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Abstract: Predicting the future state of a turbulent dynamical system such as the atmosphere

has been recognized for several decades to be an essentially statistical undertaking.

Uncertainties from a variety of sources are magnified by dynamical mechanisms and given

sufficient time, compromise any prediction. In the last decade or so this process of

uncertainty evolution has been studied using a variety of tools from information theory.

These provide both a conceptually general view of the problem as well as a way of probing

its non-linearity. Here we review these advances from both a theoretical and practical

perspective. Connections with other theoretical areas such as statistical mechanics are

emphasized. The importance of obtaining practical results for prediction also guides the

development presented.
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1. Introduction

Prediction within dynamical systems originated within the modern era in the study of the solar system.

The regularity of such a system on time scales of centuries meant that very precise predictions of

phenomena such as eclipses are possible at such lead times. On longer times scales of order million

or more years, chaotic behavior due to the multi-body gravitational interaction becomes evident (see

e.g., [1]) and effects such as planetary collisions or system ejection can occur. Naturally at such leads

where chaotic behavior dominates predictions become far less precise. Of course, predictions over such

a timescale are only theoretical and not subject to observational verification.

In the last century prediction within a greater range of practical dynamical systems has been

attempted. Perhaps the best known of these have been turbulent fluids such as the atmosphere and
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ocean as well as earthquake prediction for which the system can be considered even more non-linear.

It is fair to say that considerable progress has been made in the first area; the second area has potential

currently limited by a lack of observations while in the third area more limited success has been achieved

(see e.g., [2]).

Predictions made using a dynamical model typically suffer primarily from two deficiencies: Firstly the

model used may have certain inadequacies as a representation of reality and secondly initial conditions

for a prediction may not be known exactly. Such problems are known as model errors and initial
condition errors respectively. Uncertainty in boundary conditions can sometimes be of importance as

well. We omit a discussion of this effect in the present review.

Progress can be made in improving predictions either by improving physical depictions within models

or by improving the observational network and thereby reducing errors in the initial conditions. There

is considerable evidence for the atmosphere however that no practical observational network will ever

eliminate significant prediction errors due to initial condition errors. Even if one was able to define such

conditions to the round-off accuracy of the computing device deployed, at some practical prediction time

even these minute errors would grow sufficiently large as to overwhelm the forecast made. Such behavior

is of course characteristic of dynamical systems classified loosely as chaotic or turbulent.

In general model errors are almost by definition quite hard to study in a systematic fashion since

they are caused by quite diverse factors which are not very well understood. In fact if they were better

understood they would be removed by improving the dynamical model using this knowledge. Thus the

issue of model error tends primarily to be an engineering rather than a theoretical study. We therefore

focus our attention here on initial condition errors but it should be borne in mind that model errors can

often cause substantial problems for forecasters. It is interesting that the general public often confuses the

two issues and attributes errors due to initial condition uncertainty to the inadequacy of meteorologists

in reducing model errors. Of course meteorologists are not always averse to using the reverse strategy

in response.

Inevitable deficiencies in observing networks imply uncertainty about the initial conditions used in

predictions which can therefore be considered random variables. The study of the evolution of such

variables thus in a general sense can be considered to be the study of predictability. Naturally functionals

connected with uncertainty defined on such variables play an important role in such studies. In the

context of atmospheric prediction, most attention has focused on the first two moments of the associated

probability functions since often such functions are quasi-normal. Study of the problems from the

viewpoint of entropic functionals is the natural generalization of this which allows for a more general

treatment and this has received considerable attention in the last decade and is the subject of this review.

The dynamical systems of practical interest are generally of rather high dimensionality and this

has posed particular problems for predictability studies. It means that study of the evolution of the

multivariate probability distribution is generally impossible and studies are often confined to Monte

Carlo (ensemble) predictions. The size of such ensembles are usually far less than the system

dimensionality which has led to a wide variety of reduced state space techniques for identifying

important error growth directions. Related reduced state space methods can also be used to truncate the

dynamical system to a stochastically forced low order system. Such reductions have proved very useful

in illuminating dominant dynamical processes and may also be amenable to complete analytical solution.
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With regard to predictability studies, the functionals which have been studied most are differential

entropy, information divergence and mutual information. This second is also commonly called the

Kullback-Leibler divergence and the relative entropy. We use the terminology information divergence

or just divergence to distinguish it clearly from the usual entropy. The dynamical evolutions of the first

two are of particular interest with the second being defined with respect to the time evolving probability

distribution and the equilibrium (climatological) probability distribution of the system. In general these

two distributions converge with time and when they are statistically indistinguishable in some sense (to

be made precise below) all predictability has been lost. Indeed an illuminating way to view predictability

is as a measure of the disequilibrium of a statistical system. All this is discussed further in Sections 2, 3

and 5 below.

The review is structured as follows: The next section is a brief review of the mostly well known

properties of the relevant entropic functionals to be discussed. Section 3 discusses general entropic

evolution equations in dynamical systems for which the generic Chapman Kolmogorov equation is

relevant. Several of these results are not new but all of the material is not widely known outside statistical

physics. Section 4 discusses the concept of information (uncertainty) flow within a dynamical system

and its applications. Section 5 discusses various approaches to the study of predictability using the

previous tools and outlines a number of new results obtained in the last decade. Finally Section 6 draws

some general conclusions on work to date and potential future directions.

The approach taken in this review is slanted toward the authors and co-workers work in this area but

other perspectives are also outlined and referenced. In general the nature of this work is rather eclectic

given the attempt to balance the theoretical with the practical. It is hoped there will be materials here

of interest to a rather broad audience. The intention is to connect information theoretic approaches

to predictability with the broad area of statistical physics. A different approach to this subject which

emphasizes more geophysical applications may be found in the excellent review of [3]. Other more

theoretical approaches may be found in [4] and [5]. We have also chosen in the interests of brevity

to omit the treatment of data assimilation and data filters from an information theoretic perspective but

remind the reader that there is significant effort in that area as well (see, for example, [6] and [7]).

2. Relevant Information Theoretic Functionals and Their Properties

Results quoted without proof may be found in [8]. Consider two vector random variables X and Y

with associated countable outcome alphabet A and associated probability functions p(x) and q(x) with

x ∈ A. The entropy or uncertainty is defined by

H(X) ≡
∑
x∈A

p(x) log

(
1

p(x)

)

which is obviously non-negative. The (information) divergence between X and Y is defined by

D(p||q) ≡
∑
x∈A

p(x) log

(
p(x)

q(x)

)

This is also non-negative and only vanishes when p = q so can be considered a “distance”

function between functions although it is neither symmetric nor satisfies the triangle identity of
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Euclidean distance. In the limit that the two probability functions are “close” then indeed it does satisfy

these identities to arbitrary accuracy. This is an indication that the divergence induces a metric structure

in the sense of differential geometry on the space of probability densities. Further discussion can be

found in [9].

If we concatenate X and Y then we can define a joint probability function p(x, y) with associated

marginal distributions p(x) and p(y). The mutual information then measures the “distance” between this

joint distribution and one for which X and Y are independent i.e., p(x, y) = p(x)p(y). Thus we have

I(X;Y ) ≡ D(p(x, y)||p(x)p(y)) =
∑
x,y∈A

p(x, y) log

(
p(x, y)

p(x)p(y)

)

Given its definition, the mutual information represents the degree of dependency between different

random variables. Finally we can use the joint distribution p(x, y) to define the conditional entropy

H(X|Y ) as the expected uncertainty in X given that Y is known precisely.

The entropic functionals defined above can be generalized to so called differential entropic functionals

defined on random variables with continuous alphabets. It is interesting however to attempt to interpret

them as limits of their countable analogs. Thus for example the differential entropy h(X) is defined as:

h(X) ≡ −
∫
S

p(x) log(p(x))dx (1)

where S is the continuous outcome set for X . If we convert this to a Riemann sum we obtain

h(X) ∼ −
∑
i∈Λ

p(x∗
i ) log(p(x

∗
i ))Δ = −

∑
i∈Λ

Pi logPi + logΔ = H(X̃) + logΔ (2)

where Δ is the (assumed constant) volume element for the Riemann sum partitioning Λ chosen. Clearly

as this approaches zero, the second term approaches −∞ and the differential entropy is finite only

because H(X̃) diverges to +∞. This latter divergence occurs because the larger the size of the

index/alphabet set Λ the larger the entropy since there is increased choice in outcomes. One can

overcome this rather awkward limiting process by restricting attention to entropy differences of different

random variables in which case the logΔ term cancels.

By contrast the “differential” divergence is a straightforward limit of the ordinary divergence:

D(p||q) ≡ ∫
S
p(x) log(p(x)/q(x))dx ∼ ∑

i∈Λ p(x
∗
i ) log(p(x

∗
i )/q(x

∗
i ))Δ

= −
∑
i∈Λ

Pi log(Pi/Qi) = D(P ||Q) (3)

Note the cancellation of Δ in the third expression here.

This cancellation effect is also important to the transformational properties of the differential

functionals. In particular suppose we have the following general non-linear change of variables:

y = r(x)

The transformed probability density p
′
(y) is well known to be given by

p
′
(y) = p(r−1(y))

∣∣∣∣det
{
∂r−1(y)

∂y

}∣∣∣∣ (4)
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and the change of variables formula for integration has it that

dx = dy

∣∣∣∣det
{
∂r−1(y)

∂y

}∣∣∣∣ ≡ dy |det J | (5)

where J is the so-called Jacobian of the transformation. So we have

D(p
′ ||q′

) =
∫
S
′ p

′
(y) log(p

′
(y)/q

′
(y))dy =

∫
S
p(x) log((p(x) |det J |) / (q(x) |det J |))dx = D(p||q)

providing the determinant of the transformation does not vanish which is a condition for the

non-singularity of the transformation. Notice that this proof does not work for the differential entropy

because of the lack of cancellation. The difference of the differential entropy of two random variables

will be invariant under affine transformations because then det J is constant and the integral of the

probability density is also constant (unity). For an affine transformation of the form

x′ = Ax+ c

where the matrix A and vector c are constant one can easily establish in using the similar arguments to

above that

h(AX) = h(X) + log |detA| (6)

Notice that this equation also implies that new distributions that are given by

p′(x) = p(x′)

have the same differential entropy providing that the affine transformation is volume preserving i.e.,
detA = ±1. Note however that in general D(p′||p) will be non-zero and positive unless the probability

distribution has a symmetry under the transformation.

In addition to the above general transformational invariance and straightforward limiting property,

the divergence also satisfies an intuitive fine graining relationship. Thus if one subdivides a particular

partitioning Λ into a finer partitioning Λ′ then one can easily establish (using the log sum inequality) that

the divergence defined on the new partition is at least as large as the original coarse grained functional.

Thus if the limit to the continuous functional is taken in this fine graining fashion then the divergence

converges monotonically to the continuous limit. This has the intuitive interpretation that as finer and

finer scales are considered, that “differences” in probability functions become larger as finer structure is

used to make the assessment of this “difference”.

3. Time Evolution of Entropic Functionals

We begin our discussion within the context of a general stochastic process. A well known result

from information theory called the generalized second law of thermodynamics states that under certain

conditions the divergence is a non-increasing function of time. We formulate this in terms of causality.

Definition 1. Suppose we have two stochastic processes X(t) and Y (t) with t ∈ R denoting time and

associated probability functions p and q the same outcome sets {x(t)}. We say that the two processes

are causally similar if

p (x(t)|x(t− a)) = q (x(t)|x(t− a)) ∀x ∀t ∈ R and ∀a > 0 (7)
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This condition expresses intuitively the notion that the physical system giving rise to the two processes

is identical and that precise knowledge of the set of values for outcomes at a particular time are sufficient

to determine the future evolution of probabilities. This is intuitively the case for a closed physical system

however not the case for an open system since in this second case other apparently external variables may

influence the dynamical evolution. Note that the condition of probabilistic causality (7) introduces an

arrow in time (via the restriction a > 0). Also note that a time-homogeneous Markov process satisfies

this condition.

It is now easy to show that the divergence of two causally similar processes is non-increasing (the

proof can be found in [8]). In some systems referred to as reversible (see below) this functional will

actually be conserved while in others termed irreversible, it will exhibit a strict decline. Note that this

result applies to all causally similar processes but often one is taken to be the equilibrium process and in

irreversible processes the divergence then measures the degree of equilibration of the system.

Consider now a continuous time continuous state Markov process governed by the well known (see

e.g., [10]) Fokker Planck equation (FPE):

∂tp = −
N∑
i=1

∂i [Ai(x, t)p] +
1

2

N∑
i,j=1

∂i∂j

{[
B(x, t)Bt(x, t)

]
ij
p
}

(8)

Cij ≡ [
B(x, t)Bt(x, t)

]
ij

non− negative definite (9)

where Ai and Cij are respectively referred to as the drift vector and diffusion tensor. We can derive

a series of interesting results regarding the time evolution of both differential entropy and divergence.

Detailed proofs may be found in the Appendix. The first result is well known in statistical physics and

dynamical systems studies (see, for example, [11] and [12]).

Theorem 2. Suppose we have a stochastic process obeying Equation (8) with B = 0 and associated
probability function f then the ordinary (differential) entropy satisfies the evolution equation

ht =

∫
f∇ �Adx = 〈∇�A〉f (10)

Notice the importance of ∇�A to the entropy evolution. This also measures the rate at which an

infinitesimal volume element expands or contracts in the dynamical system. When it vanishes the system

is sometimes said to satisfy a Liouville condition. Hamiltonian systems which includes many inviscid

(frictionless) fluids satisfy such a condition. We shall use Equation (10) in a central way in the next

section when we consider the concept of information flow.

A particular instructive case when ∇�A < 0 occurs in the case of dissipative systems. A damped

linear system has this quantity as a negative constant. In such a case the entropy declines since all

trajectories end in the same fixed point. In the case that the system has some stochastic forcing and so

the diffusion term in the Fokker Planck equation does not vanish then the stochastic forcing generally

acts to increase entropy as the following extension shows:

Theorem 3. Suppose we have a general stochastic process with probability function p governed by a
Fokker Planck equation which is restricted by the stochastic forcing condition

∂iCij = 0 (11)
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where we are assuming the summation convention. Then the evolution of the differential entropy is given
by the equation

ht = 〈∇ •A〉p +
1

2
〈Cij∂i (log p) ∂j (log p)〉p (12)

The second term here clearly results in no decline in entropy given that Cij is non-negative definite.

In the case of a stochastically forced dissipative system it is possible for the system to reach an

equilibrium where the entropy creation due to the stochastic forcing is balanced by its destruction via

the dissipative deterministic dynamics. This balance is an example of a fluctuation dissipation result.

A particular case of this theorem with Cij constant was stated in [11] and the two terms on the right

hand side of (12) were referred to as entropy production and entropy flux respectively. Also within this

reference there is a discussion of the relationship of this type of entropy evolution equation to others

proposed in statistical physics using Lyapunov exponents (e.g., [13]).

In contrast to the evolution of differential entropy, the divergence is conserved in all systems even

dissipative ones providing B = 0:

Theorem 4. Suppose we have two stochastic processes obeying Equation (8) which have the additional
condition that B(x, t) = 0 then the divergence of the two processes (if defined) is time invariant.

In many dynamical systems with B = 0 if one calculates the divergence with respect to a particular

finite partitioning of state space rather than in the limit of infinitesimal partitioning then the conservation

property no longer holds and in many interesting cases it declines with time instead and the system

equilibrates. This reflects the fact that as time increases the difference in the distributions tends to occur

on the unresolved scales which are not measured by the second divergence calculation. Such a coarse

graining effect is of course the origin of irreversibility and often the “unresolved” scales are modeled via

a stochastic forcing i.e., we set B 
= 0. In such a case we get a strict decline with time of divergence.

The following result was due originally to [14], the proof here follows [15]

Theorem 5. Suppose we have two distinct (i.e. differing on a set of measure greater than zero) stochastic
processes obeying (8) with C= B(x, t)Bt(x, t) positive definite almost everywhere and with associated
probability densities f and g then the divergence strictly declines and satisfies the evolution equation

D(f ||g)t = −〈Cij∂i (log(f/g)) ∂j (log(f/g))〉f (13)

This final theorem shows the central role of stochastic forcing in causing divergence to decline and

hence to the modeling of irreversibility. In the context of statistical physics, the non-positive term on

the right hand side of (13) with g set to the equilibrium distribution (invariant measure) forms a part of

discussions on non-equilibrium entropy production (see [11]).

In stochastic modeling of dynamical systems it is common to separate the state space into fast and

slow components and model the former with noise terms and dissipation of the slow modes. Presumably

in this case if such a model works well as a coarse grained model for the total unforced and undissipated

system then the last two theorems imply that there is a “leakage” of divergence from the slow to the fast

components of the system.

It is an empirical fact that in many physical systems of interest, we find that if a slow subspace is

chosen which represents a large fraction of the variability of the system then the subspace divergence
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will always show a monotonic decline which is suggestive that stochastic models of this system may

work well. In the more general dynamical system context however it is an interesting question under

what circumstances the fine scales can cause an increase in the divergence with respect to the coarse

scales. After all the coarse grained system is not closed and so the monotonicity result quoted at the

beginning of this section need not necessarily apply. Related questions have rather naturally generated

considerable interest in the statistical physics literature since they relate to the fundamental issue of

temporal direction. There is a vast literature and interested readers are referred to, for example, [16–18]

and [19] Chapter 5.

It is possible to extend the Fokker Planck equation to include discontinuous jump processes and then

this equation becomes the more general (differential) Chapman-Kolmogorov equation. The additional

terms are often referred to (on their own) as the master equation. It is then possible by similar arguments

to those given above to conclude that the jump processes result in an additional strict monotonic decline

in divergence. The interested reader is referred to Chapter 3 of [15] for a sketch proof and more

information and references.

There is also a well known connection between these results and the classical kinetic theory of

Boltzmann which applies to dilute gases. In the latter case the probability distribution of molecules

in the absence of collisions is controlled by an equation identical to the Fokker Planck equation with

B = 0. The molecules themselves are controlled by a Hamiltonian formulation which means that the

probability equation can be shown to also satisfy ∇ • A = 0. Thus both the entropy and divergence

are conserved. Collisions between molecules are modeled probabilistically using a hypothesis known as

the Stosszahlansatz or molecular chaos hypothesis (see [20] p. 375). This amounts to the insertion of

master equation terms and so the resulting Boltzmann equation can be viewed as a Chapman Kolmogorov

equation. The particular form of the master equation ensures that both divergence and differential entropy

satisfy monotonic declines and increases respectively. This result is known as Boltzmann’s H-theorem

and is the traditional origin of irreversibility in statistical mechanics. More detail can be found in standard

treatments of statistical mechanics.

In the context of inviscid fluid turbulence there has been considerable interest in the establishment of

H-theorems (see e.g., [21–23] and references cited therein). A revealing and conceptually powerful way

in which such turbulence can be effectively coarse-grained (and hence simplified) is through moment

closures such as eddy-damped Markovian methods (see [24]). This is basically equivalent to the

stochastic modeling of the fluid (see [25] Chapter 5) in the manner considered above. Interestingly

when this particular kind of coarse-graining is performed one is able to establish rigorously that

entropy monotonically increases as a fluid approaches statistical equilibrium (see [21]). It is worth

re-emphasizing that this state of affairs is not necessarily guaranteed in more general systems for which

Equation (12) applies.

4. Information Flow

4.1. Theory

If we partition a closed dynamical system then an interesting question arises regarding the evolution

of uncertainty within the subsets chosen. How does it depend on the evolution of the other partitions? In
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general as we saw in the last section, entropy is not conserved globally unless the Liouville property

holds, so the flow of uncertainty within a system does not usually follow the standard continuity

equation satisfied by quantities such as energy, charge or mass. This concept of uncertainty flow has

some important practical applications since it is clear that reduction of uncertainty in one partition

member at a particular time may depend importantly on the reduction of uncertainty in another partition

member at an earlier time. Clearly then understanding the flow of uncertainty is potentially important to

optimizing predictions.

This issue was first addressed by [26] who studied the propagation of perturbations in simple

non-linear dynamical systems using a “moving frame” or co-moving Lyupanov exponent defined by

λ(v; x1, x2) ≡ lim
t→∞

1

t
ln

[
Δ(v, x1, x2, t)

Δ(v, x1, x2, 0)

]

where perturbation amplitudes Δ are defined using an L2 norm on a moving interval:

Δ(v, x1, x2, t) ≡
[∫ x2+vt

x1+vt

|δψ(x, t)|2 dx
] 1

2

with respect to small deviations in the system variables ψ(x, t). Maximization of this with respect to the

moving frame velocity v showed the preferred velocity of growing perturbations. Since regular Lyupanov

exponents are often related to entropy production it was natural to try to find an information theoretic

counterpart for the co-moving exponents. This turned out empirically and in the systems studied, to

be the time lagged mutual information (TLMI) of random variables I(X(t1);Y (t2)) where the random

variables are located at different spatial locations. Associated with the TLMI is the natural velocity scale

v′ ≡ d(X,Y )

|t2 − t1|
where d is the spatial distance between the random variables. The TLMI turned out to be maximized

when this velocity matched that which maximized the co-moving Lyupanov exponent.

In addition to this match of physical propagation scales, mutual information has an appealing

interpretation as the reduction in uncertainty of X(t1) due to perfect knowledge of Y (t2) i.e., roughly

speaking, the contribution of uncertainty in the former due to uncertainty in the latter. This follows from

the identity

I(X(t1);Y (t2)) = h(X(t1))− h(X(t1)|Y (t2)) (14)

This measure of information flow was further verified as physically plausible in more complex

and realistic dynamical systems by [27]. It was however shown to give misleading results in certain

pathological situations by [28]. In particular when both X and Y are subjected to a synchronized source

of uncertainty then unphysical transfers are possibly indicated by the lagged mutual information. This

is somewhat analogous to over interpreting a correlation as causative. Note that the mutual information

reduces to a simple function of correlation in the case that the distributions are Gaussian.

In [29] a new information theoretic measure of flow was suggested which overcame the problem of

lack of causality identified in the earlier study. The situation was considered where each spatial location

was a Markov process of order q with time being discretized with an interval of Δt. Thus the probability

function at any particular spatial point depends only on the values at this particular location for the
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previous q times. In such a situation there can, by construction, be no information flow between spatial

points. He then tested the deviation from this null hypothesis using a conditional divergence functional.

For an order q = 1 Markov process this transfer entropy is defined as (see [29])

T (Y → X, t) ≡
∫ ∫ ∫

p(x(t+Δt), x(t), y(t)) log
p(x(t+Δt)|x(t), y(t))

p(x(t+Δt)|x(t)) dx(t+Δt)dx(t)dy(t)

Conceptually this represents the expected change in the probability function at a particular spatial

location due to perfect knowledge of a random variable at another location and earlier time beyond

which that would result from the perfect knowledge of the first variable at the earlier time. This rather

long winded description is perhaps better expressed by writing the transfer entropy (TE) in terms of

conditional entropies:

T (Y → X, t) = h(X(t+Δt)|X(t))− h(X(t+Δt)|X(t),Y (t)) (15)

These results can be easily generalized to the case q > 1 with the additional penalty of further

complexity of form.

An important aspect of the above two measures is their practical computability. The TLMI is a

bivariate functional while the TE is a functional of order q + 1. Computation of entropic functionals in

a practical context generally requires Monte Carlo methods (in the predictability context, the so-called

ensemble prediction) and often the choice of a coarse graining or “binning” with respect to random

variable outcomes. The coarse graining is required in conjunction with Monte Carlo samples to estimate

required probability densities. This as usual creates problems in defining functionals of order greater

than perhaps five or so since there are then for most practical cases, insufficient ensemble members to

reliably sample the required dimensions of the problem. This issue is commonly referred to as the “curse

of dimensionality”. The functionals mentioned above can sometimes avoid this problem because of their

low order.

A different approach to this problem was taken in [30] who took as their starting point the basic

entropy evolution Equation (10) in the absence of stochastic forcing. To simplify things they considered a

two random variable system. In this case it is possible to calculate the entropy evolution equation for one

of the random variables alone by integrating out the other variable in the (Liouville) evolution equation:

dH1

dt
= −

∫∫
p(x1, x2)

[
A1

p(x1)

∂p(x1)

∂x1

]
dx1dx2

where Ai are the deterministic time tendency components (see Equations (8) and (10)). Now if the

random variable X1 was not influenced by the random variable X2 then we would expect the entropy of

this first variable to evolve according to the one dimensional version of (10) i.e.,

∂H∗
1

∂t
=

〈
∂A1

∂x1

〉
p

The difference between the actual X1 entropy H1 and the idealized isolated entropy H∗
1 can be

interpreted as the flow of uncertainty from X2 to X1 or expressed differently as the “information flow”

T2→1 ≡ H1 −H∗
1
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In a number of simple dynamical systems this information flow was computed and was found to

behave qualitatively but not quantitatively like the transfer entropy of Schreiber discussed above. In

particular it was observed that in general flow is not symmetric in both cases i.e.,

T2→1 
= T1→2

One would, of course, expect symmetry in the case of the flow of a conserved quantity which is an

indication of the peculiarity of uncertainty/information flow.

The approach above was generalized to the case of a finite number of random variables in the two

papers [31] and [32]. Much work remains to be done in exploring the implications of this approach

in dynamical systems of practical interest. A different generalization of the formalism was proposed in

[33] who considered the information flow between two finite dimensional subspaces of random variables.

Denoting the two outcome vectors by x and y, these authors considered the (Ito) stochastic system

dx = (F1(x) + F12(x, y))dt

dy = F2(x, y)dt+ BdW (16)

where B is a constant matrix governing the additive stochastic forcing (see (8)). The application

envisaged by this system is where the x are slow coarse grained variables while the y are fast fine

grained variables. The information flow Ty→x then plays the role of the second entropy production term

of Equation (12) since it represents uncertainty generation in the coarse grained variables due to the

interaction with fine grained variables. Associated with this system is evidently a full Fokker Planck

rather than the simpler Liouville equation. However the general idea of [30] of flow between y and x

still goes through in a similar manner. In the important case that the distribution for x is exponential

p1(x, t) = exp(−φ(x, t))

it is easily derived that the information flow has the simple form

Ty→x = −〈∇x · F12〉p + 〈F12 · ∇xφ〉p

and in the case that φ and F12 are polynomials in x this reduces to a matrix equation in moments of the

appropriate exponential distribution family. Such distributions are, of course, widely seen in equilibrium

statistical mechanics (Gibbs ensembles) or in quasi-equilibrium formulations of non-equilibrium

statistical mechanics [34].

In the case that the F1, F12 and F2 satisfy certain natural divergence free conditions common in fluid

systems, the authors are able to derive an interesting relation between the divergence rate of change and

the information and energy flows within the system:

D(p1||p1eq)t = −Ty→x +
1

σ2
Ey→x

where we are assuming B in (16) is diagonal with the white noise forcing components having constant

variance σ2 and p1eq is the coarse grained equilibrium distribution. This equation is to be compared

with (13) where the direct stochastic representation of the fine grained variables causes the information

divergence to decline.
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In a strict formal sense the methods detailed in [30–33] are (in the view of this author) to be preferred

to the more empirical methods associated with TLMI and TE since they are derived from the fundamental

entropy evolution equation in the identical manner that flows of conserved quantities are derived between

subsystems. One might criticize even these approaches since there is no insistence on a monotonic

increase in entropy in the governing equations. In the view of this author this is less of an issue

since many stochastic dynamical systems of importance to geophysical applications do not obey such

a restriction and yet the flow of uncertainty in such systems is a very natural subject for investigation.

Note however that the information divergence on the other hand does obey such a monotonic principle

at least in the stochastic systems of Section 3. In many of the simple models investigated to date it is

reassuring that the different types of measures proposed do not show significant qualitative difference.

These connections on the other hand clearly deserve further much broader investigation. The empirical

measures have strong practical advantages as we shall see below and in addition have clear and important

practical interpretations in terms of conditional uncertainty reduction so are likely to play an important

role in the future.

4.2. Applications

One important practical application of the preceding formal development occurs in the problem of

forecasting within dynamical systems. In high dimensional systems, errors in the initial conditions

inevitably occur because the observing system typically is only able to partially resolve state space.

More specifically for geophysical prediction, the high dimensionality is caused by the requirement of

adequately resolving the spatial domain of interest and any observing network used to define initial

conditions is typically not comprehensive with regard to model resolution.

These errors propagate and magnify as the prediction time increases (see next section). One approach

to improving predictions is therefore obviously to reduce initial condition errors. Unfortunately however

the very large improvements in observing platforms required to achieve this for all initial conditions are

very expensive. Frequently however predictions in specific areas are regarded as having a high utility

(for example, a storm forecast over a large city) and the initial conditions errors affecting such specific

predictions are believed to be confined to very particular geographical locations. Given such a scenario,

a targeted observation platform improvement strategy may be a very effective and inexpensive method

of improving important predictions.

For the above strategy to work however the sensitivity of prediction errors to initial condition errors

must be well known. In atmospheric prediction, common methods of identifying this sensitivity are via

linearization of the atmospheric dynamical system (see e.g., [35]) or by the use of a Kalman filter (see

e.g., [36]). Such methods however make rather restrictive assumptions namely that linear dynamics are

appropriate or that prediction distributions are Gaussian. These are questionable particularly for long

range, low skill predictions since the dynamical systems involved are highly non-linear and the typical

states therefore turbulent.

The measures of uncertainty/information flow discussed above make none of these restrictive

assumptions so are obvious candidates for improving this sensitivity identification. This can be seen

directly in the simplest measure, the TLMI, by consideration of Equation (14) with t1 set to the prediction

time and t2 to the initial time. The TLMI then tells us how much the prediction random variable
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X(t1) would have its uncertainty reduced if we could reduce the uncertainty of the initial condition

random variable Y (t2) to zero. This is precisely the sensitivity we require for targeted initial condition

improvement. The fact that the TLMI is a bivariate functional also means that Monte Carlo techniques

are sufficient for its calculation.

The feasibility of using this functional in a practical setting was investigated in the atmospheric case

by [37]. The author used a fairly realistic global model of the atmosphere. Initial conditions for the

model were drawn as sample members from a simple multivariate Gaussian distribution intended to

represent errors due to observing network sparseness. Each sample/ensemble member was integrated for

around a week using the dynamical model and the TLMI calculated for a prediction at a specific location

and dynamical variable of interest. In general the functional tended (in mid-latitudes at least) to peak

strongly in small regions to the west of the prediction location. This geographically confined sensitivity

lasted for the duration of the ensemble prediction. Two examples at 6 days are shown in Figure 1a and

1b which are reproduced from [37]. Calculated here are the TLMI with prediction and initial condition

variables both the same and respectively temperature and zonal wind. Both random variables are at a

near surface location as there is little vertical propagation of uncertainty. The sensitivity is well confined

geographically and it is worth observing that by 6 days an ensemble prediction for the regions displayed

typically exhibits marked non-linear effects. The TE of order 1 between the prediction time and the initial

conditions was also calculated and found to give similar results except in the vicinity of the location of the

particular prediction variable under consideration. Consideration of the right hand side of Equation (15)

shows that this result is not surprising.

Figure 1. The TLMI regions for a six day prediction at the center of the diagram (shown as a

solid circle). The left panel shows near surface temperature while the right shows zonal wind.

Predictions were for the same quantities. Reproduced with permission from an original figure

in Journal of the Atmospheric Sciences published by the American Meteorological Society.

� �

The application of TE to non-linear time series such as those useful in biological situations has been

considered by [28] who studied the interaction of heart and breathing rates. He found that unlike the

TLMI, the TE exhibited an asymmetry with the transfer entropy from heart to breathing being generally

greater than that in the reverse direction. This suggested the dominance causally of the heart which
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accords with basic biological understanding. Their results were however somewhat sensitive to the

coarse graining chosen to evaluate the various probability densities. This sensitivity was not apparent

qualitatively in the predictability applications discussed earlier given a sufficiently large ensemble.

5. Predictability

5.1. Introduction

In seeking to make predictions in any dynamical system one always needs to deal with uncertainty.

This is particularly so if such a system is large and complex. In general predictions within such

systems are usually made by solving an initial value problem using a set of partial differential equations.

Uncertainty is introduced since the initial value vector can never be precisely defined and indeed

observational limitations mean that this error can be a small but appreciable fraction of the desired

accuracy of any practical prediction.

As mentioned earlier, when predictions of the real world are attempted one also faces an uncertainty

associated with its representation by a set of differential equations. In general, this second kind of

uncertainty which is often called model error, can only be measured rather indirectly via the careful

comparison of model predictions to reality and an attempted disentanglement of the two kinds of error.

This is a complex undertaking and so here we usually restrict our attention only to errors of the first kind

and deal with what is sometimes referred to as perfect model predictions.

5.2. Error Growth Approaches

We briefly review the traditional approach to the predictability problem in geophysical applications.

More detail can be found in the review [38], Chapters 2 and 3 of [19] and the book [39]. This approach

studies the separation of initially very close dynamical trajectories and is concerned with the (initially

exponential) rate of growth of such errors as well as the associated vectors or state space patterns of

maximal growth. The approach was pioneered in the 1960s by Edward Lorenz of MIT and a review may

be found in [40]. It has the great virtue of simplicity and hence transparency.

In dynamical systems theory this study has led naturally to the concepts of Lyapunov exponents and

vectors. One may project an arbitrary infinitesimal error onto these vectors and each component grows

exponentially at the rate controlled by the corresponding exponent. The exponents (unlike the vectors)

are global quantities i.e., do not depend on the particular initial state (see [41]). They measure the (global)

divergence of trajectories within the system and so are related naturally to the rate of uncertainty growth

associated with infinitesimally small errors. The largest exponent clearly gives an approximate global

e-folding time for small errors within the system so can be used to roughly deduce a predictability limit

since the time at which errors have grown to be comparable with typical system deviations is the time

at which predictability is essentially lost. It is worth emphasizing the limitations of this estimate since

the growth rate analysis applies only to infinitesimally small errors and not to the later and finite errors

(see below).

The interpretation of the Lyapunov exponents as measures of uncertainty growth finds formal

expression in the Kolmogorov-Sinai entropy hKS which measures the global time rate of change of

the entropy of system trajectories evaluated using a continuum limit of dynamical system partitioning.
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Since the exponents are measuring the exponential rate of growth of infinitesimal state space volumes

in various directions, the discussion of Section 3 on entropy evolution indicates intuitively at least that

this concept appears to imply that hKS is the sum of all positive Lyupanov exponents. Only the positive

exponents are important since at the infinitesimal limit of errors (or partitioning) the negative exponents

do not contribute to uncertainty change. Rigorously [42] has established that in a general class of systems

hKS is bounded above by this positive sum. For more (mathematical) discussion on when this upper

bound is achieved and more detail in general see the review [43].

In a practical context, ideas of error growth similar to those above have proven highly influential since

they often imply a very large reduction in the degrees of freedom of the high dimensional dynamical

system underlying realistic turbulent systems. This naturally aids in predictability analysis. Since the

calculation of Lyapunov vectors is often technically difficult in practical situations, instead either singular

vectors and values are derived using a linearization of the system (see [38]) or “bred” vectors (and values)

are derived by iterating a system over a fixed time interval of relevance (see [44]). Vectors of this type

form the basis for operational probabilistic prediction since they are assumed to span the important

directions of error growth (see below). Again note however that this argument is really only valid over

rather short prediction times where the linearization is valid or the bred vector iteration time relevant.

The restriction of the previous methods to small errors and short prediction times has led to finite

size generalizations of the Lyapunov vectors and exponents (see [45,46] and for a related normal mode

concept [47]). Associated with these finite concepts has been a coarse-grained version of hKS (see,

for example, [48]) which is evaluated with respect to a coarse partition of state space rather than the

continuum limit assumed for hKS . Idealized dynamical systems with many degrees of freedom have

been analyzed with these coarse-graining tools and it has been discovered that the usual (infinitesimal)

Lyapunov exponent analysis is often irrelevant to practical predictability and the analysis shows that

much smaller “hydrodynamical” Lyupanov exponents and coarse grained vectors are more important

(see [19] p. 50 and p. 65). This remains a very important and active area of research and the interested

reader is referred to the excellent recent monograph [19].

5.3. Statistical Prediction

For the remainder of this review we consider approaches that consider the probability distribution

associated with the full state space. As we shall see these approaches are not restricted to small errors or

short prediction times however the issue of coarse graining discussed above does play a central role in

obtaining approximate results in realistic systems.

Probabilistic approaches to prediction have a long history most particularly in the context of the

atmosphere. An excellent survey of this may be found in the review [38]. In the practical context,

probabilistic prediction is implemented by sampling an initial condition distribution and this Monte

Carlo methodology is called “ensemble prediction”. This procedure is discussed in more detail below.

Historically this sampling is often restricted to subspaces spanned by the error vectors discussed in the

last subsection (see e.g., [49] for Lyapunov vectors; [35] for singular vectors and [44] for bred vectors)

but other approaches involving only the initial condition probability distribution have been proposed (see

e.g., [50]). These subspace approaches are motivated in part by the practical consideration that ensemble
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sample sizes are, for complex and expensive models, quite small compared to the dimension of the state

space under consideration.

The present review is focussed on using information theoretic functionals to analyze the evolution of

prediction probability distributions. As a consequence little attention is paid to how the initial distribution

is defined. The philosophy adopted is typically to assume that this task has been adequately addressed

using a good data assimilation methodology. Ensemble prediction sampling when utilized is assumed

to be done in a straightforward unbiased fashion from the assumed initial condition distribution. No

restriction of the initial condition distribution to a particular subspace is assumed.

We also restrict our focus here to dynamical systems associated with turbulent fluids such as the

atmosphere and ocean. Here routine predictions are common and in many situations demonstrably

skillful. Additionally the degradation of this skill with prediction time is particularly evident. Predictions

within the solar system are generally much more skillful but the degradation of this skill is not as

pronounced on practical time scales (see e.g., [1]). As we shall argue below, the degradation time scale

is closely related to the statistical equilibration time of the dynamical system. For the atmosphere this is

of the order of a month or so. In the ocean it can be two to three orders of magnitude longer than this. In

the solar system it is several orders of magnitude longer still [51] and so cannot be observed.

Given the uncertainty in the initial value vector, a powerful perspective regarding prediction is to

regard it fundamentally as a statistical rather than deterministic undertaking. One is interested not just

in the prediction itself but also in the associated uncertainty. Thus from a mathematical viewpoint,

prediction is best considered as the study of the temporal evolution of probability distributions associated

with variables of practical interest. Such a probability distribution will be referred to here as the

prediction distribution.

Statistical predictions within such systems are often not considered in isolation but are evaluated

against some reference distribution associated with the known long term behavior of the system. This

might be considered from a Bayesian perspective as representing a prior distribution of the system since

it gives the statistical knowledge of the system prior to any attempted prediction. This reference or prior

distribution will be referred to here as the equilibrium distribution since under an ergodic hypothesis,

the longer term statistical behavior of the system can also be considered to be the equilibrium behavior.

In Bayesian terminology the prediction distribution is referred to as the posterior since it is a revised

description of the desired prediction variables once initial condition knowledge is taken into account.

Different aspects of the prediction and equilibrium distribution figure in the assessment of prediction

skill. Indeed a large variety of different statistical functionals has been developed which are tailored

to specific needs in assessing such predictions. It is, of course, a subjective decision as to what is and

is not important in such an evaluation and naturally the choice made reflects which particular practical

application is required. An excellent discussion of all these statistical issues is to be found in [52] which

is written from the practical perspective.

Given that statistical prediction is essentially concerned with the evolution of probability distributions

and the assessment of such predictions is made using measures of uncertainty, it is natural to attempt to

use information theoretic functionals in an attempt to develop greater theoretical understanding. In

some sense such an approach seeks to avoid the multitude of statistical measures discussed above and

instead focus on a limited set of measures known to have universal importance in the study of dynamical
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systems from a statistical viewpoint. The particular functionals chosen to do this often reflect the

individual perspective of the theoreticians and it is important to carefully understand their significance

and differences.

5.4. Proposed Functionals

To facilitate the discussion we fix notation. Suppose we make a statistical prediction in a particular

dynamical system. Associated with every such prediction is a time dependent random variable Y (t) with

t ≥ 0 and this variable has a probability density p(y, t) where the state vector for the dynamical system

is y. Naturally there is also a large collection of such statistical predictions possible each with their own

particular initial condition random variable. We denote the random variable associated with the total set

of predictions at a particular time by X(t) with associated density q(y, x, t) where x is some labeling of

the different predictions. For consistency we have

px(y, t) = q(y, x, t) (17)

Note that the particular manner in which a collection of statistical predictions are assembled remains

to be specified. In addition another important task is to specify what the initial condition distributions are

exactly. Clearly that issue is connected with an assessment of the observational network used to define

initial conditions.

To the knowledge of this reviewer, the first authors to discuss information theoretic measures of

predictability in the atmospheric or oceanic context were [53] who considered a particular mutual

information functional of the random variables X(0) and X(t). More specifically, they considered a

set of statistical predictions with deterministic initial conditions which had the equilibrium distribution.

This is a reasonable assumption because it ensures a representative sample of initial conditions. The

framework was considered in the specific context of a stochastic climate model introduced earlier by the

authors. In a stochastic model deterministic initial conditions are meant to reflect a situation where errors

in the unresolved fine grained variables of the system are the most important source of initial condition

errors. In the model considered, the equilibrium distribution is time invariant which implies that this is

also the distribution of X(t) for all t. As we saw in the previous section we have the relation

I(X(t);X(0)) = h(X(t))− h(X(t)|X(0)) (18)

so the functional proposed measures the expected reduction in the uncertainty of a random variable

given perfect knowledge of it at the initial time [54]. This represents therefore a reasonable assessment

of the expected significance of initial conditions to any prediction. As t → ∞ the second conditional

entropy approaches the first unconditioned entropy since knowledge of the initial conditions does not

affect uncertainty of X(t). Thus as the system equilibrates this particular functional approaches zero.

Note that it represents an average over a representative set of initial conditions so does not refer to any

one statistical prediction. We shall refer to it in this review as the generic utility. The authors referred to

it as the transinformation. We adopt the different terminology in order to contrast it with other proposed

functionals (see below).

A few years later a somewhat different approach was suggested by [55] who rather than considering

a representative set of statistical predictions, considered instead just one particular statistical prediction.
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They then defined a predictability measure which was the difference of the differential entropy of the

prediction and equilibrium distributions:

R(t) = h(Y (∞))− h(Y (t)) (19)

which they call the predictive information [56]. This has the straightforward interpretation as

representing the reduction in uncertainty of a prediction variable Y (t) compared to the equilibrium

or prior variable Y (∞). This appears to be similar to Equation (18) conceptually since if the former

author’s framework is considered, then h(Y (∞)) = h(X(t)) but remember that (19) refers to just one

particular statistical prediction. In the special case that both the prediction and equilibrium distributions

are Gaussian one can derive the equation [57]

R(t) = −1

2
log

(
det

(
C(t)C−1(∞)

))
(20)

where the matrix C(t) is the covariance matrix for the Gaussian distribution at time t. The matrix

C(t)C−1(t = ∞) is easily seen to be non-negative definite assuming reasonable behavior by the

equilibrium covariance. The eigenvectors of this matrix ordered by their non-negative eigenvalues

(from greatest to least) then contribute in order to the total predictive information. Thus these vectors

are referred to as predictability patterns with the first few such patterns often dominating the total

predictive information in practical applications. In a loose sense then these are the predictability analogs

of the principal components whose eigenvalues explain variance contributions rather than predictive

information. Note that the principal components are the eigenvectors of C(∞).

Another approach to the single statistical prediction case was put forward by the present author in

[58] (see also [59]). They proposed that rather than considering the difference of uncertainty of the

prior and posterior distributions that the total discrepancy of these distributions be measured using the

divergence functional. The motivation for this comes from Bayesian learning theory (see [60] Chapter 2).

Here a prior is replaced after further observational evidence by a posterior and the discrepancy between

the two, as measured by the divergence, is taken as the utility of the learning experiment. Information

theory shows that the divergence is the coding error made in assuming that the prior holds when instead

the posterior describes the random variable of interest. Given this background, the divergence can be

regarded as a natural measure of the utility of a perfect prediction. We shall refer to this functional as the

prediction utility.

These two functionals differ conceptually since one uses the reduction in uncertainty as a measure

while the other measures the overall distribution change between the prior and posterior. This difference

can be seen abstractly as follows: Consider a translation and a rotation of a distribution in state-space

then as we saw in section 2, the difference of the entropy of the original and transformed distributions is

zero but the divergence of the two distributions is generally positive. These issues can be seen explicitly

by calculating the divergence for the Gaussian case and comparing it to (20):

D(p(t)||p(∞)) = −1
2
log(det(C(t)C−1(∞))) + 1

2
tr([C(t)− C(∞)]C−1(∞)) + 1

2
y(t)tC−1(∞)y(t)

(21)

where we are assuming for clarity that the mean vector y(∞) = 0. The first term on the right here is

identical to (20) so the difference in the measures comes from the second and third terms. The third
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non-negative definite term arises from the distributions having different means which is analogous to the

translation effect discussed above. The second term is analogous to the rotation effect discussed above:

Suppose hypothetically that the equilibrium Gaussian distribution is in two dimensions with a diagonal

covariance matrix but with variances in the two directions unequal. Consider hypothetically that the

prediction distribution is a rotation of this distribution through π/2. Evidently the divergence of the two

distributions will not occur through the first or third term in (21) since the mean vector is unchanged as

is the entropy. Thus the second term must be the only contributor to the positive divergence.

A very simple concrete example illustrates the differences discussed. Suppose that temperature at a

location is being predicted. Further suppose that (realistically) the historical and prediction distributions

for temperature are approximately normal. Next suppose that the historical mean temperature is 20 ◦C

with a standard deviation of 5 ◦C. Finally suppose that the statistical prediction for a week in advance

is 30 ◦C with a standard deviation of 5 ◦C. It is clear that the first measure discussed above would be

zero whereas the second would be 2.0 and due only to the third term in (21). Clearly no reduction in

uncertainty has occurred as a result of the prediction but the utility is evident. Obviously this example is

somewhat unrealistic in that one would usually expect the prediction standard deviation to be less than

5 ◦C but nevertheless the utility of a shift in mean is clear and is intuitively of a different type to that

of reduced uncertainty. Prediction utility of this kind in a practical context is partially measured by the

widely used anomaly correlation skill score (see [61]).

The transformational properties for the three functionals above were discussed in Section 2: The

divergence is invariant under a general non-degenerate non-linear transformation of state space. The

mutual information, since it is the divergence of two particular distributions, can also be shown to

have this property. The difference of differential entropies is invariant under the smaller class of affine

transformations. Note that this does not cover all invariant transformations for this case since there are

non-affine transformations with det J constant.

There is an interesting connection between the three proposed functionals that was first observed by

[3]: Suppose we take the general stochastic framework assumed above (not just the specific model but

any stochastic model) and calculate the second and third functionals and form their expectation with

respect to the set of statistical predictions chosen. It is easy to show then that they both result in the

first functional. The proof is found in the appendix. Thus for the particular case of a stochastic system

with deterministic initial conditions, the predictability functionals averaged over a representative set of

predictions both give the same answer as the functional originally suggested by [53].

Finally it is conceptually interesting to view predictability as a measure of the statistical

disequilibrium of a dynamical system. Asymptotically as the prediction distribution approaches the

equilibrium distribution (often called the climatology) all measures of predictability proposed above

approach zero. The initial conditions become less and less important and the prior distribution is

approached meaning that the act of prediction has resulted in no new knowledge regarding the random

variables of interest in the system. As we saw in Section 3, in a variety of important stochastic

dynamical systems, this disequilibrium is measured conveniently by the divergence functional since

it is non-negative and exhibits a strict monotonic decline with time. These properties thus allow it to

be used to discuss the general convergence properties of stochastic systems as discussed for example

in [15] Section 3.7. As we also saw in Section 3 if the system is fully resolved i.e., all fine grained
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variables are retained, then the divergence is conserved. Thus it is fundamentally the coarse graining

of the system that is responsible for the irreversible equilibration and hence loss of predictability.

In practical fluid dynamical systems this occurs in two different ways: Firstly it is obvious that all

spatial scales cannot be resolved in any model and the effects of the fine scales on the resolved scales

need to be included in some way. This is often done using dissipative and stochastic formulations.

Secondly in the sense of probability densities, even the retained scales can usually never be completely

resolved. The corresponding Fokker Planck equation is usually not exactly solvable in non-linear

systems and numerical simulations face severe practical issues in high dimensions (the well known curse

of dimensionality). All of this means that in nearly all realistic cases, Monte Carlo methods are the only

practical choice and these mean an effective coarse graining since there is a limit to the scale at which

the probability density is observable using an ensemble. We discuss these issues further below.

5.5. Applications

A number of dynamical models of increasing complexity have been studied using the functionals

discussed in the previous subsection. Some of these have direct physical relevance but others are included

to illustrate various dynamical effects.

In considering predictability of a dynamical system one is usually interested from a practical

perspective in two things:

(1) In a generic sense how does predictability decay in time?

(2) How does predictability vary from one prediction to the next?

Phrased more abstractly, what is the generic character of the equilibration and secondly how does the

predictability vary with respect to the initial condition label x in Equation (17)?

These issues have been studied from the perspective of information theory in the following types

of models.

5.5.1. Multivariate Ornstein Uhlenbeck (OU) Stochastic Processes

Models of this type have seen application as simplified representations of general climate variability

(e.g., [62]); of the El Nino climate oscillation (e.g., [63–65]); of mid-latitude decadal climate variability

(e.g., [66]) and of mid-latitude atmospheric turbulence (e.g., [67]). In the first three cases there is a very

natural (and large) timescale separation between internal atmospheric turbulent motions and variability

that is usually thought of as climatic which inherits a slow timescale from the ocean. In the fourth case

the separation is associated with the various parts of the atmospheric turbulence spectrum. In general

the first kind of separation is more natural and of a greater magnitude. Such strong separations are of

course the physical justification for the various stochastic models. Models of this type have been used to

carry out skillful real time predictions most particularly in the El Nino case but also in the mid-latitude

atmospheric case.

A general time dependent OU stochastic process can be shown to have the property that Gaussian

initial condition random variables remain Gaussian as time evolves. This follows from the fact that

Gaussian random variables subjected to a linear transformation remain Gaussian and the general solution

for these processes (see Equation (4.4.83) from [15]) is a linear combination of the initial condition
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random variables and Gaussian Wiener random variables. In the time independent case (the usual

climate model) calculation of the covariance matrix (Equation (4.4.45) from [15]) shows that it depends

only on the initial condition covariance matrix and the prediction time. This implies that different

initial conditions with identical covariance matrices have identical covariance matrices at other times

also. Consideration of Equations (20) and (21) then shows that such a set of statistical predictions

have identical predictive information but may have varying prediction utility depending on the initial

condition mean vector. Additionally if the initial conditions have zero covariance i.e., are deterministic

and are sampled in a representative fashion from the equilibrium distribution then the results of 5.2

show that this initial condition invariant predictive information is just the generic utility of the set of

predictions. In what follows we shall refer to the third term from (21) as the Signal since it depends

on the first moment of the prediction distribution while the first two terms will be referred to as the

Dispersion since they depend on the covariance of the same distribution. Notice that if the signal is

averaged over a representative set of deterministic initial conditions then it simply becomes minus the

second term because of the discussion at the end of the last subsection. Thus minus the second term is a

measure of the average contribution of the signal to prediction utility.

A simple example, considered previously by the present author as a minimal model of El Nino (see

[58,65]), serves to illustrate the kinds of behavior encountered. Here a stochastically forced damped

oscillator is modeled with two variables. In Ito form

dx = −Axdt+ udW

A ≡
(

0 1

β γ

)
u =

(
0

F

)

γ ≡ 2

τ
β ≡

(
4π2

T 2
+

1

τ 2

)

where τ is the oscillation decay time and T is the period. Asymptotically the covariance matrix of this

system can be shown to be diagonal so the basis we are using is a principal component basis. Figure 2,

which is reproduced from [58], shows the prediction utility of a representative sample of predictions with

deterministic initial conditions with time being the vertical coordinate and sample member the horizontal

coordinate. The relaxation process is evident for all predictions and one can show analytically that it is

controlled by τ . Additionally it is clear that variations in prediction utility are a significant fraction of

overall utility and that the character of this variation tends to persist strongly throughout any particular

prediction. In other words predictions tend to have high/low utility at all times. We refer to this effect

as predictability durability. Recall that the variation in utility is driven entirely in this example by the

signal. Calculation of this term shows it to be

Signal =

(
x1

σ2
1

)2

+

(
x2

σ2
2

)2

where the equilibrium variances are σ2
i . Thus the signal is simply the rescaled L2 norm squared of

the prediction means (called anomalies in the climate context). In this model it appears that it takes

a significant amount of time for the stochastic forcing to erode this signal which is the cause of

the durability.
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Figure 2. Prediction utility (divergence) for a series of representative initial conditions and

at different prediction times. Reproduced with permission from an original figure in Journal

of the Atmospheric Sciences published by the American Meteorological Society.

The simple model above was generalized in the first reference above to the time dependent case on

the basis that one would expect the instability of the system to follow certain cyclic features such as

the seasons. The basic qualitative results shown above however remain unaltered and in particular the

variation of prediction utility was still controlled mainly by the signal even when rather large variations

in the decay time τ throughout the time cycle were assumed.

5.5.2. Low Order Chaotic Systems

Such systems were originally proposed as very simple analogs for atmospheric turbulence

(e.g., [68,69]). They have been extensively studied from the viewpoint of atmospheric predictability

and were the original motivation for the now extensive mathematical field of chaotic dynamics. Here,

unlike the previous case, there is no great separation of timescales and the growth of small perturbations

occurs through non-linear interaction of the degrees of freedom rather than from random forcing from

fast neglected modes. These systems are often characterized by an invariant measure that is fractal

in character. This implies that the dimension of the space used to calculate probability densities is

non-integral which means some care needs to be taken in defining appropriate entropic functionals. As

noted earlier the non-linearity of the system but also the fractal equilibrium strange attractor mean that

generally the best practical approach is Monte Carlo sampling with an appropriate coarse graining of

state space. One can for example define the entropy of the equilibrium strange attractor as

E = lim
M→∞

lim
r→0

E(M, r)

E(M, r) ≡ − 1

M

M∑
i=1

ln

(
Ni(r)

Mrd

)

= − 1

M

M∑
i=1

ln

(
Ni(r)

M

)
+ d ln r ≡ S(M, r) + d ln r (22)
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where Ni(r) is the number of attractor sample members within a radius r of the i’th sample member; d

is the so-called fractional information dimension of the attractor and M is the number of sample points.

Careful comparison with (1) and (2) shows this agrees with the usual definition up to a constant which

multiplies rd to give the volume element in a d dimensional space. The information dimension can be

estimated by considering a sequence of decreasing r and calculating S(M, r) (see [70] Section 7.9).

If one considers the calculation of the divergence of samples drawn from particular subregions of the

attractor then a simpler expression is relevant which does not involve the information dimension:

D = lim
M→∞

lim
r→0

D(M, r)

D(M, r) ≡ 1

M

M∑
i=1

ln

(
N1

i (r)

N2
i (r)

)
(23)

where N1
i (r) is the number of the first sample members within r of the i’th first sample member while

N2
i (r) is the number of second sample members within the same radius of the same i’th first sample

member. Naturally only a particular coarse graining D(M, r) is usually practically available since M

is finite.

The present author (see [58]) considered the behavior of coarse grained prediction utility (23) in

the classical Lorenz chaotic system [68]. Here we also compare that with the corresponding coarse

grained predictive information derived from (22). A representative set of initial conditions with means

drawn from equilibrium strange attractor were considered. For simplicity a (homogeneous) Gaussian

distribution of two dimensions tangential to the attractor was considered with a standard deviation

approximately three orders of magnitude smaller than the attractor dimensions. Thus the initial condition

uncertainty was far less then the equilibrium or climatological uncertainty. The evolution of the

divergence is shown in Figure 3 for a representative set of initial conditions (format is the same as

Figure 2). This is reproduced from [58]. We observe again a characteristic relaxation toward equilibrium.

The temporal decline in divergence is almost always monotonic although as noted in the previous

subsection, this is not compulsory for the coarse grained measure used.

Figure 3. Same as Figure 2 but for the Lorenz model. Time is expressed in number of

time steps (each .001). Reproduced with permission from an original figure in Journal of the

Atmospheric Sciences published by the American Meteorological Society.

In stark contrast to the stochastic models considered previously, variations in the prediction utility

from one set of initial conditions to another is typically strongly related to variations in predictive

information. This is shown for a large sample of initial conditions in Figure 4a which shows the
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relationship at around halfway through the relaxation displayed in Figure 3. It is worth noting that the

prediction distributions although initially chosen to be Gaussian rapidly lose this property and indeed by

the time of Figure 4a it can be shown that although the variations in the predictive information correlates

well with the prediction utility, variations in the Gaussian predictive information of (20) show very little

correlation. This suggests that it is the higher order cumulant contributions to the entropy which are

driving variations in utility. As in the stochastic case, the predictions show considerable durability. This

is illustrated in Figure 4b which shows the correlation of the utility of early and late predictions.

Figure 4. Top panel shows the relationship between predictive information and prediction

utility at 5000 time units (see Figure 3). Bottom panel shows the relationship between utility

at early (t = 1000) and late (t = 10,000) predictions.

�

�
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5.5.3. Idealized Models of Turbulence

These systems attempt to simulate the realistic spectrum of turbulence with between 102 through 104

degrees of freedom and in an environment which is often homogeneous. They represent a bridge between

the models of the previous subsections and realistic models of both atmosphere and ocean. The nature

of the turbulence exhibited means that there is a large range of timescales present and there are large

non-linear transfers of energy between modes often in the form of a scale cascade. Thus both the effects

of the previous two types of models are typically present.

Calculation of information theoretic functionals for models of this dimension involves essential

difficulties. As we saw in the simple chaotic model above, the most straightforward method involves

a Monte Carlo method known as a prediction ensemble and some choice of coarse graining to estimate

probability densities via a partitioning of state space. When we confront models with significantly higher

dimensions however this problem becomes very acute since the required number of partitions increases

with the power of the dimension. In order to obtain a statistically reliable estimate of density for each

partition we require that the ensemble size be at least the same order as the number of partitions chosen.

It is fairly clear that only approximations to the functionals will be possible in such a situation.

Two approaches have been taken to this approximation problem. The first assumes that the ensemble

is sufficiently large so that low order statistical moments can be reliably calculated and then implicitly

discards sample information regarding higher order moments as not known. One then uses the moment

information as a hard constraint on the hypothetical distribution and derives that distribution using a

maximum entropy hypothesis by deciding that no knowledge is available regarding the higher order

moments. In the case that only second order or less moments are available this implies, of course,

that the hypothetical distribution is Gaussian. Typically however some higher order moments can also

be reliably estimated from prediction ensembles so a more general methodology is desirable. Under

the appropriate circumstances, it is possible to solve for more general distributions using a convex

optimization methodology. This was originally suggested by [71] and was developed extensively with

the present application in mind by [72–76].

In the latter references moments up to order four were typically retained and so generalized skewness

and kurtosis statistics were assumed to be reliably estimated from prediction ensembles. An interesting

feature of these maximum entropy methods is that as more moments are retained the divergence increases

(see [72]). Thus the Gaussian divergence is bounded above by that derived from the more general

distributions exhibiting kurtosis and skewness effects. This is analogous with the coarse to fine graining

hierarchy effect noted in the final paragraph of Section 2. One feature of many models of turbulence

makes this moment maximum entropy approximation approach attractive: It is frequently observed that

the low order marginal distributions are quasi Gaussian and so can usually be very well approximated by

retaining only the first four moments. Such a situation contrasts strongly with that noted above in simple

chaotic systems where highly non-Gaussian behavior is usual.

Another approach to the approximation issue (developed by the present author in [77]) is to accept

that only marginal distributions up to a certain low order are definable from a prediction ensemble. One

then calculates the average divergence with respect to all possible marginal distributions and calls the

result the marginal divergence. As in the maximum entropy case, the marginal divergence of a certain
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order defined in this way strictly bounds from above the marginal divergences of lower order. This

again is consistent with greater retention of information as higher order marginal distributions are used

to discriminate between distributions. Note also that at the top of this chain sits the full divergence.

An interesting aspect of these approximations is the role of the prediction ensemble in defining either

the moment constraints or the marginal distributions. Some reflection on the matter shows that in fact

these objects are subject to sample error and this becomes larger as higher order approximations are

considered. This suggests that in the first case the constraints assumed in deriving maximum entropy

distributions should not be imposed as hard constraints but instead be weak constraints as they should

reflect the presence of the sample error. This rather subtle issue has received little attention to date in the

literature in the context of maximum entropy (see however [74]). See [77] for an information theoretic

analysis for the simpler marginal distribution estimation case.

Four different turbulence models of varying physical complexity and dimension have been analyzed

in detail using the above approximation methods:

(1) A truncated version of Burgers equation detailed in [78]. This system is a one dimensional inviscid

turbulence model with a set of conserved variables which enable a conventional Gibbs Gaussian

equilibrium distribution. Predictability issues relevant to the present discussion can be found in

[73,79].

(2) The one dimensional Lorenz 1996 model of mid-latitude atmospheric turbulence detailed in [40].

This model exhibits a variety of different behaviors depending on the parameters chosen. For some

settings strongly regular wave-like behavior is observed while for others a more irregular pattern

occurs with some resemblance to atmospheric turbulence. The most unstable linear modes of the

system tend to have most weight at a particular wavenumber which is consistent with the observed

atmosphere. Predictability issues from the present perspective can be found in [73].

(3) Two dimensional barotropic quasi-geostrophic turbulence detailed in, for example, [80].

Barotropic models refer to systems with no vertical degrees of freedom. Quasi-geostrophic models

are rotating fluids which filter out fast waves (both gravity and sound) in order to focus on low

frequency variability. The barotropic versions aim at simulating very low frequency variability

and exclude by design variability associated with mid-latitude storms/eddies which have a typically

shorter timescale. Predictability issues are discussed in [75] in the context of a global model with

an inhomogeneous background state.

(4) Baroclinic quasi-geostrophic turbulence as discussed in, for example, [81]. This system is similar

to the last except simple vertical structure is incorporated which allows the fluid to draw energy

from a vertical mean shear (baroclinic instability). These systems have therefore a representation

of higher frequency mid-latitude storms/eddies. This latter variability is sometimes considered

to be approximately a stochastic forcing of the low frequency barotropic variability although

undoubtedly the turbulence spectrum is more complicated. Predictability issues from the present

perspective were discussed in [82] for a model with an homogeneous background shear. They are

discussed from a more conventional predictability viewpoint in [83].

Generally speaking for all systems the predictability time scale (as measured by the prediction utility)

is related to the equilibration time scale of the turbulence being considered. Variations in prediction
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utility with initial conditions are typically similar to those seen in stochastic or simple chaotic systems.

The origin of these variations is a rather complex subject and the answers obtained also vary significantly

according to the system examined. In the first subsection above we considered the case where both the

prediction and equilibrium distributions were Gaussian. This meant that an analytical formula involving

the lowest two moments was possible and we found it convenient conceptually to separate terms into

those dependent on the first and second moments of prediction distribution which we referred to as

the signal and dispersion. It is important to emphasize however that this separation does not reflect a

decomposition of the utility into the predictive information (the uncertainty reduction of the prediction)

and a remainder term. Indeed as we saw above, the second term of Equation (21) which is included in

the dispersion, is not at all related to uncertainty reduction but reflects differences in the two distributions

unrelated to entropy/uncertainty or their means.

When we move to the maximum entropy approximation for prediction utility and consider moments

of higher order it is possible to generalize this separation of prediction moment contributions to the

divergence into those dependent on the prediction mean and those dependent on higher moments [84].

A comprehensive and rigorous description of this generalized signal/dispersion decomposition is to be

found in [73]. The contribution of these two terms was examined in this reference for the first two

turbulence systems listed above. The dominant contributor to overall utility variations was found to

depend on the parameters chosen for the model as well as the prediction time chosen. There is also

within this reference a discussion of when moments beyond the first two are important to a maximum

entropy approximation retaining the first four moments.

When the higher order geostrophic turbulence models are considered (models 3 and 4 in the list

above), it is usual that a considerable fraction of the equilibrium variability occurs due only to a relatively

small number of modes. Predictability studies have usually focused on the equilibration behavior of

such modes.

In the study of a barotropic turbulence model [75] the focus was on the first four principal components

of the equilibrium distribution. The maximum entropy framework retaining four moments was used and

the variability of prediction utility in terms of the generalized signal and dispersion examined with the

conclusion that dispersion was overwhelmingly responsible for variations.

A baroclinic turbulence model was studied in [82]. The equilibrium turbulence spectrum in such

models is well known to be dominated energetically by the large scale vertically uniform (barotropic)

modes (see [25]). The predictability study therefore restricted attention to barotropic modes and the

gravest four horizontal Fourier modes. The marginal distributions for both prediction and equilibrium

distributions were observed to be quite close to Gaussian so only the first two moments were

retained for calculation of entropic functionals by the maximum entropy method. In addition the

marginal distributions with respect to these four dimensions was also calculated directly by a rather

coarse partitioning. In contrast to the barotropic model above, variations in prediction utility were

overwhelmingly related to variations in the (Gaussian) signal. This strong difference in predictability

behavior has yet to be explained. It may be due to the importance in the latter case of the stochastic

like forcing of the low frequency barotropic modes by the higher frequency baroclinic modes. These

are of course absent in the barotropic turbulence case. Thus it may be that barotropic model is more
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like the low order chaos case while the baroclinic model is more like the simple stochastic case. This is

speculation however and deeper investigation is required.

5.5.4. Realistic Global Primitive Equation Models

Such models are simplified versions of models used in real time to predict the daily weather.

In contrast to most models of the previous subsection, the background for the turbulence is very

inhomogeneous as it depends on geographical features such as topography and the jet stream. The

latter is driven by the temperature gradient between the equator and pole and so peaks strongly in

mid-latitudes. Compared with the quasi-geostrophic turbulence systems, more modes are generally

required to explain the equilibrium variance: Of order around 100 compared with less than 10 for

the homogeneous baroclinic quasi-geostrophic case. This dynamical situation has tended to limit the

application of the approximation approaches discussed earlier. The only study conducted to date with

such models from an information theoretic perspective was by the present author in [85]. This used

marginal divergences on the dominant 100 equilibrium modes as well as the Gaussian maximum entropy

approach discussed above. Practical prediction ensemble sizes restrict marginal divergences to order four

or less. Generally speaking, marginal distributions of dynamical variables tend to be close to Gaussian

however this issue remains to be systematically investigated. In the present context it was found that

as initial conditions were varied, there was a correlation of order 0.8 between Gaussian estimates of

divergence and those derived from marginal divergences. The latter tended to have a higher correlation

among themselves.

In this system, the equilibration time scale implied by the above estimates of prediction utility is a

strong inverse function of the amount of mean vertical shear present in the atmosphere. When this shear

is strong as it is during winter it is between 1 and 2 months while for the summer weak shear case it

is around 3 months. These estimates of predictability are significantly longer than those derived from

practical weather prediction where two weeks is generally accepted to be the current predictability limit.

This difference may be due to model error of practical predictions and/or due to simplifications present

in the model studied in [85] which excludes important random processes such as moist convection which

can provide a significant mechanism to reduce predictability.

The variation in prediction utility with respect to a representative set of initial conditions was also

studied and the results found were somewhat similar to those noted in the baroclinic turbulence model

discussed earlier. Overall divergence fluctuations (either Gaussian or marginal) were most strongly

related to signal rather than dispersion variations. This effect was more pronounced for short range

rather than long range predictions. The dispersion was however also related to utility but at a lower

level than signal. Like both the stochastic and simple chaotic models discussed earlier, prediction utility

variations tended to show durability i.e., high utility predictions tended to remain high throughout a

prediction and vice versa.

5.5.5. Other Recent Applications

There have been interesting applications of the functionals discussed here to various climate

prediction problems. This has been aided by the fact that to an even greater extent than the turbulence
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models discussed above, the marginal distributions observed tend to be very close to Gaussian. Indeed it

is almost as if a central limit theorem operates in many complex geophysical models in such a way that

many distributions of dynamical variables of interest tend to be approximately normal.

The El Nino coupled ocean/atmosphere system was considered in depth with realistic models in [86]

and conclusions were broadly in line with the simple stochastic models considered earlier. In general the

signal rather than dispersion played a larger role in explaining predictability variation.

The problem of global warming projection was considered from the current perspective by [87]. They

used the divergence between the equilibrium distribution of various models and the present observed

climate/equilibrium distribution as a measure of the veracity of a particular model. They then found a

relationship between this veracity and the amplitude of projected global average warming over the next

century. Models with higher veracity tended to project greater warming. In related work, global warming

model errors were analyzed using an array of empirical information theoretic tools in [88]. This allowed

the authors to identify global warming patterns of highest sensitivity.

Part of the issue of long term climate projection concerns its separation into that due to ocean initial

conditions (natural decadal variability) and that due to changes in forcing due to the radiative effects of

greenhouse gases. This issue was addressed using divergence measures of predictability in [89] where

it was found that the predictability switches from the first kind to the second kind at leads of roughly

5–10 years.

The predictability of the natural decadal predictability mentioned above was analyzed in detail using

divergence measures in [90]. A focus was on the behavior of the first few principal components and

the authors used the Gaussian signal/dispersion decomposition to carefully analyze the nature of this

predictability and the way it transfers between principal components as predictions evolve.

Finally the Gaussian signal/dispersion decomposition of divergence has been used to study the nature

of the predictability of polar sea ice in a very recent unpublished study [91].

6. Conclusions and Outlook

Predictability issues in dynamical models are studied very naturally using information theoretic

functionals. This follows because such variables are best considered to be random variables and entropic

functionals have a very intuitive interpretation in terms of uncertainty and as measures of the differences

between distributions. Adding to this attraction is the fact that these functionals exhibit invariance

under general transformations of the variables describing the dynamical system and that they have deep

connections with concepts from statistical physics. Indeed it is argued in this review that the utility of a

prediction can be measured by the degree of statistical disequilibrium within the system. Thus the study

of the predictability of a system is equivalent to the study of the nature of its statistical equilibration.

There have been several other advances in physical understanding with practical consequences which

have resulted from the use of the information functionals discussed in this review:

(1) The mechanisms responsible for variations in statistical predictability have been clarified.

Traditionally it has been assumed that these are associated with variations in the instability of the

initial conditions. The information theoretical analysis reveals that other mechanisms are possible.

One, which has been referred to as signal here, results from variations in the “distance” with
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which initial conditions are from the equilibrium mean state of the system. Such excursions often

take considerable time to “erode” and so are responsible for considerable practical predictability.

Preliminary calculations show that this second effect may indeed be more important than the first

in certain weather and climate applications. Note that this is not simply the effect of persistence

of anomalies since this signal can transfer between the components of the state vector of a system.

¿From the numerical studies conducted it appears that this second effect may be important when

there is a strong separation of time scales within the system. These results are deserving of further

theoretical and numerical investigation.

(2) It has been shown that ideas from information transfer allow us to address in generality the question

of improving predictions using targeted additional observations. The methods discussed above

apply in the long range, non-linear regime for which previous methods are likely inapplicable.

(3) The physical mechanism causing the decline in mid-latitude weather predictability has been

studied over the full temporal range of predictions. Numerical experiments have shown the central

role of vertical mean shear in controlling the equilibration/loss of predictability.

Application of the concepts considered here has often relied on the fact that the random variables

under study are quasi-Gaussian since this allows application of analytical expressions. It should be

emphasized however (and we saw this in Section 4) that a major attraction of information theory is the

ability to go beyond this situation and consider highly non-linear and non-Gaussian distributions. As

we saw in detail in Section 5, considerable progress has been made using maximum entropy methods

to improve approximate calculation of functionals in high dimensional system. No doubt however more

work remains in this challenging area where the curse of dimensionality always lurks.

The fundamental mechanism that drives equilibration and hence loss of predictability is the dynamical

process which leads to statistical irreversibility. This, as we saw in Section 3, is intimately related to the

manner in which a system is coarse grained and fundamental progress in that area will drive a deeper

understanding of system predictability. Thus the expectation of the author is that further progress in

the area of non-equilibrium statistical mechanics will be of great benefit to the study of the basic nature

of prediction.
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Appendix

The proofs of the theorems in Section 3 are presented here for technical completeness.

Theorem 2

Proof. It follows that

−(f log f)t = −ft (log f + 1)

= ∇ � (Af)(log f + 1)

= f∇ �A(log f + 1) +A�(∇f)(log f + 1)

= f∇ �A(log f + 1) +∇ � (Af log f)−∇ �Af log f

= f∇ �A+∇ � (Af log f)

The second term is in the form of a divergence so may be neglected after integration. We are then left

with Equation (10).

Theorem 3

Proof. The first term of Equation (12) results from Theorem 2 above. We consider therefore only the

influence of the stochastic forcing part of the FPE. Let r ≡ −p ln p then the FPE shows that

rt = −1

2
∂i∂j (Cijp) (log p+ 1)

Now it is easy to see that

∂i∂j(Cijuw) = w∂i∂j(Ciju) + 2(∂j(C iju))(∂iw) + Ciju∂i∂j(w) (24)

where we are using the symmetry of C. Using (24) with u = 1 and w = p this becomes after dropping a

divergence term

rt = − log p [p∂i∂jDij + 2 (∂jDij) ∂ip+Dij∂i∂jp]

with Dij ≡ 1
2
Cij . Now it is easy to show that

− log p∂ip = ∂ir + ∂ip
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and so

rt = r∂i∂jDij + 2 (∂jDij) (∂ir + ∂ip)− log pDij∂i∂jp

Setting u = 1 and w = r in (24) we have

∂i∂j (Dijr) = r∂i∂jDij + 2 (∂jDij) ∂ir +Dij∂i∂jr

which enables us to write

rt = ∂i∂j (Dijr)−Dij∂i∂jr + 2 (∂jDij) ∂ip− log pDij∂i∂jp

The first term on the right can be dropped as before since it is of the form of a divergence. The third

term can be written as

2 (∂j [Dij∂ip]− Cij∂i∂jp)

which also has a divergence piece which can be dropped. We have then

rt = −Dij [∂i∂jr + (2 + log p) ∂i∂jp]

Now we have

−∂i∂j (p log p) = −∂i (log p) ∂jp− (log p+ 1) ∂i∂jp

and so

rt = Dij [∂i (log p) ∂jp− ∂i∂jp]

= pDij∂i (log p) ∂j (log p)−Dij∂i∂jp

= pDij∂i (log p) ∂j (log p) + (∂iDij) ∂jp− ∂i [Dij∂jp]

Dropping the final divergence term, using Equation (11) to drop the second term and integrating over

all space we obtain the desired result (12).

Theorem 4

Proof. Let the two processes have probability functions f and g then it follows that

(f log(f/g))t = ft log(f/g) + ft − gt(f/g) = ft(log(f/g) + 1)− gt(f/g)

= −∇ � (Af)(log(f/g) + 1) +∇ � (Ag)(f/g)

= [−f∇ �A−A�(∇f)] [log(f/g) + 1] + [g∇ �A+A�(∇g)] (f/g)

= −∇ �Af log(f/g)−A�(∇f [log(f/g) + 1]−∇g(f/g))

= −∇ �Af log(f/g)−A�∇(f log(f/g))

= −∇ � (Af log(f/g))

In this case the entire right hand side of the evolution equation is in the form of a divergence and so

may be neglected after integration is carried out.
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Theorem 5

Proof. As in the previous theorem we consider the divergence “density” function r = f log(f/g).

Clearly the proof of this shows we need only consider the time rate of change in this function due to

C since that due to A leads to no change in time of the global integral of r. The change in r due to C is

easily calculated using Equation (8):

(rc)t = (log(f/g) + 1) ∂i∂j (Cijf)− f

g
∂i∂j (Cijg) (25)

where we are using the summation convention for repeated Latin indices. Writing g = f(g/f) and

applying (24) we derive that the second term of Equation (25) is

(2) = −f

g

[
g

f
∂i∂j(Cijf) + 2∂i(Cijf)∂i

(
g

f

)
+ Cijf∂i∂j

(
g

f

)]

combining this with the first term we get a cancellation of the first term of (2) with part of the first term

of Equation (25) and so

(rc)t = log(f/g)∂i∂j (Cijf)− 2

(
f

g

)
∂j(Cijf)∂i

(
g

f

)
−
(
f

g

)
Cijf∂i∂j

(
g

f

)

Now to this equation we add and subtract the terms

2∂i(log
f

g
)∂j(Cijf) + Cijf∂i∂j

(
log

f

g

)

and use Equation (24) to deduce that

(rc)t = ∂i∂j(Cijr)−
(
Cijf

[
f

g
∂i∂j

(
g

f

)
+ ∂i∂j

(
log

f

g

)])

where we are using the definition of r as well as canceling two terms involving ∂j(Cijf). It is

straightforward (albeit tedious) to simplify the expression in the square brackets and obtain finally

(rc)t = ∂i∂j(Cijr)− fCij∂i(log
f

g
)∂j(log

f

g
) (26)

The first term on the right is of the form of a divergence and so as usual does not contribute to the

evolution of the global integral of rC . Actually the positive definite nature of C shows that it is purely

diffusive of the density r. The second term is negative almost everywhere due to the fact that C is

positive definite almost everywhere and that f and g differ almost everywhere. Thus in that situation if

we take the global integral of rC we conclude that the divergence declines strictly with time and satisfies

the evolution Equation (13).

Relationship of the Three Predictability Functionals

Label the set of statistical predictions with the initial condition vector z and drop the time variable

in densities with the assumption that the prediction time outcome is described by the vector x. For a

stochastic model, the prediction distribution with this initial condition vector is then

pz(x) = q(x|z)
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The second functional is then

Pr(z) =

∫
q(x|z) log q(x|z)dx+ h(X(t))

using the fact that all h(X) are equal to the equilibrium entropy for this setup. Taking expectation values

with respect to the density for z which is q(z) we obtain

〈Pr〉q =

∫ ∫
q(z)q(x|z) log q(x|z)dxdz + h(X(t))

= −h(X(t)|X(0)) + h(X(t)) = I(X(t);X(0)

The third functional is

D(z) =

∫
q(x|z) log q(x|z)

q(x)
dx

since the distribution q(x) is always the equilibrium distribution. Again taking the same expectation

value we obtain

〈D〉q =

∫ ∫
q(z)q(x|z) log q(x|z)

q(x)
dxdz

=

∫ ∫
q(x, z) log

q(x, z)

q(z)q(x)
dxdz = I(X(t);X(0))
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