
Entropy 2011, 13, 744-777; doi:10.3390/e13040744
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Static Isolated Horizons: SU(2) Invariant Phase Space,
Quantization, and Black Hole Entropy
Alejandro Perez � and Daniele Pranzetti
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Abstract: We study the classical field theoretical formulation of static generic isolated

horizons in a manifestly SU(2) invariant formulation. We show that the usual classical

description requires revision in the non-static case due to the breaking of diffeomorphism

invariance at the horizon leading to the non-conservation of the usual pre-symplectic

structure. We argue how this difficulty could be avoided by a simple enlargement of

the field content at the horizon that restores diffeomorphism invariance. Restricting our

attention to static isolated horizons we study the effective theories describing the boundary

degrees of freedom. A quantization of the horizon degrees of freedom is proposed. By

defining a statistical mechanical ensemble where only the area aH of the horizon is fixed

macroscopically—states with fluctuations away from spherical symmetry are allowed—we

show that it is possible to obtain agreement with the Hawkings area law (S = aH/(4�
2
p))

without fixing the Immirzi parameter to any particular value: consistency with the area

law only imposes a relationship between the Immirzi parameter and the level of the

Chern-Simons theory involved in the effective description of the horizon degrees of freedom.
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1. Introduction

One of the most striking predictions of General Relativity (GR) is the creation of Black Holes (BH)

as the final stage of gravitational collapse. A prediction that is by now supported by an important

accumulation of observational evidence [1–3]. However, despite the extremely simple general relativistic

description of the spacetime geometry of the black hole (BH) external region—at least in the idealized

scenario given by the Kerr-Newman solutions describing the situation once the dynamical phase of

collapse has settled down—the power of general relativity reduces drastically when it comes to the

understanding of the internal dynamics, as singularities of the spacetime geometry are unavoidably

developed. Simple arguments imply that a complete consistent description of the gravitational collapse

would necessarily require dealing with quantum fluctuations of the gravitational interaction described by

some quantum theory of gravity.

However, not only the interior BH physics—unaccessible to external observers—is calling for a

theory of quantum gravity (QG). As shown by the celebrated works of Bekenstein and Hawking ([4,5]),

there are strong theoretical arguments indicating that idealized BHs in their stationary phase behave

as thermodynamical systems, with their own analogue of the zeroth, first, second, and third law of

thermodynamics, respectively. More precisely one has that: (0) The surface gravity κH on the event

horizon of stationary BH is constant. (1) Under external perturbation the initially stationary state of a

black hole can change but the final stationary state will be described by another Kerr-Newman solution

whose parameters (mass M , electric charge Q and angular momentum J) readjust according to

δM =
κH

8πG
δaH + ΦHδQ+ ΩHδJ (1)

where aH is the horizon area, ΦH is the electrostatic potential at the horizon, and ΩH the angular velocity

of the horizon. (2) The BH horizon area can only increase

δaH ≥ 0 (2)

(3) No finite physical process can allow a BH to become extremal (κH = 0).

This analogy with thermodynamics became strict with the discovery of the Hawking effect which

implies that stationary BHs radiate as black bodies with a temperature T = κH/(2π) and hence, through

the first law, have an entropy S = aH/(4�
2
p). Understanding the physical nature of the microscopic

degrees of freedom leading to such entropy requires a quantum description of the gravitational field. In

this paper we study the problem from the perspective of loop quantum gravity [6–9].

However, the very notion of black hole—as the region causally disconnected from future null

infinity—becomes elusive in the context of quantum gravity due to the simple fact that black hole

radiation in the semiclassical regime imply that in the full quantum theory the global structure of

space-time (expected to make sense away from the strong field region) might completely change. In

fact, recent models in two dimensions support the view that this is the case [10]. For that reason, the

problem of black hole entropy in quantum gravity requires the use of a local or quasi-local notion of

horizon in equilibrium.

In recent years such a local definition of BH has been introduced ([11]) through the concept of

Isolated Horizons (IH). Isolated horizons are regarded as a sector of the phase-space of GR containing
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a horizon in “equilibrium” with the external matter and gravitational degrees of freedom. This local

definition has been first used for the black-hole entropy calculation (for spherically symmetric IH) in

[12] in the context of loop quantum gravity. In this seminal work the authors show, after introduction

of a suitable gauge fixing, how the degrees of freedom that are relevant for the entropy calculation can

be encoded in a boundary U(1) Chern-Simons theory. Based on this work, state counting of horizon

states leads to agreement with the Bekenstein-Hawking formula upon appropriate tuning of the Immirzi

parameter [13–20] (for a complete description of the beautiful counting techniques used in these

calculations see [21]).

A more simple, natural and effective description of the boundary degrees of freedom for spherically

symmetric IH can be obtained in terms of an SU(2) Chern-Simons theory [22,23]. This latter treatment

clarifies how the U(1) gauge reduction previously used leads to the over counting of allowed horizon

states [22]. As a consequence the entropy calculation changes: agreement with the area law requires the

tuning of the Immirzi parameter to a different value, and the universal logarithmic corrections change

from ΔSU(1) = −1/2 log aH to ΔSSU(2) = −3/2 log aH now in agreement with other approaches [24–31].

However, there remains the somewhat unnatural spherical symmetry requirement at the classical level

that one would like to eliminate.

In this work we extend the SU(2) invariant treatment to a wider class of IH containing distortion.

More precisely we consider generic isolated horizons [32,33] of the static type and show how they

too admit an effective description in terms of SU(2) Chern-Simons theories similar in spirit to what

was found in the spherically symmetric case. Our approach is fundamentally different from the one

of [34] where—thanks to the additional assumption of axisymmetry (not necessary in the present

treatment)—the system is mapped to a model equivalent to the Type I case if the multipole moments

describing the amount of distortion are fixed classically. Recently the treatment of [34] has been

generalized to generic isolated horizons in [35] in a way that allows to remove all symmetry assumptions,

where the main idea remains to describe the boundary degrees of freedom in terms of a canonical

connection (called area-connection in the second reference). In the present treatment, no symmetry

assumption is necessary either (Type I, Type II, and Type III horizons are all treated on equal footing),

only staticity is a necessary condition for the dynamical system to be well defined (see Section 4). Our

approach is different from previous work dealing with distorted IH [34,35] in two main respects: first

the treatment is SU(2) gauge invariant avoiding in this way the difficulties found upon quantization in

the gauge fixed U(1) formulation, and second, distortion is not erased by the choice of a mapping to

a canonical Type I connection. In particular, the degrees of freedom related to distortion are encoded

in observables of our system and can be quantized. In this new treatment we can find the old Type I

theory in the sense that when we define the statistical mechanical ensemble by fixing the macroscopic

area aH and imposing spherical symmetry, we get an entropy consistent with the one in [23]. Moreover,

we can go beyond this observation computing the entropy for an ensemble where only the area is fixed

macroscopically while distortion is allowed to fluctuate (see also [35]).

We will show that a one-parameter ambiguity arises when one describes the classical boundary theory

in terms of SU(2) connections. This ambiguity is analogous to the appearance of the Immirzi parameter

in the description of the phase space of general relativity in terms of SU(2) connection variables. More

precisely, the horizon degrees of freedom will be described by a pair of SU(2) Chern-Simons theories
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with the same level k which is otherwise arbitrary. Hence, the classical ambiguity referred to above

is encoded in the value of the level k ∈ N of the Chern-Simons theories. We show that one can

recover the Bekenstein-Hawking entropy without the need of fixing the Immirzi parameter to a particular

value. Instead, (the semiclassical) Hawking’s area law ‘dictates’ the relationship between the Immirzi

parameter in the bulk theory (LQG) and the analog in the boundary theory (the Chern-Simons level), in

the sense that the Immirzi parameter can now take different discrete values according to the choice of the

level k ∈ N.

The paper is organized as follows: In Section 2 we restate the definition of isolated horizons as put

in [23] and based on [32,33], and include a new classification of isolated horizons according to the

reality of the Weyl tensor component Ψ2 (this classification is already implicit in [32,33]). In Section 3

we introduce the basic equations that follow from the definition of isolated horizons. In Section 4

we construct the pre-symplectic structure of static isolated horizons and prove its conservation. We

also show that the usual treatment used so far in the literature on isolated horizons cannot be directly

applied in the case of non-static horizons and requires a modification. We propose a possible way to

deal with this problem; however, a full analysis of this issue is outside the scope of this paper. In

Section 5 we quantize the system and show that the subset of spherically symmetric states in the Hilbert

space are in one-to-one correspondence with the admissible states in the formulation of reference [23].

Thus, if spherical symmetry is imposed as a condition defining the ensemble of states in the statistical

mechanical treatment, the entropy comes out proportional to aH as expected. In Section 6 we compute

the entropy starting from an ensemble where only the area is fixed macroscopically and distortion is

allowed, we show that compatibility with the area law can be obtained and, if an appropriate and natural

paradigm shift is undertaken, there is no need to fix the Immirzi parameter to a given specific value

(Subsection 6.2). Concluding remarks are presented in Section 7.

2. Definition of Isolated Horizons

There are some parts of this section that literally follow reference [23].

The standard definition of a BH as a spacetime region from which no information can reach idealized

observers at (future null) infinity is a global definition. This notion of BH requires a complete knowledge

of a spacetime geometry and is therefore not suitable for describing local physics. On physical grounds

a quasilocal definition is necessary for quantum considerations. That this should be the case is clear

from the fact that physical black holes are expected to radiate due to the Hawking effect and hence

the usual mathematical definition might not even make sense. The first quasilocal definitions in loop

quantum gravity were introduced in [11,32,33] with the name of isolated horizons (IH). Here we present

this definition according to [32,33,36,37]. A full discussion of the geometrical meaning of the following

conditions can be found in [23,32,33].

Definition: The internal boundary Δ of a history (M , gab) will be called an isolated horizon provided

the following conditions hold:

(i) Manifold conditions: Δ is topologically S2 × R, foliated by a (preferred) family of 2-spheres

equipped with an equivalence class [�a] of transversal future pointing null vector fields whose flow

preserves the foliation, where �a is equivalent to �′a if �a = c�′a for some positive real number c.
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(ii) Dynamical conditions: All field equations hold at Δ.

(iii) Matter conditions: On Δ the stress-energy tensor Tab of matter is such that −T a
b�

b is causal and

future directed.

(iv) Conditions on the metric g determined by e, and on its levi-Civita derivative operator ∇: (iv.a)

The expansion of �a within Δ is zero. This, together with the energy condition (iii) and the

Raychaudhuri equation at Δ, ensures that �a is additionally shear-free. This in turn implies that

the Levi-Civita derivative operator ∇ naturally determines a derivative operator Da intrinsic to Δ

via XaDaY
b := Xa∇aY

b, Xa, Y a tangent to Δ. We then impose (iv.b) [L�, D] = 0.

(v) Restriction to ‘good cuts.’ One can show furthermore that Da�
b = ωa�

b for some ωa intrinsic to Δ.

A 2-sphere cross-section H of Δ is called a ‘good cut’ if the pull-back of ωa to H is divergence free

with respect to the pull-back of gab to H . As shown in [32,33], every horizon satisfying (i)–(iv)

above possesses at least one foliation into ‘good cuts’; this foliation is furthermore generically

unique. We require that the fixed foliation coincide with a foliation into ‘good cuts.’

2.1. Isolated Horizon Classification According to Their Symmetry Groups

Next, let us examine symmetry groups of isolated horizons. A symmetry of (Δ, q,D, [�a]) is a

diffeomorphism on Δ which preserves the horizon geometry (q,D) and at most rescales elements of

[�a] by a positive constant. It is clear that diffeomorphisms generated by �a are symmetries. So, the

symmetry group GΔ is at least 1-dimensional. In fact, there are only three possibilities for GΔ:

(a) Type I: the isolated horizon geometry is spherical; in this case, GΔ is four dimensional (SO(3)

rotations plus rescaling-translations along �, which, in a coordinate system where �a = (∂/∂v)a,

corresponds to the affine map v → cv + b with c, b ∈ R constants);

(b) Type II: the isolated horizon geometry is axi-symmetric; in this case, GΔ is two dimensional

(rotations round symmetry axis plus rescaling-translations along �);

(c) Type III: the diffeomorphisms generated by �a are the only symmetries; GΔ is one dimensional.

Note that these symmetries refer only to the horizon geometry. The full space-time metric need not

admit any isometries even in a neighborhood of the horizon.

2.2. Isolated Horizons Classification According to the Reality of Ψ2

(a) Static: In the Newman-Penrose formalism (in the null tetrads adapted to the IH geometry introduced

in the following section) static isolated horizons are characterized by the condition

Im(Ψ2) = 0 (3)

on the Weyl tensor component Ψ2 = Cabcd�
ambm̄cnd. One can then show that for this class of

isolated horizons (see next section) the pull-back to H (the preferred family of sections) of v�KiΣ
i

vanishes for all v ∈ T (H). This corresponds to having the horizon locally “at rest”. In the

axisymmetric case, according to the definition of multiple moments of Type II horizons constructed

in [34], static isolated horizons are non-rotating isolated horizons, i.e., those for which all angular

momentum multiple moments vanish. Static black holes (e.g., those in the Reissner-Nordtrom

family) have static isolated horizons. There are Type I, II and III static isolated horizons.
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(b) Non-Static: In the Newman-Penrose formalism (in the null tetrads adapted to the IH geometry

introduced in the following section) non-static isolated horizons are characterized by the condition

Im(Ψ2) �= 0 (4)

The pull-back to H (the preferred family of sections) of v�KiΣ
i does not vanish for all v ∈ T (H).

The horizon is locally “in motion”. The Kerr black hole is an example of this type.

In this paper we will construct the conserved pre-symplectic structure of static isolated horizons (no

symmetry assumptions on the horizon are made). We will also show that the usual pre-symplectic

structure is not conserved in the presence of a non-static black hole, which implies that a complete

treatment of non-static isolated horizons (including rotating isolated horizons) remains open. In this

direction, we propose some general ideas leading to a conserved symplectic structure for non-static

isolated horizons and the restoration of diffeomorphism invariance. However, due to the very different

nature of such approach, the quantization of such proposals is left for future studies.

3. Some Key Equations

In this section we use the definition of isolated horizons provided in the previous section to prove some

of the equations we will need in the sequel. General relativity in the first order formalism is described in

terms a tetrad of four 1-forms eI (I = 0, 3 internal indices) and a Lorentz connection ωIJ = −ωJI . The

metric can be recovered by

gab = eIae
J
b ηIJ (5)

where ηIJ = diag(−1, 1, 1, 1). In the time gauge, where the tetrad eI is such that e0 is a time-like vector

field normal to M , the three 1-forms Ki = ω0i play a special role in the parametrization of the phase

space. In particular the so-called Ashtekar connection is

A+i
a = Γi

a + iKi
a (6)

where Γi is the spin connection satisfying Cartan’s first equation dΓe
i = 0. We also introduce

ΣIJ ≡ eI ∧ eJ and Σ+i ≡ εi jkΣ
jk + 2iΣ0i

and F i(A) the curvature of the connection Ai. At H , we will also often work in the gauge where e1 is

normal to H and e2 and e3 are tangent to H . This choice is only made for convenience, as the equations

are all gauge covariant, their validity in one frame implies their validity in all frames.

Statement 1: In the gauge where the tetrad is chosen so that �a = 2−1/2(ea0+ea1) (which can be completed

to a null tetrad na = 2−1/2(ea0 − ea1), and ma = 2−1/2(ea2 + iea3)), the shear-free and vanishing expansion

(condition (iv.a) in the definition of IH) imply

⇐ω
21 = ⇐ω

20 and ⇐ω
31 = ⇐ω

30 (7)

where the double arrow means “pull-back to the horizon”. The proof of this statement can be found

in [23].
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Statement 2: We start from the identity (that can be derived from Cartan’s second structure equations)

Fab
i(A+) = −1

4
R cd

ab Σ+i

cd (8)

where Rabcd is the Riemann tensor and Σ+i = εijke
j ∧ ek + i2e0 ∧ ei. A simple algebraic calculation

using the null tetrad formalism (see for instance [40] page 43) with the null tetrad of Statement 1, and

the definitions Ψ2 = Cabcd�
ambm̄cnd and Φ11 = Rab(�

anb+mam̄b)/4, where Rab is the Ricci tensor and

Cabcd the Weyl tensor, yields

⇐Fab
i(A+) = (Ψ2 − Φ11 − R

24
)⇐Σ

i
ab (9)

where, on M , Σi = Re[Σ+i] = εijke
j ∧ ek. For simplicity, here we will assume that no matter is present

at the horizon, Φ11 = R = 0, hence

⇐Fab
i(A+) = Ψ2 ⇐Σ

i
ab (10)

An important point here is that the previous expression is valid for any two sphere S2 (not necessarily a

horizon) embedded in spacetime in an adapted null tetrad where �a and na are normal to S2.

Here we will concentrate, for simplicity, in the pure gravity case. In this special case, and due to the

vanishing of both the expansion and shear of the generators congruence �a, the Weyl component Ψ2 at

the Horizon is simply related to the Gauss scalar curvature R(2)of the two spheres

Statement 3: The statement 1 has an immediate consequence for static isolated horizons: the reality

of Ψ2 implies, for the component i = 1 in the frame of the statement 1, that ⇐dK
1 = 0. The good-cut

condition (v) in the definition then implies that

⇐K
1 = 0 (11)

Statement 4: For static isolated horizons we have that

⇐K
j ∧⇐K

kεijk = c⇐Σ
i (12)

for c : H → R an extrinsic curvature scalar.

Proof: In order to simplify the notation all free indices associated to forms that appear in this proof are

pulled back to H (this allows us to drop the double arrows from equations). In the frame of statement 1,

where e1 is normal to H , the only non-trivial component of the equation we want to prove is the i = 1

component, namely:

KA ∧KBεAB = cΣ1 (13)

where A,B = 2, 3 and εAB = ε1AB. Now, in that gauge, we have that KA = cABe
B for some matrix of

coefficients cAB. Notice that the left hand side of the previous equation equals det(c)eA ∧ eBεAB. We

only need to prove that det(c) is time independent, i.e., that �(det c) = 0. We need to use the isolated

horizon boundary condition

[L�, Db]v
a = 0 va ∈ T (Δ) (14)

where Da is the derivative operator determined on the horizon by the Levi-Civita derivative operator ∇a.

One important property of the commutator of two derivative operators is that it also satisfy the Leibnitz
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rule (it is itself a new derivative operator). Therefore, using the fact that the null vector na is normalized

so that � · n = −1 we get

0 = [L�, Db]�
ana = na[L�, Db]�

a + �a[L�, Db]na ⇒ �a[L�, Db]na = 0 (15)

where we have also used that �a ∈ T (Δ). Now, if one introduces a coordinate v on Δ such that �a∂av = 1

and v = 0 on some leaf of the foliation, then it follows—from the fact that � is a symmetry of the horizon

geometry (q,D), and the fact that the horizon geometry uniquely determines the foliation into ‘good

cuts’—that v will be constant on all the leaves of the foliation. As n must be normal to the leaves one

has n = −dv, whence dn = 0. From this it follows that L�n = ��dn + d(��n) = 0 and, therefore,

evaluating Equation (15) on the right hand side explicitly, we get

0 = �a[L�, Db]na = �aL�(Dbna) = − 1√
2
�aL�(Db[e

1
a + e0a])

=
1√
2
�aL�(ω

1
b μe

μ
a + ω0

b μe
μ
a) = − 1√

2
�aL�(ω

10
b [e0a + e1a]) +

1√
2
�aL�(ω

1
b Ae

A
a + ω0

b Ae
A
a )

= �aL�(ω
10
b )na

where in the second line we have used the fact that Dbe
ν
a = −ων

b μe
μ
a plus the fact that as L�qab = 0 the

Lie derivative L�e
A = αεABeB for some α (moreover, one can even fix α = 0 if one wanted to by means

of internal gauge transformations). Then it follows that

L�K
1 = 0 (16)

a condition that is also valid for the so called weakly isolated horizons [32,33]. A similar argument as

the one given in Equation (15)—but now replacing �a by eaB ∈ T (Δ) for B = 2, 3—leads to

0 = eaB[L�, Db]na = eaBL�(Dbna) = − 1√
2
eaBL�(Db[e

1
a + e0a])

=
1√
2
eaBL�(ω

1
b μe

μ
a + ω0

b μe
μ
a) = − 1√

2
eaBL�(ω

10
b [e0a + e1a]) +

1√
2
eaBL�(ω

1
b Ae

A
a + ω0

b Ae
A
a )

=
√
2eaBL�(ω

0
b Ae

A
a ) =

√
2[L�(ω

0B
b ) + αεBAω0A

b ]

where, in addition to previously used identities, we have made use of statement 1, Equation (7). The

previous equations imply that the left hand side of Equation (13) is Lie dragged along the vector field �,

and since Σi is also Lie dragged (in this gauge), all this implies that L�(det(c)) = �(det(c)) = 0. �

Remark 1: In the GHP formalism [39], a null tetrad formalism compatible with the choice of tetrad

of statement 1 and hence the IH system, the scalar curvature of the two-spheres normal to �a and na is

given by

R(2) = K + K̄ (17)

where K = σσ′ − ρρ′ − Ψ2 + R + Φ11, while σ, ρ, σ′ and ρ′ denote spin shear and expansion spin

coefficients associated with �a and na respectively . The shear-free and expansion-free conditions in the

definition of IHs translate into ρ = 0 = σ in the GHP formalism, namely

R(2) = −2Ψ2 (18)
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Similarly, the curvature scalar c in (12) can be expressed in terms of spin coefficients as

c =
1

2
(ρ′ρ̄′ − σ′σ̄′) (19)

which is invariant under null tetrad transformations fixing �a and na.

Remark 2: The quantity d ≡ 2Ψ2 + c will play a central role in what follows. From the discussion

above we observe that it can be rewritten as

d = c−R(2) (20)

i.e., it is given by the difference between Gauss scalar curvature of the horizon—encoding the local

intrinsic geometry of the cross-sections—and the extrinsic curvature invariant c. This quantity will be

often referred to as the distortion of static isolated horizon in the rest of this paper. In the entropy

calculation we will considered an statistical mechanical ensemble where only the horizon area is fixed

macroscopically, thus, states with all possible values of the above local quantity (allowed by the quantum

theory) are counted.

4. The Conserved Symplectic Structure

In this section we prove the conservation of the symplectic structure of gravity in the presence of an

isolated horizon that is not necessarily spherically symmetric. In this sense, our proof generalizes the

one presented in [23].

4.1. The Action Principle

The action principle of general relativity in self dual variables containing an inner boundary satisfying

the IH boundary condition (for asymptotically flat spacetimes) takes the form

S[e, A+] = − i

κ

∫
M

Σ+

i (e) ∧ F i(A+) +
i

κ

∫
τ∞

Σ+

i (e) ∧ A+i (21)

where a boundary contribution at a suitable time cylinder τ∞ at infinity is required for the differentiability

of the action. No boundary term is necessary if one allows variations that fix an isolated horizon geometry

up to diffeomorphisms and Lorentz transformations [23].

First variation of the action yields

δS[e, A+] =
−i

κ

∫
M

δΣ+

i (e)∧ F i(A+)− dA+Σ+

i ∧ δA+i + d(Σ+

i ∧ δA+i) +
i

κ

∫
τ∞

δ(Σ+

i (e)∧A+i) (22)

from which the self dual version of Einstein’s equations follow

εijke
j ∧ F i(A+) + ie0 ∧ Fk(A

+) = 0

ei ∧ F i(A+) = 0

dA+Σ+

i = 0 (23)

as the boundary terms in the variation of the action cancel.
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4.2. The Conserved Symplectic Structure in Terms of Vector Variables

In this work we study general relativity on a spacetime manifold with an internal boundary satisfying

the boundary condition corresponding to static isolated horizons, and asymptotic flatness at infinity.

The phase space of such system is denoted Γ and is defined by an infinite dimensional manifold where

points p ∈ Γ are given by solutions to Einstein’s equations satisfying the static IH boundary conditions.

Explicitly a point p ∈ Γ can be parametrized by a pair p = (Σ+, A+) satisfying the field equations (23)

and the requirements of Definition 2. In particular fields at the boundary satisfy Einstein’s equations and

the constraints given in Section 3. Let Tp(Γ) denote the space of variations δ = (δΣ+, δA+) at p (in

symbols δ ∈ Tp(Γ)).

So far we have defined the covariant phase space as an infinite dimensional manifold. For it to

become a phase space it is necessary to provide it with a presymplectic structure. As the field equations,

the presymplectic structure can be obtained from the first variation of the action (22). In particular a

symplectic potential density for gravity can be directly read off from the total differential term in (22)

[41,42]. In terms of the Ashtekar connection and the densitized tetrad, the symplectic potential density is

θ(δ) =
−i

κ
Σ+

i ∧ δA+i ∀ δ ∈ TpΓ (24)

where κ = 16πG and the symplectic current takes the form

J(δ1, δ2) = −2i

κ
δ[1Σ

+
i ∧ δ2]A

+i ∀ δ1, δ2 ∈ TpΓ (25)

Einstein’s equations imply dJ = 0. From Stokes theorem applied to the four dimensional (shaded)

region in Figure 1 bounded by M1 in the past, M2 in the future, a timelike cylinder at spacial infinity on

the right, and the isolated horizon Δ on the left we obtain

δμ ≡ −i

∫
M1

Σi ∧ δ(Γi + iKi) + i

∫
M2

Σi ∧ δ(Γi + iKi) + i

∫
Δ

Σ+
i ∧ δA+i (26)

for some functional μ. As we will show now, for static isolated horizons, the previous equation implies

that symplectic form

κΩM(δ1, δ2) =

∫
M

δ[1Σ
i ∧ δ2]Ki (27)

is conserved in the sense that ΩM2(δ1, δ2) = ΩM1(δ1, δ2). In order to prove the above statement it is

sufficient to show that

δμ̃ =

∫
M1

Σi ∧ δK i −
∫
M2

Σi ∧ δK i (28)

for some functional μ̃.

The isolated horizon boundary condition imply that the only variations of the fields allowed on the

horizon Δ are infinitesimal SL(2,C) gauge transformations and diffeomorphisms, namely:

δe = δαe+ δve

δA+ = δαA
+ + δvA

+

δK = δαK + δvK (29)
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where α : M → sl(2,C) and v is a vector field tangent to H . Under such transformations we have:

δαe
i = [α, e]i δαΣ

+i = [α,Σ+]i δαA
+i = −dA+αi (30)

δve
i = v�dei + d(v�ei)

δvA
+i = v�F i(A+) + dA+(v�A+i)

δvΣ
+i = dA+(v�Σ+)i − [v�A+,Σ+]i (31)

where (v�ω)b1···bp−1 ≡ vaωab1···bp−1 for any p-form ωb1···bp , and in the last line we used the Gauss law. Let

us also recall the some useful relations:

A ∧ v�B = −v�A ∧B (32)

for any 2-form A and 1-form B on a 2-manifold or any 2-form A and 2-form B on a 3-manifold, while

A ∧ v�B = v�A ∧B (33)

for any 1-form A and 2-form B on a 2-manifold or any 1-form A and 3-form B on a 3-manifold. We

used the notation Γi = −1
2
εi jkω

jk when working with the torsion free connection compatible with the

triad ei. In this notation the torsion free condition (Cartan’s first structure equation) takes the form

dei = −εi jkΓ
j ∧ ek (34)

which implies

F i(Γ) = dΓi +
1

2
εi jkΓ

j ∧ Γk (35)

A very important property of the spin connection [6] compatible with ei is that∫
M

Σi ∧ δΓi =

∫
H

−ei ∧ δei (36)

This identity allows one to rewrite (26) as

δμ− iD(δ) =

∫
M1

Σi ∧ δK i −
∫
M2

Σi ∧ δKi (37)

where

D(δ) =

∫
H1−H2

ei ∧ δei −
∫
Δ

Σ+
i ∧ δA+i (38)

More specifically, we can evaluate the previous equation on the allowed variations on the boundary. For

gauge transformations we get

iD(δα) = i

∫
H1−H2

ei ∧ [α, e]i + i

∫
Δ

d(Σ+
i α

i)− dΣ+
iα

i + Σ+
i ∧ εi jkA

+j
αk

= i

∫
H1−H2

ei ∧ εi jkα
jek + i

∫
Δ

d(Σ+
iα

i)− dΣ+
iα

i − εijkA
+j ∧ Σ+k

αi

= −i

∫
H1−H2

Σiα
i + i

∫
H1−H2

Σiα
i − i

∫
Δ

dA+Σ+
i α

i = 0 (39)
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where in the last line we have used the Gauss law. Therefore, for gauge transformations on the horizon,

we have proven the result (28). Let us now analyze the diffeomorphisms. Analogously to the gauge

transformations case, we have

iD(δv) = i

∫
H1−H2

ei ∧
(
v�dei + d(v�ei)

)− i

∫
Δ

Σ+
i ∧

(
v�F i(A+) + dA+(v�A+i)

)
= i

∫
H1−H2

2v�eidei − d(eiv�ei)− i

∫
Δ

d(Σ+
iv�A+i)− dA+Σ+

i v�A+i

= i

∫
H1−H2

Σiv�Γi − i

∫
H1−H2

Σiv�A+i

=

∫
H1−H2

Σiv�Ki = −
∫
H1−H2

v�Σi ∧Ki (40)

where in the first line we have used the vector constraint, in the second one the Gauss law and in the third

one the Cartan equation. Therefore, in the case of diffeomorphisms for the variations on the horizon, the

result (28) holds as long as

v�Σi ∧Ki = 0 (41)

If the previous relation is satisfied, i.e., if the isolated horizon is static. From (28) it follows that the

conserved symplectic form for gravity can be written as:

κΩ(δ1, δ2) =

∫
M

δ[1Σ
i ∧ δ2]Ki (42)

where M is a Chauchy surface representing space and δ1, δ2 ∈ TpΓ, i.e., they are vectors in the tangent

space to the phase-space Γ at the point p. The symplectic form above is manifestly real and has no

boundary contribution.

Figure 1. The characteristic data for a (vacuum) spherically symmetric isolated horizon

corresponds to Reissner-Nordstrom data on Δ, and free radiation data on the transversal

null surface with suitable fall-off conditions. For each mass, charge, and radiation data in

the transverse null surface there is a unique solution of Einstein-Maxwell equations locally

in a portion of the past domain of dependence of the null surfaces. This defines the phase

space of Type I isolated horizons in Einstein-Maxwell theory. The picture shows two Cauchy

surfaces M1 and M2 “meeting” at space-like infinity i0. A portion of I + and I − are shown;

however, no reference to future time-like infinity i+ is made as the isolated horizon need not

to coincide with the black hole event horizon.
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4.3. Gauge Symmetries

The gauge symmetry content of isolated horizon system is characterized by the degenerate directions

of the presymplectic structure. In fact we now show how tangent vectors δα, δv ∈ TpΓ of the form

δαΣ = [α,Σ], δαK = [α,K];

δvΣ = LvΣ = v�dΣ + d(v�Σ), δvK = LvK = v�dK + d(v�K) (43)

for α : M → su(2) and v ∈ Vect(M) tangent to the horizon, are degenerate directions of ΩM if an only

if the isolated horizon is static.

The proof given here follows exactly the one presented in [23]. However, our analysis here applies

to generic static isolated horizons instead of simply Type I isolated horizons. We start with the SU(2)

transformations δα, and we get

κΩM(δα, δ) =

∫
M

[α,Σ]i ∧ δK i − δΣi ∧ [α,K]i =

∫
M

δ(εijkα
jΣk ∧Ki)) = 0 (44)

where we used the Gauss constraint εijkΣ
k ∧ Ki = 0. In order to treat the case of the infinitesimal

diffeomorphisms tangent to the horizon H it will be convenient to first write the form of the vector

constraint Va in terms of Σ−K variables [48]. We have

v�V = dKi ∧ v�Σi + v�Ki dΣi ≈ 0 (45)

variations of the previous equation yields

v�δV = d(δK)i ∧ v�Σi + dKi ∧ v�δΣi + v�δK i dΣi + v�Ki d(δΣ)i

= v�Σi ∧ d(δK)i − δΣi ∧ v�dKi + v�dΣi ∧ δK i + d(δΣ)iv�Ki = 0 (46)

where in the second line we have put all the K’s to the right, and modified the second and third terms

using the identities (32)–(33). We are now ready to show that δv is a null direction of ΩM . Explicitly:

κΩM(δv, δ) =

∫
M

(v�dΣ + d(v�Σ))i ∧ δK i − δΣi ∧ (v�dK + d(v�K))i

=

∫
M

v�dΣi ∧ δK i + d(v�Σ)i ∧ δK i − δΣi ∧ v�dKi − δΣi ∧ d(v�K)i

=

∫
M

v�dΣi ∧ δK i + v�Σi ∧ d(δK)i − δΣi ∧ v�dKi + d(δΣ)i ∧ v�Ki︸ ︷︷ ︸
v�δV=0

+

∫
∂M

v�Σi ∧ δK i − δΣi ∧ v�Ki =

∫
∂M

δ(v�Σi ∧Ki) = 0 (47)

where in the last line we have used again the identity (32), the fact that v is tangent to H , and the IH

staticity condition (3)—from where (11) follows—implying that v�Σi∧Ki = 0 when pulled back to the

horizon. �

4.4. The Conserved Symplectic Structure for Non-Static Isolated Horizons

We have seen that the symplectic structure (42) is conserved if and only if the isolated horizon is static.

The last equation clearly shows how this fails in the non-static case as (42) breaks diffeomorphisms
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invariance: tangent diffeomorphisms cease to be degenerate directions of the presymplectic structure

and hence can no longer be interpreted as a gauge symmetry of the phase space. This is indeed an

important point as it implies that the usual techniques for quantization and calculation of entropy are not

applicable for non static isolated horizons which contain in particular the Kerr black hole. There are two

ways out of this difficulty:

1. To declare that diffeomorphism are not gauge symmetries in the non-static case and modify the

definition of the phase space allowing variations of fields at the horizon which are only pure SU(2)

gauge transformations (i.e., what would correspond to v = 0 in (29)).

2. To restore diffeomorphism invariance at the horizon by the inclusion of new field degrees

of freedom.

The first possibility appears as the simplest way out, and it is indeed a natural one often used in other

contexts. For instance this is done in the construction of the phase space of asymptotically flat spacetimes

where the boundary conditions reduce the gauge symmetries to global symmetries allowing in this way

the definition of non-trivial charges such us linear and angular momentum at infinity. However, this

approach is not viable in the present context where one intends to define a model capable of accounting

for the degrees of freedom leading to black hole entropy. The reason is that diffeomorphism invariance

is a central ingredient for the consistency of the quantum theory describing the degrees of freedom

at the horizon and their relationship with the bulk loop quantum gravity degrees of freedom. The

lack of diffeomorphism invariance in the phase space of the isolated horizon makes the usual program

inapplicable.

Consequently, here we make a small step in the direction of the second possibility and propose a

concrete extension of the phase space restring the conservation of the symplectic structure with a simple

extension of (29). As it is well known and used in other contexts, diffeomorphism invariance can be

restored by introducing additional degrees of freedom on the horizon. For instance, in the simpler

context of 2 + 1 gravity coupled to particles, one initially breaks diffeomorphism and gauge invariance

at points. The degrees of freedom of the coupled particles are naturally defined by the requirement that

the gauge symmetries are restored which necessitates the extension of the field content at the position of

the particles. In our case, concretely, one should replace (42) by

κΩns(δ1, δ2) =

∫
M

δ[1Σ
i ∧ δ2]Ki +

∫
H

δ[1J ∧ δ2]φ (48)

where J is a 2-form field and φ a scalar field which under infinitesimal diffeomorphisms tangent to H

transform in the usual way, namely

δvJ = d(v�J) δvφ = v�dφ (49)

We see immediately that

κΩns(δv, δ) =

∫
∂M

δ(v�Σi ∧Ki) + d(v�J) ∧ δφ− δJ ∧ v�dφ

=

∫
∂M

δ(v�Σi ∧Ki − J ∧ v�dφ) (50)
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which would vanish as desired if we imposed the restriction

v�Σi ∧Ki − J ∧ v�dφ = 0 (51)

on the new fields. The previous constraint is nothing else but the diffeomorphism constraint of the new

extended system. In the axisymmetric case (e.g., the Kerr solution) φ = ϕ and the previous equation

implies J = Σi ∧Ki
ϕ which is precisely the angular momentum density, indeed for Kerr [40], one has

Ma =

∫
H

J =

∫
H

Σi ∧Ki
ϕ (52)

where M is the mass and a is the angular momentum per unit mass of the Kerr spacetime.

This trick allows us for restoring diffeomorphism invariance but the question remains: is the new

symplectic structure (48) conserved for a non-static isolated horizon? The answer is affirmative as the

following calculation shows. We can simply adapt the conservation proof given in Section 4.2 to this

case. Indeed, if we start from Equation (37) which is valid for generic isolated horizons and we add on

both sides the same term ∫
H1−H2

J ∧ δφ

we get

δμ− iDns(δ) =

∫
M1

Σi ∧ δK i +

∫
H1

J ∧ δφ−
∫
M2

Σi ∧ δK i −
∫
H2

J ∧ δφ (53)

where

Dns(δ) =

∫
H1−H2

(ei ∧ δei + J ∧ δφ)−
∫
Δ

Σ+
i ∧ δA+i. (54)

As δαJ = 0 = δαφ, for gauge transformations we get

iDns(δα) = 0 (55)

Let us now analyze the diffeomorphisms;

iDns(δv) =

∫
H1−H2

−v�Σi ∧Ki + J ∧ v�dφ = 0 (56)

according to (51). Therefore, the new symplectic structure (48) is conserved and diffeomorphism

invariance at the boundary is restored with the addition of the new fields (J, φ). This extended system

is now suitable to be quantized in consistency with the bulk theory. The understanding of the BH

entropy calculation for rotating black holes could be based on this formulation. The quantization and

interpretation of this new system is clearly a more difficult problem that we hope to study in more detail

in the future.

4.5. The Conserved Symplectic Structure in Terms of Real Connection Variables

We now want to introduce the Ashtekar-Barbero variables

Ai
a = Γi

a + βK i
a (57)
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where Γi = −1
2
εijkωjk and β is the Immirzi parameter. We can write the symplectic potential

corresponding to (42) as

κΘ(δ) =
1

β

∫
M

Σi ∧ δ(Γi + βK i)− 1

β

∫
M

Σi ∧ δΓi

=
1

β

∫
M

Σi ∧ δ(Γi + βK i) +
1

β

∫
H

ei ∧ δei (58)

where in the last line we have used (36). In terms of the Ashtekar-Barbero connection the symplectic

structure (42) takes the form:

κΩM(δ1, δ2) =
1

β

∫
M

δ[1Σ
i ∧ δ2]Ai − 1

β

∫
H

δ[1e
i ∧ δ2]ei (59)

where H is the boundary of M .

Let us now comment on the nature of this result. We have shown that in the presence of a static isolated

horizon the conserved pre-symplectic structure is the usual one when written in terms of vector-like (or

Palatini) variables. When we write the pre-symplectic structure in terms of Ashtekar-Barbero connection

variables in the bulk, the pre-symplectic structure acquires a boundary term at the horizon of the simple

form [23,43]

κΩH(δ1, δ2) =
1

β

∫
H

δ[1e
i ∧ δ2]ei (60)

A first observation is that, as shown in [23], this implies the kind of non-commutativity of flux variables

that is compatible with the use of the holonomy-flux algebra as the starting point for quantization. This

(completely continuum classical analysis) reinforces in this sense the importance of the kinematical

quantization at the basis of the definition of loop quantum gravity [44,45]. A second observation is that

the degrees of freedom at the horizon are encoded in the pull back of the triad fields ei on the horizon

subjected to the obvious constraint

Σi
H = Σi

Bulk (61)

which are three first class constraints—as it follows from (60)—for the six unconstrained phase space

variables ei. Therefore, one would expect that (as in the Type I case [22,23]) all of the boundary degrees

of freedom are fixed by the bulk degrees of freedom. However, this turn out not to be that case if one

works with triad fields as fundamental. The difficulty appears in the quantum theory where degenerate

geometries are admitted. This can be visualized by concentrating on the special case Σi
H = 0—that

would correspond in the quantum theory to points where there is no bulk spin-network puncture. It is

easy to see that the constraints Σi
H = 0 does not kill all the local degrees of freedom in ei as there is

a non-trivial moduli space of degenerate ei’s that would naively lead to an infinite entropy. This can

be made precise by studying in more detail the quantization of the ei fields on H . This more detailed

analysis offers interesting possibilities beyond the scope of this work. Results are going to be reported

elsewhere [46].

This difficulty is clearly related to the choice of continuum variables used for the parametrization

of the boundary phase space. For instance, in the spherically symmetric case, the degrees of freedom

are encoded instead in a connection Ai and the analog of the constraints Σi
H = 0 (where there are

no bulk punctures) are F i(A) = 0. The dimensionality of both the unconstrained phase space and
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constraint surfaces are the same as in the treatment based on triads; however, the constraint F i(A) = 0

completely annihilates the local degrees of freedom at places where there are no punctures—as it implies

that A = gdg−1 (pure gauge) locally—rendering the entropy finite. This motivates the use of connection

variables to describe (60). One of the results of this paper is to show that this can indeed be achieved for

generic IH by the introduction of a pair of connection variables

Ai
γ = Γi + γei and Ai

σ = Γi + σei (62)

in terms of which the boundary term of the conserved symplectic form (60) becomes

κβ ΩH(δ1, δ2) =
1

σ2 − γ2

∫
H

δ[1A
i
γ ∧ δ2]Aγi − 1

σ2 − γ2

∫
H

δ[1A
i
σ ∧ δ2]Aσi (63)

The proof of this statement is presented in the following subsection. From the IH boundary conditions,

through the relations (10) and (12), Cartan equations, and the definitions (62), the following relations for

the new variables follow

F i(Aγ) = Ψ2Σ
i +

1

2
(γ2 + c)Σi

F i(Aσ) = Ψ2Σ
i +

1

2
(σ2 + c)Σi (64)

This means that there is a two-parameter family of equivalent classical descriptions of the system that in

terms of triad variables is described by (60) (we will see in the sequel that the two parameter freedom

reduces indeed to a single one when additional consistency requirements are taken into account). The

appearance of these new parameters σ and γ is strictly related with the introduction of the SU(2)

connection variables (as was already observed in [23]). In this sense the situation is completely analogous

to the one leading to the appearance of the Immirzi parameter when going from vector (Palatini) variables

to Ashtekar-Barbero variables in the parametrization of the phase space of general relativity in the bulk.

In the quantum theory, at points where there are no punctures from the bulk, the two connections

are subjected to the six first class constraints F i(Aγ) = 0 = F i(Aσ) implying the absence of local

degrees of freedom at these places. The new variables resolve in this way the difficulty that we

encountered in the treatment in terms of the triads ei. In addition, the connection fields Aγ and Aσ

are described by Chern-Simons symplectic structures respectively, which will allow the use of some of

the standard techniques, applicable to Type I isolated horizons, for the quantization of arbitrary static

isolated horizons.

Remark: Using the well known relationship between Chern-Simons theory and 2+1 gravity [50,51] it

is possible to rewrite (63) in terms of 2+1 gravity like variables: an SU(2) connection and a ‘triad’ field.

However, the coupling constraints (64) become more cumbersome in the prospect of quantization.

4.6. Equivalence between the Triad and Connection Parametrizations of the Boundary Symplectic
Structure

In this section we present the proof of the validity of Equation (63). The key point—from which (63)

follows directly—is to show that phase space one-form Θ0(δ) defined by

Θ0(δ) ≡
∫
H

ei ∧ δei − 1

σ2 − γ2

∫
H

(
Aγi ∧ δAi

γ − Aσi ∧ δAi
σ

)
(65)
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is indeed closed.

Proof: Let us denote by

dΘ0(δ1, δ2) = δ1(Θ0(δ2))− δ2(Θ0(δ1))

the exterior derivative of Θ0. For infinitesimal SU(2) transformations we have

δαe = [α, e] δαAγ(σ) = −dAγ(σ)
α (66)

from which it follows:

dΘ0(δ, δα) =

∫
H

δei ∧ δαei − 2

σ2 − γ2

∫
H

(
δAγi ∧ δαA

i
γ − δAσi ∧ δαA

i
σ

)
=

∫
H

2δei ∧ εijkα
jek +

2

σ2 − γ2

∫
H

(
δAγi ∧ dAγα

i − δAσi ∧ dAσα
i
)

=

∫
H

2δei ∧ ekαjεijk +
2

σ2 − γ2

∫
H

(
(dAγδAγi)α

i − (dAσδAσi)α
i
)

=

∫
H

−2εikjδe
i ∧ ekαj +

2

σ2 − γ2

∫
H

(
δFi(Aγ)α

i − δFi(Aσ)α
i
)

=

∫
H

δ(−Σi +
2

σ2 − γ2
(Fi(Aγ)− Fi(Aσ)))αi (67)

where in the third line we have integrated by parts. Therefore, from (64), we have that

dΘ0(δ, δα) = 0 (68)

For tangent diffeomorphisms on H , using Equation (31), we have

dΘ0(δ, δv) =

∫
H

2δei ∧ δvei − 2

σ2 − γ2

∫
H

(
δAγi ∧ δvA

i
γ − δAσi ∧ δvA

i
σ

)
=

∫
H

2v�δei ∧ dei + 2δdei ∧ v�ei

− 2

σ2 − γ2

∫
H

(
δΓi ∧ v�(F i(Aγ)− F i(Aσ)) + (γ − σ)δei ∧ v�(F i(Aγ)− F i(Aσ))

)
− 2

σ2 − γ2

∫
H

(δFi(Aγ)v�Ai
γ − δFi(Aσ)v�Ai

σ)

=

∫
H

2δ(dei ∧ v�ei)− 2

σ2 − γ2
(γ − σ)

∫
H

δ
(
ei ∧ v�(F i(Aγ)− F i(Aσ))

)︸ ︷︷ ︸
∝δ(ei∧v�Σi)=0

−
∫
H

(
δΓi ∧ v�Σi

)− ∫
H

(
δΣi ∧ v�Γi

)
=

∫
H

−2δ(εi jkΓ
j ∧ ek ∧ v�ei)−

∫
H

δ(Γi ∧ v�Σi)

=

∫
H

δ(Γi ∧ v�Σi)−
∫
H

δ(Γi ∧ v�Σi) = 0 (69)

where in addition to integrating by parts and using that ∂H = 0, we have used Cartan’s structure equation

(34), the fact that e1 is orthogonal to H (that is why the expression below the underbracket is zero), and

the identities A∧v�B = −v�A∧B valid for any 2-form A and 1-form B on a 2-manifold or any 2-form

A and 2-form B on a 3-manifold. �
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The previous statement implies that the boundary symplectic form can be rewritten as

βκΩ(δ1, δ2) =

∫
M

δ[1Σ
i ∧ δ2]Ai − 1

(σ2 − γ2)

∫
H

(
δ[1Aγi ∧ δ2]A

i
γ − δ[1Aσi ∧ δ2]A

i
σ

)
(70)

From the previous equation we conclude that the boundary term is given by the simplectic structure of

two Chern-Simons theories with levels

kγ = −kσ =
8π

(σ2 − γ2)κβ
(71)

5. Quantization

The form of the symplectic structure motivates one to handle the quantization of the bulk and horizon

degrees of freedom separately. We first discuss the bulk quantization. As in standard LQG [6–9] one

first considers (bulk) Hilbert spaces H B
γ defined on a graph γ ⊂ M and then takes the projective limit

containing the Hilbert spaces for arbitrary graphs. Along these lines let us first consider H B
γ for a fixed

graph γ ⊂ M with end points on H , denoted γ ∩H . The quantum operator associated with Σ is the flux

operator of LQG that can be written as

εcdΣi
cd(x) = 16πG�β

∑
p∈γ∩H

δ(x, xp)J
i
b(p) (72)

where J i
b(p) are SU(2) infinitesimal generators, such that [J i

b(p), J
j
b (p)] = εijkJ

k
b (p), acting at each

p ∈ γ ∩ H and γ ⊂ M is a graph with end points p on H (for more details see [6–9]). The index b in

Jb(p) is not a space-time index, but simply stands for bulk. Consider a basis of H B
γ of eigenstates of both

J(p) ·J(p) as well as J3(p) for all p ∈ γ ∩H with eigenvalues �2jp(jp+1) and �mp respectively. These

states are spin network states, here denoted |{jp,mp}n
1 ; ···〉, where jp and mp are the spins and magnetic

numbers labeling the n edges puncturing the horizon at points xp (other labels are left implicit). They

are also eigenstates of the horizon area operator aH

aH|{jp,mp}n

1 ; ···〉 = 8πβ�2p

n∑
p=1

√
jp(jp + 1)|{jp,mp}n

1 ; ···〉 (73)

Now, following Witten’s prescription to quantize the two Chern-Simons theories with punctures [47],

we introduce:
kγ
4π�

F i(Aγ) = J i
γ(p)

kσ
4π�

F i(Aσ) = J i
σ(p) (74)

where

kγ = −kσ =
8π

(σ2 − γ2)κβ
(75)

are the two levels of the two SU(2) Chern-Simons theories involved in our model. If we do so we can

now write the constraints as (recall (64)):

J i
γ(p) =

2Ψ2 + (γ2 + c)

(σ2 − γ2)
J i
b(p)

J i
σ(p) = −2Ψ2 + (σ2 + c)

(σ2 − γ2)
J i
b(p) (76)
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So now from (76) we obtain the constraint

Di(p) = J i
b(p) + J i

γ(p) + J i
σ(p) = 0 (77)

plus the constraint

C i(p) = J i
γ(p)− J i

σ(p) +
2d+ (σ2 + γ2)

(σ2 − γ2)
J i
b(p) = 0 (78)

The constraints C i(p) = 0 will provide the definition of d = 2Ψ2 + c in the quantum theory (see

Equation (20)). This point will be clarified at the end of the following subsection. From now on we shall

set � = 1 for notational convenience.

We can quantize the boundary theory following Witten’s prescription. In fact, the Hilbert space of

the boundary model is that of two Chern-Simons theories associated with a pair of spins (jγp , j
σ
p ) at each

puncture. More precisely,

H CS
k (jγ1 · · · jγn)⊗ H CS

k (jσ1 · · · jσn) ⊂ Inv(jγ1 ⊗ · · · ⊗ jγn)⊗ Inv(jσ1 ⊗ · · · ⊗ jσn) (79)

The Hilbert space of CS theory with given punctures on the sphere can be thought of as the intertwiner

space of the quantum deformation of SU(2) denoted Uq(su(2)). The inclusion symbol in the previous

expression means that the later space is isomorphic to a subspace of classical SU(2) intertwiner space.

This is due to the fact that, in this isomorphism, the spins associated to the CS punctures cannot take all

values allowed by the representation theory of SU(2), but are restricted by the cut-off k/2 related to the

deformation parameter by q = exp( iπ
k+2

) where k is the Chern-Simons level.

The operators associated to J i
γ(p) and J i

σ(p), on the other hand, describe the spins of the pair of CS

defects at the punctures. They are observables of the boundary system with which the spins jγp and jσp
are associated. The theory is topological which means in our case that non-trivial d.o.f. are only present

at punctures. With all this we can now impose (77) which, at a single puncture, requires invariance under

SU(2) local transformations

δJ j
A = [αiD

i, J j
A] = εijkαiJ

k
A

where the subscript A here stands for γ, σ, and b respectively. Equivalently, the constraint (77) requires

the quantum state to be proportional to the singlet state with zero total SU(2) charge: zero total angular

momentum. More precisely, the constraint Di(p) = 0 simply requires that

Inv(jp ⊗ jγp ⊗ jσp ) �= ∅ (80)

at each puncture p.

Learning from the Restriction to Type I Isolated Horizons

Let us now show how, within this new approach, we are able to recover the same picture of the

spherically symmetric case as studied in [23]. We will show how this will allow us to reduce from two to

one the number of free parameters describing the system. For a spherically symmetric IH we can replace

in (76) Ψ2 and c with their constant classical values: Ψ2 = − 2π
aH

and c = 2π
aH

(see [23]). If we do so, we

obtain the two sets of constraints:

Di(p) ≡ J i
b(p) + J i

γ(p) + J i
σ(p) = 0 C i(p) ≡ J i

γ(p)− J i
σ(p) + αJ i

b(p) = 0 (81)
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where

α ≡ (σ2 + γ2)− 4π
aH

σ2 − γ2

The form of the symplectic structure as in (60) and (63)—together with Equations (74)—implies the

commutation relations [J i
γ(p), J

j
γ(p)] = εijkJ

k
γ (p), [J i

σ(p), J
j
σ(p)] = εijkJ

k
σ (p), and [J i

b(p), J
j
b (p)] =

εijkJ
k
b (p) from which the constraint algebra that follows is:

[C i(p), Cj(p′)] = εijk (J
k
γ (p) + Jk

σ (p) + α2Jk
b (p)) δpp′ (82)

[C i(p), Dj(p′)] = εijk C
k(p) δpp′ (83)

[Di(p), Dj(p′)] = εijk D
k(p) δpp′ (84)

We can thus see that, by setting α2 = 1 the algebra of constraints closes yielding the simple result

[C i(p), Cj(p′)] = εijkD
k(p) δpp′ (85)

[C i(p), Dj(p′)] = εijkC
k(p) δpp′ (86)

[Di(p), Dj(p′)] = εijkD
k(p) δpp′ (87)

If we introduce the dimensionless parameters γ0 and σ0 so that

γ =

√
2π

aH

γ0, σ =

√
2π

aH

σ0

then the previous analysis implies that we can impose spherical symmetry strongly if and only if

(σ2
0 + γ2

0) ± (σ2
0 − γ2

0) = 2. A possible solution (for the plus branch, or α = −1) is for instance

σ0 = 1 and γ0 arbitrary, for which the level (75) becomes:

k =
aH

κβ
4
(1− γ2

0)
(88)

which exactly matches the value found in [23] (see section VII) for Type I isolated horizons. Moreover,

defining:

C i
±(p) ≡

Di(p)± C i(p)

2
⇒ C i

+(p) = J i
b(p) + J i

γ(p) C i
−(p) = J i

σ(p) (89)

the algebra (85)–(87) becomes:

[C i
±(p), C

j
±(p

′)] = εijk C
k
±(p) δpp′ (90)

[C i
±(p), C

j
∓(p

′)] = 0 (91)

and therefore we can impose C i
± = 0 strongly which boils down to setting jσp = 0 and jγp = jp on the

boundary spins. In this way the Hilbert space of generic static isolated horizons H CS
k (jγ1 · · · jγn) ⊗

H CS
k (jσ1 · · · jσn) (restricted only by the condition (80)) reduces for Type I isolated horizons to

H CS(j1 · · · jn) ⊂ Inv(j1 ⊗ · · · ⊗ jn) in complete agreement with [23]. This correspondence works

also at the classical level. We have seen that spherical symmetry implies C− = 0 which, according to

Equation (74), requires

F (Aσ) = 0 (92)
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As the horizon H is simply connected, this implies that Aσ = gdg−1, i.e., pure gauge. Therefore, the

non-trivial degrees of freedom of the Type I isolated horizon are described by a single Chern-Simons

theory with connection Aγ and constraint C+ = 0 equivalent to

k

4π
F (Aγ) = Σi (93)

in complete classical correspondence with the treatment of [23]. Therefore, the requirement that

spherical symmetry can be imposed strongly reduces the two parameter family of models of a distorted

horizon to a one-parameter one. This one-parameter ambiguity is also present in the spherical isolated

horizon case (yet it does not affect the entropy calculation).

Before ending this section let us make two important points.

The first point concerns the constraint structure at places where J2
b = 0, i.e., where there is no

puncture. We have already argued that at these points J i
σ(p) = 0 = J i

γ(p) above, but it is instructive to

briefly revisit the point here. When J2
b (p) = 0 the constraints reduce to

C i(p) = J i
σ(p) + J i

γ(p) = 0

Di(p) = J i
γ(p)− J i

σ(p) = 0 (94)

with [C i(p), Dj(p′)] = εijkDk(p) δpp′ . There are 6 first class constraints equivalent to J i
σ(p) = 0 = J i

γ(p)

and hence no degrees of freedom at these points.

At points where J2
b (p) �= 0 the situation is more complex. In addition to the constraints Di(p) = 0

one has to impose the three additional constraints C i(p) = 0 that take the form (78) in the arbitrarily

distorted case. The problem is that, as shown above (see Equation (82)), the constraint algebra does not

close in the present case. Therefore, since the set of constraints Di(p), Ci(p) is no more first class in the

generic distorted case, imposing the six constraints strongly is a far too strong requirement that risks to

kill relevant physical degrees of freedom. The reason is that, in addition to the constraints Di(p) = 0 and

C i(p) = 0, one is imposing an infinite tower of constraints stemming from arbitrary order commutators

of the original ones: we will see that the only solutions to these are indeed spherical configurations.

Fortunately there is a natural way of imposing the constraints weakly. First we notice that—using the

closure constraint Di(p) = 0, which we do impose strongly as they are first class—the constraint C i(p)

can be written in the following form

C i(p) ≈ J i
γ(p)− J i

σ(p)− α(J i
σ(p) + J i

γ(p)) = 0 (95)

If we interpret for a moment the previous constraint classically we see that it implies that the vectors

J i
γ(p), J

i
σ(p), and (through Di(p) = 0) J i

b(p) are parallel. This is exactly the role of the constraint

C(p)i = 0, as it follows directly from the classical equations (64) where one explicitly sees that all

sources of curvature are proportional to the single field Σi.

In order to define our strategy for a relaxation of the constraint C i(p) = 0, it is particularly clarifying

to take the perspective of the master constraint technology developed by Thiemann et al. [52,53].

If we chose to impose the equivalent set of (now commuting) constraints given by gauge constraint

Di(p) = 0—which implements the SU(2) gauge symmetry at each of the punctures—in addition to the
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master constraint C2(p) = 0 one would find that the only states in the kernel of C i(p) are spherically

symmetric states. Namely, the latter takes the following explicit form:

C2(p) = 2J2
γ (p) + 2J2

σ(p)− J2
b (p) + 2α(J2

σ(p)− J2
γ (p)) + α2J2

b (p) (96)

with

α =
aH
π
d+ (1 + γ2

0)

(1− γ2
0)

(97)

The previous operator is positive definite and the condition that it exists α such that (96) vanishes is

given by the following restriction (stemming from the resolvent of the previous quadratic equation)

(J2
σ(p)− J2

γ (p))
2 − J2

b (p)(2J
2
γ (p) + 2J2

σ(p)− J2
b (p)) = 0

J2
σ(p)J

2
γ (p)− (J(p)γ · J(p)σ)2 = 0 (98)

where we have written it in two equivalent forms. In the last line we see that the condition is equivalent

to the vanishing of the quantum angle ϕσγ between J i
γ(p) and J i

σ(p), whose cosine takes the form

cos(ϕγσ) =
J(p)γ · J(p)σ√
J(p)2γJ(p)

2
σ

(99)

The only strict solutions of that constraint are J i
σ(p) = 0 or J i

γ(p) = 0 which give α = ±1 and hence

spherically symmetric states only. We have to relax the previous constraint and impose it weakly. We will

therefore require the previous equation to hold only in the large spin limit. In that case it is immediate to

see that the constraint implies the simple condition

jb = jσ + jγ (100)

As shown by Major in [54] the minimal angle goes as 1/
√
jb. All this implies that it is consistent to take

α ≡ J2
σ(p)− J2

γ (p)

J2
b (p)

(101)

and hence we take

d ≡ 2Ψ2 + c =
π

aH

(1− γ2
0)(J

2
σ(p)− J2

γ (p))− (1 + γ2
0)J

2
b (p)

J2
b (p)

(102)

in the quantum theory as well. In other words the operator associated to the latter quantity make sense

and has no fluctuations in the Hilbert space of the distorted horizon. Notice that Equation (101) would

follow from the strong imposition of the component C(p) · Jb(p) of C i(p) which together with Di(p)

form a set of commuting constraints. Notice as well that α defined in (101) commutes with all the

observables in the boundary system! Thus, the quantity d = 2Ψ2 + c remains ‘classical’ in this sense in

agreement with the assumptions used for the construction of the phase space of our system.

Remark 1: There is another branch of approximate solutions (in the large spin limit) to the condition

(98) corresponding to jb = |jσ − jγ|; however, these correspond to antiparallel configurations which are

ruled out by the form of the original constraints. See for instance (64).
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Remark 2: There is a strict analogy between the way we have imposed the constraint C i(p) = 0 in this

section and the way the simplicity constraints are imposed in the EPRL-FK model [55,56]. Observe first

that Equation (95) has the very same form of the linear simplicity constraints of the EPRL-FK models

where the role of the Immirzi parameter is here played by α. Notice also that if we take jγ = (1−α)j/2

and jσ = (1 + α)j/2 then this solves Equation (100) and can be checked to be consistent with alpha as

given (101). With this then one can check that for an admissible state |ψ〉 one has

C2|ψ〉 = �
2(1− α2)j|ψ〉

which vanishes in the (semiclassical) limit � → 0, j → ∞ with �j kept constant. Moreover, using the

results of [57] one has that

〈φ|C i|ψ〉 = 0

for arbitrary pairs of admissible states. In other words, the constraint C i are satisfied strongly in the

semiclassical limit, and weakly in the sense of matrix elements in general.

6. Entropy Calculation

From now on we fix the value of σ0 in the distorted case according to the analysis preformed in

Section 5.1, i.e., we set σ0 = 1 and keep γ0 as the only free parameter . With this preferred choice of

parameters Equation (81) now becomes:

Di(p) ≡ J i
b(p) + J i

γ(p) + J i
σ(p) = 0

J2
γ (p)− J2

σ(p) +
aH
π
(2Ψ2 + c) + (1 + γ2

0)

(1− γ2
0)

J2
b (p) = 0 (103)

where, we remind, Ψ2 is the Weyl tensor component defined by Ψ2 = Cabcd�
ambm̄cnd, with Cabcd the

Weyl tensor and �, n,m the null tetrad defined in Statement 1 of Section 3, which is simply related to

the local scalar curvature of H . The quantity c is the function relating extrinsic and intrinsic curvature

through relation (12). Both Ψ2 and c are functions of the horizon points, while Lie dragged along the

null generators �a.

From (103) we get

d = 2Ψ2 + c =
π

aH

(1− γ2
0)(J

2
σ(p)− J2

γ (p))− (1 + γ2
0)J

2
b (p)

J2
b (p)

(104)

The previous equation represents a well-defined expression for an operator encoding the degrees of

freedom of distortion; its eigenvalues are determined by the spins associated to the bulk and horizon

punctures and they characterize the distorted configurations which will contribute to the entropy

calculation. More precisely, the sum over the bulk and horizon spins performed (see below) in the states

counting corresponds to the sum over the allowed distorted configurations of the model (see remark at

the end of Section 3). In this sense, we can trace back the horizon entropy to the counting of the boundary

geometry degrees of freedom.

Spherically symmetric states correspond to the eigenvalue −2π/aH of the operator 2Ψ2 + c. The

deviation from spherical symmetry can be encoded in

Δ ≡ d+
2π

aH

=
π

aH

(1− γ2
0)(J

2
σ(p)− J2

γ (p) + J2
b (p))

J2
b (p)

(105)
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in fact, the spherically symmetric configurations correspond to set—see Equation (89)—jσ = 0 and

jb = jγ , giving the zero eigenvalue of Δ.

We can now ask wether including all kind of distortions—allowing jγp , j
σ
p to go all the way up to the

cut off k/2—preserves the area law for the IH entropy.

6.1. The Usual Paradigm

In this first counting we take the usual approach where the Chern-Simons level grows with aH

according to (88). Consequently we neglect the quantum corrections coming from the (quantum group)

closure constraint in consistency with the large k limit, which is equivalent to the large area asymptotics

(i.e., the thermodynamic limit). We will show that the inclusion of distortion does not violate the area

law but simply amounts to fixing the Immirzi parameter to value that is larger than the one found in the

spherically symmetric case.

In order to compute the number of states contained in the Hilbert space (79) we are now going to use

the counting techniques of [49]. For a generic configuration of spins associated to the punctures on the

horizon we denote s(jγ, jσ) the occupation numbers, i.e., the number of punctures labeled by internal

spins jγ and jσ respectively. One can easily see that, keeping in mind the constraints jγp , j
σ
p ≤ k/2, for a

given configuration {s(jγ, jσ)}, the total number of quantum states reads

d({s(jγ, jσ)}) =

[ ∑
jγ ,jσ

s(jγ, jσ)

]
!∏

jγ ,jσ
s(jγ, jσ)!

k
2∏

jγ ,jσ=0

((2jγ + 1)(2jσ + 1))s(j
γ ,jσ)

(106)

where the combinatorial factor comes from the fact that the punctures are considered distinguishable.

To obtain the total number of states one should then sum over all possible configuration {s(jγ, jσ)}.

Following [49], we estimate the sum by maximizing ln d({s(jγ, jσ)}) by varying s(jγ, jσ) subject to the

area constraint ∑
jγ ,jσ

s(jγ, jσ)
√
(jγ + jσ)(jγ + jσ + 1) =

aH

8πβ�2p
(107)

where the above form of the area constraint follows from the area spectrum (73) in LQG and the

condition (100). In the variation we assume that s(jγ, jσ) >> 1 for each jγ, jσ and only such

configurations dominate the counting. Introducing the Lagrange multiplier λ, the variational equation

δ ln d({s(jγ, jσ)}) = λδaH gives

s(jγ, jσ)∑
jγ ,jσ

s(jγ, jσ)
= (2jγ + 1)(2jσ + 1)e−λ8πβ�2p

√
(jγ+jσ)(jγ+jσ+1) (108)

From the previous relation we obtain λ ≡ λ0/(8πβ�
2
p) as a solution of

1 =

k/2∑
jγ ,jσ=1/2

(2jγ + 1)(2jσ + 1)e−λ0

√
(jγ+jσ)(jγ+jσ+1) (109)

obtained by summing Equation (108) over jγ, jσ.
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To estimate the leading order in the entropy associated to the total number of quantum states for all

configurations {s(jγ, jσ)} we evaluate the logarithm of (106) at the dominant configuration (108), which

we denote s̄(jγ, jσ), namely

log d{s̄(jγ ,jσ)} ≈
∑
jγ ,jσ

s(jγ, jσ)

(
log

∑
jγ ,jσ

s(jγ, jσ)− log s(jγ, jσ) + log(2jγ + 1)(2jσ + 1)

)

=
∑
jγ ,jσ

s(jγ, jσ)
(
λ8πβ�2p

√
(jγ + jσ)(jγ + jσ + 1)

)
= λaH (110)

where in the first line we have used Stirling’s approximation. We conclude

S ≈ log d{s̄(jγ ,jσ)} = λaH + O(log aH) (111)

where λ = λ0/(8πβ�
2
p) for λ0 a solution of Equation (109): numerically λ0 = 2.1589.... All this

implies that the area law is recovered for β = 0.343599... instead of the value obtained in the spherically

symmetric treatment βsph = 0.274067....

6.2. A Paradigm Shift: An aH-Independent Effective Theory

We have seen that, if one follows the standard paradigm, the inclusion of distortion in the statistical

ensemble produces an entropy that grows in agreement with the area law as long as the Immirzi parameter

β is fixed to a given numerical value. In the present treatment though, there is an additional ambiguity

controlled by the parameter γ0 (as stressed at the beginning of this section). Equation (88) shows that

this ambiguity can be encoded in the value of the level k. Thus, the paradigm shift that we propose

consists of taking k ∈ N as an arbitrary input in the construction of the effective theory describing the

phase space of generic IH: we can make k area independent through the free parameter γ0 by reabsorbing

in it the dependence on aH . More specifically, assuming γ2
0 = (1 − nκβ/(4aH)), where n ∈ N, from

Equation (88) we see that the level k is now free to take any integer value n.

The advantages of this is that, on the one hand, it gives a theory which is independent of any

macroscopic parameter—eliminating in this simple way the tension present in the old treatment

associated to the natural question: why should the fundamental quantum excitations responsible for black
hole entropy know about the macroscopic area of the black hole?—on the other hand, compatibility with

the area law will (as shown below) only fix the relationship between the level k and the Immirzi parameter

β; thus no longer constraining the latter to a specific numerical value.

For simplicity let us take the simplest case k = 1; the general case is considered at the end of the

subsection. If we fix k = 1 then the spins at internal punctures can take only the values jγ, jσ = 0, 1/2.

Therefore, there are only three possible non trivial occupation numbers:

A ≡ s(0, 1/2), B ≡ s(1/2, 0), C ≡ s(1/2, 1/2)

where the first two cases correspond to spherically symmetric configurations. The total number of states

for A, B, and C given is

d =
(A+B + C)!

A!B!C!
dim[H CS

1 ( 1/2 · · · 1/2︸ ︷︷ ︸
B + C times

)] dim[H CS
1 ( 1/2 · · · 1/2︸ ︷︷ ︸

A+ C times

)]

=
(A+B + C)!

A!B!C!
(112)
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since, for k = 1, the dimension of the two CS Hilbert spaces is 1. Extremizing this number with the

constraint aH = [(A+B)a1/2 + Ca1] yields the following equations

A

A+B + C
= e−λa1/2 ,

B

A+B + C
= e−λa1/2 ,

C

A+B + C
= e−λa1 (113)

from which it follows the condition 1 = 2e−λa1/2 + e−λa1 and a leading order entropy S = λaH +

O(log(aH)). All this implies that we can get exactly Hawking area law

S =
aH

4�2p
+ O(log(aH)) (114)

if k = 1 and the Immirzi parameter satisfies:

1 = 2e−πβ
√
3 + e−2πβ

√
2 (115)

The previous renormalization condition is very simple and corresponds to an area independent invariant

Chern-Simons level k = 1. We expect a whole tower of area independent effective theories whose

symplectic structure is given by

ΩH(δ1, δ2) =
k

8π

∫
H

δ[1A
i
γ ∧ δ2]Aγi − k

8π

∫
H

δ[1A
i
σ ∧ δ2]Aσi (116)

with k ∈ N some fixed integer, and constraints

k

4π
F i(Aγ) = J i

γ,
k

4π
F i(Aσ) = −J i

σ (117)

with

J i
γ + J i

σ + J i
b = 0 (118)

when J2
b �= 0, while J i

γ = 0 and J i
σ = 0 when J2

b = 0. Provided an appropriate modifications of

the renormalization condition (115) for β (see below), such effective theory for the horizon degrees of

freedom yields S = aH/4�
2
p to leading order! The effective theory is independent of the macroscopic

parameter aH , i.e., the effective model introduced here is one and the same for all IH and need not to

be tuned to the particular value of a parameter that is supposed to be fixed only macroscopically. For

completeness we give the expression of the operator (105) controlling the deviations from spherical

symmetry which now becomes

Δ =
1

8�2pβk

(J2
σ(p)− J2

γ (p) + J2
b (p))

J2
b (p)

(119)

and is independent of macroscopic parameters.

Let us now consider the general case. To explicitly derive the relation that β has to satisfy for a generic

(area independent) value of the level k such that the area law is recovered we need to use the general

formula for the dimension of the Hilbert space H CS
k (j1 · · · jn), namely ([24–31,59])

dim[H CS
k (j1 · · · jn)] = 2

k + 2

k
2∑
�

sin2

(
π(2�+ 1)

k + 2

) n∏
i=1

⎛
⎝sin

(
π(2�+1)(2ji+1)

k+2

)
sin

(
π(2�+1)
k+2

)
⎞
⎠ (120)
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from which we can get

d({s(jγ, jσ)}) =
[∑

jγ ,jσ s(j
γ, jσ)

]
!∏

jγ ,jσ
s(jγ, jσ)!

N({s(jγ, jσ)}) (121)

where

N({s(jγ, jσ)}) =
4

(k + 2)2

k
2∑

�,q=0

sin2

(
π(2�+ 1)

k + 2

)
sin2

(
π(2q + 1)

k + 2

)

·
∏
jγ jσ

⎛
⎝sin

(
π(2�+1)(2jγ+1)

k+2

)
sin

(
π(2�+1)
k+2

)
⎞
⎠

s(jγ)⎛
⎝sin

(
π(2�+1)(2jσ+1)

k+2

)
sin

(
π(2q+1)
k+2

)
⎞
⎠

s(jσ)

and we have defined s(jγ) ≡ ∑
jσ s(j

γ, jσ), and s(jσ) ≡ ∑
jγ s(j

γ, jσ). Assuming that

k/2∑
jγ ,jσ=0

s(jγ, jσ)
δ log[N({s(jγ, jσ)})]

δs(jγ, jσ)
− log[N({s(jγ, jσ)})] = O(log(aH)) (122)

we obtain that β has to satisfy

1 =

k/2∑
jγ ,jσ=0

exp

(
1

N({s(jγ, jσ)})
δN({s(jγ, jσ)})

δs(jγ, jσ)

)
exp

(
−2πβ

√
(jγ + jσ)(jγ + jσ + 1)

)
(123)

The previous expression encodes the relationship between k and βk dictated by the validity of the area

law. Analytic information could be extracted from it by the usual approximation methods or it could be

used as the basis for numerical computations. Some exact as well as qualitative information in shown in

Figure 2.

Figure 2. The value of the Immirzi parameter βk as a function of k ∈ N for the

first few integers. The value β1 = 0.172217... is exact as well as the asymptotic value

β∞ = 0.343599.... The other points have been computed using (109) which is only valid in

the large k limit.
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Remark: The presence of an analog ambiguity, in the spherically symmetric case, to the one encoded

here in the parameter γ0 has been already emphasized in [23]. In the full theory such ambiguity is also

present [58] but the requirement of the introduction of a scale (such as the BH area here) at the classical

level makes it less natural.

7. Conclusions

The main results of this paper can be organized in three parts. In the first part we have shown that it is

possible to describe the classical phase space of distorted isolated horizons without the need to invoke the

notion of any Type I structure as it was generally done in previous work [34,35]. Our treatment does not

require any symmetry assumption treating (static) distorted isolated horizons of type I, II or III on equal

footing. Non-static horizons are more complicated systems as our analysis shows due to the breaking of

diffeomorphism invariance at the boundary. As we explain in Section 4.4 the breaking of diffeomorphism

invariance is only a problem from the point of view of the quantization in the context of loop quantum

gravity, as this gauge symmetry breaking is in manifest contradiction to the gauge invariance of the bulk

theory. We propose a way to restore diffeomorphism invariance by the enlargement of the kinematical

phase space. This strategy is certainly viable, however a clear-cut interpretation of the new system as well

as its quantization requires further study. It is important to point out that, as the stationary Kerr-Newman

black hole is a non-static isolated horizon, further insights on the issues here discussed are necessary for

a complete understanding of the nature of the black hole entropy calculation including rotating horizons.

In the case of static isolated horizons we show that the classical system can be described in terms of

certain connection variables. We show that there is a two-parameter family of such variables in terms

of which the pre-symplectic structure of the system acquires a boundary term corresponding to the sum

of two (closely related) SU(2) Chern-Simons theories. In addition to the pre-symplectic form with its

boundary terms, there are constraints that relate the bulk and boundary fields at the isolated horizon and

ensure the validity of the boundary condition. The free parameters describing the classically equivalent

formulations are the analog of the Immirzi parameter in the full theory in the sense that, as in the

latter case, they appear when one changes from the one-form variable phase space parametrization—see

Equation (60)—to the connection parametrization—see Equation (63)—that makes the quantization in

loop variables more natural. Remarkably, the ambiguity can be entirely encoded in the value of the level

of the Chern-Simons theories k ∈ N: there is an integer worthy of theories as it becomes clear when

rewriting (63) as in Equations (116) with sources as in (117). The conservation of the presymplectic

structure proven in Section 4 goes though without making reference to aH and γ0.

In the second part of the paper we study the quantization of the static isolated horizon phase space.

The quantization can be defined along similar lines as the one followed in the spherically symmetric case.

However, subtleties arise in the imposition of the quantum boundary conditions. In particular we observe

in Section 5.1 that the (boundary) constraint algebra does not close in general. We use this fact to reduce

the two-parameter family of classically equivalent formulations to a one-parameter family by requiring

that the constraint algebra closes in the case of Type I (i.e., spherically symmetric) isolated horizons.

Remarkably, this yields a quantization that is precisely equivalent to the one presented in [22,23]. For

distorted isolated horizons this implies that one can impose all the boundary constraints only weakly:
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there is a natural way to impose them in the large spin limit by restricting to those configurations that

minimize the ‘angle’ between the Chern-Simons defects.

We compute the entropy from the quantum theory by counting states in an ensemble containing

distorted horizons of a given macroscopic area aH and observe that the inclusion of distortion (in the

standard treatment) does not violate the area law, but simply slightly increases the numerical value the

Immirzi parameter has to be fixed to. In this regard, it is interesting to notice that this regulating effect of

the quantum group which somehow encodes the distortion structure is a consequence of the proper way

we have imposed the constraints. In fact, without the restriction (100), i.e., allowing every angle between

the two sets of punctures on the horizon, it can be shown that the entropy would grow as aH log(aH) in

violation of the area law.

In the third part (Section 6.2) we show that the SU(2) treatment allows for a simple paradigm shift

where instead of tuning the Immirzi parameter in order to get agreement with Hawkings formula—the

usual approach followed in the standard literature—we take the level of the Chern-Simons theory as an

independent effective parameter (independent of the area aH). The advantages of such treatment are

multiple. On the one hand the effective theory so defined is universal: independent of any macroscopic

parameter such as the area aH , i.e., the same for all isolated horizons. On the other hand, from this

new perspective one gets agreement with Hawking area law without the need of fixing the Immirzi

parameter to a single particular value as there is a integers-worth of possible values of βk satisfying

the relation (123) for k ∈ N. From this viewpoint the semiclassical consistency with the Hawking

effect is not viewed as a restriction on a fundamental constant in LQG (the Immirzi parameter) but

rather as providing insights of a more fundamental (dynamical) description underlying the necessary

relationship—manifested here by the admissible effective descriptions labeled by (k, βk) [60]—between

the LQG in the bulk and the SU(2) Chern-Simons theory on the boundary. None of two characteristic

constants of the bulk theory (Immirzi parameter) and of the boundary theory (CS level) is more important

than the other in this model: only a given relationship among the two is required in order to recover the

Bekenstein-Hawking formula for black holes entropy [61]. The range of physically suitable values of βk

is illustrated in Figure 2.

Moreover, the model presented here allows for counting states corresponding to generic isolated

horizons, eliminating in this way a puzzling physical restriction imposed in the entropy count of

Type I horizons.

It is important to stress that the possibility of taking the Chern-Simons level as an independent

parameter is a feature of the SU(2) analysis due to the appearance of a one-parameter freedom lacking

in the U(1) case. In particular, the view proposed in Section 6.2 could have been taken as well in the

definition of the Type I effective theory leading to the entropy calculation of [23]. If such would have

been the view then, only a relationship between the Immirzi parameter and the Chern-Simons level

would have been required in order to satisfy the area law in this symmetry reduced case as well.
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