an igneous environment. It usually comprises the interaction between 
fluids from magmatic intrusions like granites and the host carbonate-rich rocks such as limestone or 
dolostone. The most common form of a skarn displays a ring-like shape. In the Butte Valley Stock, 
prospect for porphyry copper in the 60s and 80s identified copper and gold deposits in the area. Deep 
drill holes indicate that the skarn has a magnetic susceptibility of 0.63 SI and lies 800 m below the 
flight level, overlain by nonmagnetic sediments. Figure 6a shows the aeromagnetic total-field anomaly 
(gray solid lines) above Butte Valley Stock, NV, USA [5]. The flight height was 150 m above the 
ground surface. The geomagnetic field has inclination of 64.75° and azimuth of 15.2°. The anomaly 
shape suggests that the skarn magnetization is induced. Hence, the assumed inclination and the 
azimuth of the source magnetization vector are 64.75° and 15.2°, respectively. The interpretation 
model consists of a 22 × 19 grid of prisms along the x-(north-south) and y-(east-west) directions, 
respectively. Each prism is 0.24 km wide in both x- and y-directions, and its top and base are, 
respectively, 0.8 and 5 km deep. 

Figure 6. Butte Valley Stock. (a) Observed total-field aeromagnetic anomaly (solid gray 
lines) and fitted (dashed black lines) total-field anomaly (in nT) using the entropic 
regularization solution shown in (c). (b) Estimated magnetization-contrast distribution 
produced by the first-order Tikhonov regularization [18]. (c) Estimated magnetization-contrast 
distribution produced by the entropic regularization with �1 = 3,385 and �0 = 100 [18].  

 
 
Figure 6(b,c) shows the estimated magnetization-contrast distributions using, respectively, the  

first-order Tikhonov regularization and the entropic regularization with �1 = 3,385 e �0 = 100. The  
first-order Tikhonov regularization result [Figure 6(b)] presents, as expected, a smooth transition of 
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the estimated magnetizations from the body center to the borders, preventing a clear delineation of the 
source outline. Moreover, a wide region of spurious negative magnetization-contrast values shows up 
around the source. Conversely, the estimated magnetization-contrast distribution by the entropic 
regularization [Figure 6(c)] displays steeper gradients close to the source’s borders allowing a better 
delineation of its horizontal projection. One also notes the conspicuous reduction of the region 
displaying spurious negative values around the source. The entropic regularization estimates a 
magnetization-contrast distribution with smaller horizontal length and higher (13 A/m) maximum 
values of the estimated magnetization contrast. Compared with the first-order Tikhonov regularization, 
it produces smaller (10 A/m) maximum values of the estimated magnetization contrast. Under the 
hypothesis of induced magnetization, a magnetization of 13 A/m is associated with an estimated 
susceptibility closer to the measured value of 0.63 SI than the estimate of 10 A/m produced by the 
first-order Tikhonov regularization. The fitted anomaly produced by the entropic regularization is 
shown in Figure 6(a) in dashed black lines. 

Figure 7. Butte Valley Stock. Possible skarn emplacements explaining the absence of a 
ring-like shape of the magnetization-contrast map. (a) Exoskarn where the ion exchange 
between the intrusive and the host rock occurs along a limited portion of the intrusive 
border. (b) Exoskarn with top located below the erosion level. (c) Exoskarn whose 
intrusive rock has been emplaced with an irregular shape. (d) Endoskarn where the 
magnetic minerals are formed along faults and joints in the intrusive rock. 

 
The most striking feature of the estimated magnetization-contrast distributions above the Butte 

Valley Stock [Figure 6(b,c)] is the absence of an expected ring-like shape. Neither the first-order 
Tikhonov regularization [Figure 6(b)] nor the entropic regularization presents noticeable difference 
with respect to the skarn shape. However the estimated skarn shape [Figure 6(b,c)] is in accordance 
with the information that the Butte Valley skarn occurs on the southern border of the intrusive as 
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illustrated schematically in Figure 7(a). Additional explanations for the absence of a ring-like shape in 
the Butte Valley skarn are as follows. Firstly, the erosion level might have never exposed the intrusive 
top as shown in Figure 7(b). Secondly, although not very common, the intrusive might have been 
emplaced with an irregular shape as illustrated in Figure 7(c). Finally, the Butte Valley skarn might be 
an endoskarn [Figure 7(d)] instead of the more common exoskarn shown in Figure 7(a–c). In an 
endoskarn the magnetic minerals are formed along faults and joints inside the intrusive rock. We have 
discarded the hypotheses represented in Figure 7(b–d) because of: (i) the geological information that 
the skarn occurs at the southern portion of the intrusion, and (ii) the geophysical information derived 
from the magnetization-contrast map that indicates a magnetic source with one of its dimension much 
larger than the other. Conversely, if one of the above alternative hypotheses were true, an isometric 
shape for the estimated source would be expected. This example shows that a judicious combination of 
geological and geophysical information may produce reliable information about the sources and 
contribute for the elaboration of a geological map. 

6. Conclusions

A geologic map is a useful tool in understanding the geologic history of an study area, which in turn 
is used in studying the environment of orebody emplacement to be incorporated in mine planning and 
scheduling. Hence, geologic mapping is of the utmost importance in locating and delineating potential 
mineral targets. The gravity and magnetic data measured at the earth’s surface can be used to assist in 
geologic mapping of the Earth’s subsurface. We have presented a method for density or magnetization 
mapping under the general framework of an inverse formulation. The density or magnetization map is 
constructed by solving a constrained inverse problem in which a regularizing function is minimized 
subject to fit the gravity or magnetic data, respectively. The regularizing function is the entropic 
regularization that combines minimization of first-order entropy with maximization of zeroth-order 
entropy of the estimated parameter vector which contains the magnetization or the density estimates at 
discrete grid of cells distributed on a horizontal slab with known depths to the top and bottom. The 
entropic regularization favors an estimated density- or magnetization-contrast distribution presenting 
locally smooth regions separated by abrupt discontinuities. When applied to the gravity or magnetic 
data of an area whose physical-property distribution presents sharp discontinuities produced by 
geologic contacts or faults, the present method has a superior performance as compared with the 
classical first-order Tikhonov regularization that estimates a blurred image. Numerical tests produced 
by simulated intrusive bodies into sedimentary rocks illustrated this advantage. Tests on field magnetic 
data from the skarn in Butte Valley, NV, USA, combined with available geological information 
indicated the source is an exoskarn where the ion exchange between the intrusive and the host rock 
occurs along a limited portion of the southern intrusive border, and confirm the potential of the 
entropic regularization in assisting a geologist to produce a geologic map.  
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