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Abstract: The microcanonical ensemble is the proper ensemble to describe black holes

which are not in thermodynamic equilibrium, such as radiating black holes. This choice of

ensemble eliminates the problems, e.g., negative specific heat (not allowed in the canonical

ensemble) and loss of unitarity, encountered when the canonical ensemble is used. In

this review we present an overview of the weaknesses of the standard thermodynamic

description of black holes and show how the microcanonical approach can provide a

consistent description of black holes and their Hawking radiation at all energy scales. Our

approach is based on viewing the horizon area as yielding the ensemble density at fixed

system energy. We then compare the decay rates of black holes in the two different pictures.

Our description is particularly relevant for the analysis of micro-black holes whose existence

is predicted in models with extra-spatial dimensions.
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1. Introduction

Entropy as originally defined by Clausius is a statement about the change of energy with respect

to temperature for systems in thermodynamic equilibrium. Later a correlation between entropy and

the statistical mechanical probability of finding a system in a given state was obtained. The latter

can be generalized to include systems which are not in thermodynamic equilibrium and for which the
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microcanonical ensemble is the proper ensemble to describe the system. Since the microcanonical

ensemble requires conservation of energy for any system to which it is applied, it is the proper

ensemble to describe microscopic black holes. However, in spite of its many mathematical and physical

inconsistencies and drawbacks, the treatment of black holes as thermodynamical systems has since its

inception been the description preferred by most physicists investigating the nature of black holes. Not

least among the drawbacks is the fact that the laws of quantum mechanics are violated, because the

number density function of the emitted radiation as calculated using a thermal vacuum is characteristic

of mixed states, while the incoming radiation may have been in pure states. Since black holes can in

principle radiate away completely, the unitarity principle is violated.

In a series of papers [1–9] we have investigated an alternative description of black holes which is

free of the encountered problems in the thermodynamical approach. In this review, we shall first recall

the main aspects of our approach and then proceed to describe its application to microscopic black

holes [10–23]. The latter are predicted to exist in models with extra spatial dimensions [24–27], and an

extensive analysis of their possible phenomenological appearance can be found in [10,11,28–45].

In Section 2 we present a brief summary of the thermodynamical description of processes involving

black holes and discuss in detail the inconsistencies mentioned above; in Section 3 we briefly review

Schwarzschild black holes in more than four dimensions; In Section 4 we discuss the thermodynamical

interpretation of black holes within the context of mean field theory and show that the thermal vacuum

is the false vacuum for a black hole system. We also present an alternative vacuum for such a system

and the microcanonical number density which corresponds to this vacuum. In Section 5 we present the

microcanonical wave functions for the in and out states and in Section 6 we derive the black hole decay

rates for micro-black holes in models with extra dimensions.

We shall either use natural units c = �p = Mp = 1 or show explicitly �p and Mp or the equivalent

scales �(D) and M(D) in models with extra spatial dimensions. We shall also use the scale Mew � 1TeV.

2. Thermodynamical Interpretation of Black Holes

Bekenstein’s original observation [46,47] that the area of a black hole (in units of the Planck area �2p)

is analogous to the thermodynamical entropy,

SH =
A

4
(1)

was enlarged upon in [48] where the four laws of black hole thermodynamics were hypothesized. The

mass difference of neighboring equilibrium states was shown to be related to the change in the black

hole area A by the Smarr formula,

ΔM = κΔA+�ΔJ + ΦΔQ (2)

where κ is the surface gravity related to the temperature by

T = β−1
H =

κ

2π
(3)

J is the angular momentum of the black hole, Q its charge and �, Φ play the role of potentials. The

partition function for the black hole is assumed to be

Z(β) = Tr e−β H = e−SH (4)
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where SH is the Hawking entropy,

SH = SE − βH �J (5)

and SE the Euclidean action. Finally, in thermodynamical equilibrium the statistical mechanical density

of states is given by

Ω = Z−1(β) = eSH (6)

and the specific heat

CV =
∂E

∂T
= −β2

8π
< 0 (7)

which is a clear signal that the thermodynamical analogy fails.

A second problem can be best shown if we specialize the previous expressions to the Schwarzschild

black hole, for which SH = SE = 4 πM2 and

βH = 8πM (8)

It then follows that the partition function as calculated from the microcanonical density of states,

Z(β) =

∫ ∞

0

dM Ω(M) e−βM =

∫ ∞

0

dM e4πM2

e−βM → ∞ (9)

is infinite for all temperatures and hence the canonical ensemble is not equivalent to the (more

fundamental) microcanonical ensemble, as is required for thermodynamical equilibrium.

The inequivalence of the two ensembles in systems with long-range interactions, such as gravity,

has been investigated extensively (see, for example, the review [49] for a presentation of this issue in

the astrophysical context). However, statistical mechanical theorems show that the specific heat can be

negative in the microcanonical ensemble (where energy is held fixed) but must be necessarily positive

in the canonical ensemble (where temperature is fixed). The above result (7) therefore should be more

properly interpreted as implying that the microcanonical ensemble can be used for a black hole, whereas

the canonical ensemble is not well-defined and should only be viewed as a useful approximation as long

as the temperature does not change significantly on the time scale of interest.

In fact, if quantum mechanical effects are taken into account, black holes can be shown to evaporate

and, according to the canonical picture, the emitted radiation has a Planckian distribution [50,51],

nβH
(ω) =

1

eβH ω − 1
(10)

This implies that the black hole mass M will decrease in time, whereas the temperature β−1
H ∼ M−1 will

increase (possibly) without bounds. Moreover, since in the standard Hawking’s picture black holes can

in principle radiate away completely, this result implies that information can be lost, because pure states

can come into the black hole but only mixed states come out. The breakdown of the unitarity principle

is one of the most serious drawbacks of the thermodynamical interpretation, since it would require

the replacement of quantum mechanics with some new (unspecified) physics. In order to avoid this

scenario, some approaches predict the evaporation leaves a “black hole remnant” [52,53], as follows from

assuming generalized uncertainty principles [54] and within models of non-commutative geometry [55].
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3. Black Holes in D Dimensions

The inconsistencies of the thermodynamical interpretation are an indication that the interpretation of

Equation (4) as the canonical partition function is wrong. In analogy with the usual WKB approximation,

we instead hypothesize that

P � e−SH (11)

is the probability for the transition from the metastable vacuum, namely the black hole semiclassical

vacuum, to the true vacuum state with no black hole. This interpretation holds for any kind of black hole.

The picture of particles tunneling through the horizon is technically not accurate, because the horizon

is a causal boundary, not a potential barrier. Such a potential might be generated if the backreactions

of the emitted particles are taken into account [56,57]. However, the distribution of emitted particles

is decidedly non-thermal for such a potential. The quantum degeneracy of states for the system is

proportional to P−1 and is then given by

σ � c eA/4 (12)

where the constant c is determined from quantum field theoretic corrections and can contain

non-local effects.

Explicit expressions can be obtained for the above quantities for some geometries. We shall here just

consider the D-dimensional Schwarzschild black hole [58],

ds2 = −e2λ dτ 2 + e−2λ dr2 + r2 dΩ2
D−2 (13)

where

e2λ = 1−
(rH
r

)D−3

(14)

The horizon area in D dimensions is

A

4
=

AD−2

16 π
βH rD−2

H (15)

with

M =
D − 2

16π
AD−2 r

D−3
H (16)

where AD−2 is the area of a unit (D− 2)-sphere. Eliminating the horizon radius rH in favor of the mass,

the area becomes

A

4
= C(D)M

D−2
D−3 (17)

where C(D) is the mass-independent function

C(D) =
4

D−1
D−3 π

D−2
D−3

(D − 3)(D − 2)
D−2
D−3 A

1
D−3

D−2

(18)
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From the above, we obtain the degeneracy of states

σ(M) � Ω−1(M) � c exp
[
C(D)M

D−2
D−3

]
(19)

Comparing this expression to those known for non-local field theories, we find that it corresponds to

the degeneracy of states for an extended quantum object (p-brane) of dimension p = D−2
D−4

. As has been

demonstrated by several authors [59–61], an exponentially rising density of states is the clear signal of

a non-local field theory. P -brane theories are the only known non-local theories in theoretical physics

which can give rise to exponentially rising degeneracies.

It is important to remark here that all dimensional quantities are evaluated in units of the

corresponding Planck scale. For example, M in Equation (19) is actually M/MP in D = 4 dimensions.

In models with extra spatial dimensions, MP ∼ 1016 TeV is replaced by a fundamental gravitational mass

M(D) which could be as low as Mew � 1TeV. In the following, we shall consider two such scenarios: the

ADD case [24–26] with compact extra dimensions, and the RS case [27] with one possibly very large

extra dimension.

4. Quantum Field Theory on Black Hole Backgrounds

To study particle production and propagation in black hole geometries we now turn to the mean field

approximation in which fields are quantized on a classical black hole background. Since black holes have

non-trivial topologies which causally separate two regions of space, the number of degrees of freedom

is doubled, and two Fock spaces are required to describe quantum processes occurring in the vicinity

of a black hole. Calculations of quantities associated with such processes can be carried out in ways

analogous to calculations in Thermofield Dynamics [62], but with an overall fixed energy [9].

4.1. Canonical Formulation

The thermal vacuum for quantum fields scattered off of black holes can be written as

|out; 0〉 = 1

Z1/2(βH)

∞∑
n=0

e−βH nω/2 |n〉 ⊗ |ñ〉 (20)

with the partition function

Z(β) =
∞∑
n=0

e−β nω (21)

and the states |ñ〉 are a complete orthonormal basis for the region of space causally disconnected from an

external observer. Operators corresponding to physically measurable quantities are defined on the basis

set |n〉 for states outside the horizon. The ensemble average (expectation value) of a physical observable

Ô in the out region is

〈out; 0|Ô|out; 0〉 = 1

Z(βH)

∑
n

e−nβH ω〈n|Ô|n〉 (22)

where the temperature is given in Equation (3). For example, if Ô is the number operator for particles of

rest mass m, the ensemble average given in Equation (22) is the particle number density (10).
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To describe particle interactions one then needs the (thermal) particle propagator,

ΔβH
=

1

k2 −m2 + iε
− 2 π i δ(k2 −m2)nβH

(m, k) (23)

with nβH
given by Equation (10). These expressions are valid if black holes are described by a local

field theory. However, as discussed in Section 2, the particle number distribution given in Equation (10)

implies loss of coherence. The in state is a pure state

|in; 0〉 = |0〉 ⊗ |0̃〉 (24)

but the number density obtained from the outgoing states is a thermal distribution.

In the microcanonical approach non-local effects can be taken into account by summing over all

possible masses (angular momenta and charges)

nβH
(k) =

∫ ∞

0

dmσ(m)nβH
(m, k) (25)

Inclusion of non-local effects changes the thermal vacuum to

|out; 0〉 = 1

Z1/2(βH)

⎡
⎣∏

m,k

∞∑
nk,m=0

⎤
⎦ ∏

m,k

e−βH nk,mωk,m/2 |nk,m〉 ⊗ |ñk,m〉 (26)

where the quantity in square brackets represents the product of the sums over the discrete values of the

momentum and mass. The canonical partition function extracted from this expression is

Z(βH) = exp

(
− V

(2π)D−1

∫ +∞

−∞
dD−1
k

∫ ∞

0

dmσ(m) ln[1− e−βH ωk(m)]

)
(27)

where the discrete mass and momentum indices have been changed to continuous values. A system in

thermodynamical equilibrium must satisfy Hagedorn’s self-consistency condition [63–65],∫ ∞

0

Ω(E) e−β EH dE = exp

(
− V

(2 π)D−1

∫ +∞

−∞
dD−1
k

∫ ∞

0

dmσ(m) ln[1− e−βH ωk(m)]

)
(28)

It is well known that only strings (p = 1) satisfy this condition

σ(m) ∼ eb m , (m → ∞) (29)

for βH > b (Hagedorn’s inverse temperature). But black holes are not strings, as can be inferred from

the quantum mechanical density of states for Schwarzschild black holes (19). Therefore black holes do

not satisfy Hagedorn’s condition (D−2
D−3

> 1 for D > 3) and are not in thermal equilibrium. We are thus

led to conclude the thermal vacuum is the false vacuum for a black hole and a better description can be

given by simply assuming energy conservation of the entire black hole radiation system.

4.2. Microcanonical Formulation

The true vacuum for a black hole system of fixed total energy E can be obtained by first writing the

thermal vacuum in terms of the density matrix ρ̂ for a system in thermal equilibrium

|0(β)〉 = ρ̂(β;H)|	〉 (30)



Entropy 2011, 13 508

where

ρ̂(β,H) =
ρ(β,H)

〈	|ρ(β,H)|	〉 ρ(β;H) = e−β H (31)

and the state

|	〉 =
⎡
⎣∏

k,m

∑
nk,m

⎤
⎦ ∏

k,m

|nk,m〉 ⊗ |ñk,m〉 (32)

The traces of observable operators are given by

Tr Ô = 〈	|Ô|	〉 (33)

For example the free field propagator can be determined from

Δab
β = −i〈	|Tφa(x1)φ

b(x2)ρ̂|	〉 (34)

The superscripts on φ refer to the member of the thermal doublet [62]

φa =

(
φ

φ̃†

)
(35)

being considered. The Fourier transform of Δ11
β (x1, x2) (the physical component) is equal to Δβ given

in Equation (23).

We can now formally define the microcanonical vacuum for an evaporating black hole as

|E〉 = 1

Ω(E)

∫ E

0

Ω(E − E ′)L−1
E−E′ [|βH〉] dE ′ (36)

where L−1 is the inverse Laplace transform. Using this basis, physical correlation functions are

expressed as

Ga1,...,aN
E (1, 2..., N) = 〈	|Tφa1(1), ..., φaN (N)|E〉 (37)

Interaction effects can be taken into account by means of the microcanonical propagator

Δ11
E (k) =

1

k2 −m2 + i ε
− 2 π i δ (k2 −m2)nE(m, k) (38)

where nE(m, k) is the microcanonical number density

nE(m, k) =
∞∑
l=1

Ω(E − l ωk(m))

Ω(E)
θ(E − l ωk) (39)

which is our candidate alternative to Equation (10) for the distribution of particles emitted by a black

hole. Strictly speaking, this expression is valid only when the black hole system is not too far from

equilibrium. This expression is obtained by taking the inverse Laplace transform of the canonical vacuum

state of thermofield dynamics [62] and does not satisfy the Principle of Equal Weights [66]. The general

expression for the microcanonical number density is given in [67].
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5. Hawking Effect

The analysis carried on so far is global in nature. In fact, although consistent equilibrium

configurations for gases of black holes and number densities for the emitted radiation in such

configurations can be found [9], the geometry of spacetime never appears explicitly in the final

expressions. Of course, one is also interested in the local properties of spacetime, and this is most

intriguing in the present case because the above results should include implicitly any back-reactions of

the radiation on the metric. We then show that the wave functions in the microcanonical vacuum can be

obtained by making a formal replacement in the wave functions obtained for the thermal vacuum.

5.1. Thermal Vacuum

In flat four-dimensional spacetime with spherical coordinates {t, r, θ, φ} incoming and outgoing

spherical waves are asymptotically given by

ψin =
Ylm(θ, φ)√

8 π2 ω

e−i ω v

r
v = t+ r∗ (40)

ψout =
Ylm(θ, φ)√

8 π2 ω

e−i ω u

r
u = t− r∗ (41)

If we now consider waves propagating on a Schwarzschild black hole, and do not take into account

back-reactions, the incoming wave becomes [68]

ψin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ylm(θ, φ)√

8 π2 ω

ei (ω/κ) ln(v0−v)

r
v < v0

0 v > v0

(42)

which obeys the wave equation in a background with surface gravity κ. The in states for the two vacua

are related by the Bogolubov transformation

αωω′

βωω′

⎫⎪⎬
⎪⎭ =

1

2 π

∫ v0

−∞
dv

(
ω′

ω

)1/2

e±i ω′ v ei (ω/κ) ln[(v0−v)/c] (43)

where c is a constant. The two coefficients α and β are related by the Wronskian condition∑
ω′

(|αωω′ |2 − |βωω′ |2) = 1 (44)

The integrals in Equation (43) can be evaluated explicitly,

|αωω′ |2 = e2π ω/κ |βωω′ |2 (45)

which substituted into Equation (44) yields the Planckian distribution (10).
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5.2. Microcanonical Vacuum

The relationship between α and β in Equation (45) arises because the logarithmic term in

Equation (43) introduces a branch cut, and the integration around this branch cut causes the factor

multiplying this term (times 2π) to appear in the exponential multiplying β. Thus if we simply make the

formal replacement

2 π ω

κ
→ ln(1 + n−1

E (ω)) (46)

where nE(ω) is the microcanonical number density (39), the out waves are of the form (41) and

ψin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ylm(θ, φ)√

8 π2 ω

e(i/2π) ln[1+n−1
E (ω)] ln(v0−v)

r
v < v0

0 v > v0

(47)

The relation between α and β now becomes

|αωω′ |2 = eln(1+n−1
E (ω)) |βωω′ |2 (48)

which gives for the sum over ω′

∑
ω′

|βωω′ |2 = nE(ω) (49)

The wave in Equation (47) does not satisfy the same equation as the wave in Equation (42), but it should

satisfy a wave equation in a background whose metric includes back-reaction and non-local effects.

6. Micro-Black Hole Decay Rates

As an example of the differences between the predictions of the two approaches (thermal

vs. microcanonical) suppose we consider D-dimensional Schwarzschild black holes. In order to allow

for the cases with extra spatial dimensions, it will be convenient to show all fundamental constants

explicitly. For example, the microcanonical number density (39) is given by

n(D) = B

[[M/ω]]∑
n=1

exp

{
SE
(D)(M − nω)

�p Mp

− SE
(D)(M)

�p Mp

}
(50)

where SE
(D) is the Euclidean action, [[X]] denotes the integer part of X and B = B(ω) encodes deviations

from the area law (in the following we shall assume B is constant in the range of interesting values of

M ). From Equation (19), we immediately obtain

SE
(D)(M)

�pMp

=

(
M

Meff

)δ

≡ M̃ δ (51)

This means the black hole degeneracy is counted in units of Meff = M(D) and the luminosity

L(D)(M) =

∫ ∞

0

S∑
s=1

n(D)(ω) Γ
(s)
(D)(ω)ω

D−1 dω (52)
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becomes

L(M) = B e−M̃β

∫ ∞

0

[[M̃/ω̃]]∑
n=1

e(M̃−n ω̃)
δ

ω̃D−1 dω̃ (53)

For the four-dimensional Schwarzschild black hole, δ = 2, n(ω) mimics the canonical ensemble

(Planckian) number density in the limit M → ∞, and the luminosity becomes

LH ∼
∫ ∞

0

ω3 dω

eβH ω ∓ 1
∼ T 4

H (54)

where TH = β−1
H = 1/(8 πM) is the Hawking temperature. Upon multiplying by the horizon area, one

then obtains the Hawking evaporation rate [50]

dM

dτ
� geff M

3
p

960π �pM2
(55)

where geff � 10−100 is the number of effective degrees of freedom into which a four-dimensional black

hole can evaporate, usually assumed equal to the number of Standard Model particles plus gravitational

modes with energy smaller than the instantaneous black hole temperature β−1
H [69].

6.1. ADD Scenario

If the space-time is higher dimensional and the d = D − 4 extra dimensions are compact and of

size L, the relation between the mass of a spherically symmetric black hole and its horizon radius is

changed to [28–38,58] (For the microcanonical description of micro-black holes in the ADD scenario,

see also [52,53,70].)

RH � �(4+d)

(
2M

M(4+d)

) 1
1+d

(56)

where G(4+d) � Ld GN is the fundamental gravitational constant in 4 + d dimensions.

The Euclidean action is of the form in Equation (51) with Meff = M(4+d) ∼ Mew and

δ = (d + 2)/(d + 1). In four dimensions one knows that microcanonical corrections to the luminosity

become effective only for M ∼ Mp, therefore, for black holes with M 
 Mew the luminosity (53)

should reduce to the canonical result. In order to eliminate the factor B from Equation (53), one can

therefore equate the microcanonical luminosity to the canonical expression at a given reference mass

M0 
 Mew and then normalize the microcanonical luminosity according to

L(4+d)(M) � LH
(4+d)(M0)

L(4+d)(M0)
L(4+d)(M) (57)

The black hole luminosity thus obtained differs significantly from the canonical one for M ∼ Mew,

as can be clearly seen from the plot for d = 6 in Figure 1. For smaller values of d the picture remains

qualitatively the same, except that the peak in the microcanonical luminosity shifts to lower values of M .

Although the integral in Equation (53) can now be performed exactly, its expression is very complicated

and we omit it. In all cases, the microcanonical luminosity becomes smaller for M ∼ Mew than it would
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be according to the canonical luminosity, which makes the life time of the black hole longer than in the

canonical picture [41].

Figure 1. Microcanonical luminosity (solid line) for a small black hole with d = 6 extra

dimensions compared to the corresponding canonical luminosity (dashed line). Vertical units

are chosen such that LH
(10)(Mew) = 1.

L(10)

2 4 6 8 10

0.2

0.4

0.6

0.8

1

M
Mew

6.2. RS Scenario

In order to study this case, we shall make use of the solution given in [23],

ds2 = −A dt2 + A−1 dr2 + r2 dΩ2 (58)

with

A = 1− 2 �pM

Mp r
− q

M2
p �

2
p

M2
(5) r

2
(59)

where q is the so called tidal charge. For q > 0, this metric has one horizon at

RH = �p

(
M

Mp

+

√
M2

M2
p

+ q
M2

p

M2
(5)

)
(60)

It is then plausible that both the mass M and the (dimensionless) tidal charge q depend upon the black

hole proper mass M0 in such a way that when M0 vanishes, so do M and q. The functions M = M(M0)

and q = q(M0) could only be determined precisely by solving the full bulk equations, for example using

the four-dimensional metric (58) as a boundary condition. Unfortunately, this task cannot be performed

exactly, but only numerically or perturbatively [12–22].

In order to simplify the analysis, we shall first assume that M = M0 and, at least for M ∼ M(5), that

the functional form of q is given by

q �
(

Mp

M(5)

)α(
M

M(5)

)β

(61)
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where α and β > 0 are real parameters. The luminosity (53) can then be computed exactly and a

complete survey is given in [42,43,45]. In general, the decay rate is well-approximated by a power

law, namely

dM

dτ

∣∣∣∣
evap

� CM s (62)

where s can be determined analytically for special cases and numerically in general [43].

For instance, let us work out the case with β = 1 and δ = 1. The effective four-dimensional Euclidean

action is given by

SE
(4)

�p Mp

� M

Meff

(63)

with

Meff = 4Mp
�p
L

(64)

and the luminosity in this case is simple enough, that is

L � B e−M̃

∞∑
n=1

1

n4

∫ M̃

0

ex
(
M̃ − x

)3
dx � B̃ (65)

where we used Meff � Mew ∼ M and B̃ is a new constant. Upon multiplying by the horizon area, we

then get the microcanonical evaporation rate per unit proper time

dM

dτ

∣∣∣∣
evap

� CM (66)

where C is again a constant we can determine by equating the rate (66) with the Hawking expression (55)

for M = Mc defined by RH(Mc) � L.

7. Summary

We have reviewed the main arguments in favor of the microcanonical ensemble for describing

evaporating black holes. A shortcoming of the foregoing analysis is the use of the mean field

approximation. However, all calculations of particle emission utilize this approximation, and the

microcanonical approach is clearly preferable to the thermodynamical approach in the semiclassical

quantization processes described above. It is free of the inconsistencies present in the thermodynamical

approach, and its predictions seem to be more physically reasonable, e.g., a finite black hole decay rate

throughout the life of the black hole. The use of a fixed energy basis for the Hilbert space of the theory

instead of the usual thermal state implies that black holes are particle states. In our interpretation of black

holes as quantum objects the associated quantum degeneracy of states obtained from the inverse of the

tunneling probability points to the identification of black holes with the excitation modes of p-branes.

For a four-dimensional black hole the above picture leads to very small, undetectable, departures

from the usual Hawking picture. However, if extra dimensions exist, and the fundamental scale of

quantum gravity is as low as 1TeV, microscopic black holes with a mass of a few TeV’s might be
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produced in modern accelerators. In this case the microcanonical description then becomes a necessary

tool to describe their evaporation, and there is no need for the thermodynamical concept of entropy

for microscopic black holes. In general, one then expects an increased life time with respect to what

would be predicted by the canonical ensemble, with the ending stage of the evaporation resembling

a more conventional, quasi-exponential decay. For more details on the phenomenological signatures

of microscopic black holes at the LHC in the microcanonical treatment, we just refer the reader to

[52,53,71].
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