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Abstract: This paper presents the results of a study of the prediction of the entropy growth 

within an internal free shear layer of an ideal gas flow downstream of a sudden expansion 

of the flow area. The objective of the study is exploratory in nature by invoking concepts 

from information theory to connect the deterministic prediction of the spectral entropy 

growth within the shear layer to the experimentally inferred increase in entropy across the 

flow region. The deterministic prediction of the spectral entropy increase along the shear 

layer is brought into agreement with the experimentally inferred increase in entropy 

through the ad hoc inclusion of the activation spectral entropy. The values for this 

activation spectral entropy are directly related to the area ratios across the expansion region 

and have a specific numerical value for each area ratio. 
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Nomenclature: 

ai  Fluctuating i-th component of velocity wave vector 

A0  Upstream duct area 

A1  Initial duct area into expansion 

A2  Downstream duct area 

fr  Sum of the squares of the fluctuating vertical and transverse velocity wave vectors 

F1  Time-dependent perturbation factor 

ht  Stagnation enthalpy of the flow 

k  Fluctuating wave number of Fourier expansion 

K1  Adjustable weight factor 
M1  Mach number of the flow at area A1 

p  Hydrostatic pressure 

Pr  Power spectral density of the r-th spectral peak 

Pt  Stagnation pressure of the flow 
Pt1  Stagnation pressure at area A1 

Pt2  Stagnation pressure at area A2 

R  Appropriate gas constant 

s  Specific entropy of the flow 
s1  Specific entropy at area A1 

s2  Specific entropy at area A2 

s2_act  Activation spectral entropy 

sj_spent Spectral entropy for the j-th time series data segment 

s1_spent Average of the spectral entropies over the entire time series 

s2_spent Average of the spectral entropies above the activation spectral entropy 

ΔS_exprmtl Experimental entropy change across the expansion 

ΔS_spent Spectral entropy change across the expansion 

t  Time 

Tt  Stagnation temperature of the flow 

ui  Fluctuating i-component of velocity 

Ui  Mean velocity in the i-direction 

vt  Stagnation specific volume of the flow 

Vy  Mean vertical velocity in the x-y plane 

Vz  Mean vertical velocity in the y-z plane 

W  Mean velocity in the span wise direction 

x  Axial direction 

xi  i-th direction 

xj  j-th direction 

y  Vertical direction 

z  Span wise direction 
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Greek Letters 

 lm   Kronecker delta 

   Ratio of specific heats 

   Kinematic viscosity 

Subscripts 

i, j, l, m Tensor indices 

r  The r-th index in the j-th time series data segment 

t  Stagnation state 

x  Component in the x-direction 

y  Component in the y-direction 

z  Component in the z-direction 
1  Initial state at area A1 

2  Final state at area A2  

1. Introduction 

The engineering evaluation of the flow of an ideal gas downstream of a sudden expansion or 

backward-facing step is a highly developed field in computational fluid dynamics (Gosman et al. [1], 

Patankar [2–3], Hirsch [4]). Abu-Nada [5] and Yapici et al. [6] have published recent articles that 

provide both extensive results for the entropy developed in such flows and references to work in 

this field.  

Our objective here is to use this well-studied environment as a tool to test the hypothesis arising 

from information theory that the spectral entropy predicted from the solution of the time-dependent 

fluctuation form of the shear layer equations may be connected to the actual entropy increase observed 

across the flow region downstream of a sudden expansion. 

We use as a basis for this study an observation from information theory (Jaynes [7]). We consider 

the experimental results for the loss of stagnation pressure across a dump combustor as measured by 

Barclay [8], and correlated by Oates [9] as the benchmark against which we are going to compare our 

theoretical predictions. In this study, we will consider the flow medium to be air. To model our 

predictions, we consider the internal free shear layer following the separation of the flow from the 

edge of the sudden expansion into the expansion volume. We model the three continuity equations and 

the three equations of motion for the fluctuating velocity components along the shear flow. We include 

the physics appropriate for an internal free shear layer, including the nonlinear coupling terms between 

the velocity components within the equations of motion.  

From the computational results, we calculate the spectral entropy for the square of the fluctuating 

vertical and transverse velocity components along the shear layer as a function of time step. We then 

explore additional assumptions that must be made to bring the predicted spectral entropy increase in 

line with the entropy increase implied by the measured loss of stagnation pressure across the dump 

combustor. We find that an internal feedback coefficient must be included that is of a form found in 

the perturbation theory of quantum theory and must be of small magnitude. We also find that the 
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activation spectral entropy must be introduced to allow the numerical value of the predicted spectral 

entropy increase to match the experimental value. These results lead to the observation that the 

generation of spectral entropy in the flow into a sudden expansion may be of the transition rate theory 

type, with the transition as a type of dissolution of previously ordered flow structures, transferring 

information into entropy generated by irreversible processes. 

2. Mathematical Model for the Internal Free Shear Layer 

The basic objective of this study is to attempt to bring the predictions from the solution of 

deterministic equations for the entropy increase of an ideal gas through a sudden expansion into 

agreement with the experimentally inferred increase in entropy for such a flow configuration. This 

configuration is chosen to model the experimental flow environment. 

2.1. Mathematical Model 

The flow configuration we wish to model is the three-dimensional internal free shear layer 

downstream of the separation point from the beginning of the sudden expansion at area A1, as indicated 

in Figure 1. The flow is from left to right and is assumed to be an ideal gas moving at subsonic 

velocity throughout the expansion from area A1 to area A2. 

Figure 1. The three-dimensional flow model and the coordinate system for the sudden 

expansion representing both the experimental environment and the mathematical model. 

The z -direction is normal to the x-y plane. 

 
 

The Navier-Stokes equations describing this flow are transformed through a Fourier analysis into a 

Lorenz-type format, specifically keeping the nonlinear coupling terms. The coefficient of the nonlinear 

terms is simplified into a form obtained from the perturbation theory of non-relativistic quantum 

mechanics as described by Landau and Lifshitz [10]. Using the Fourier expansion procedure as 

presented by Townsend [11], the equations of motion for the internal free shear layer may be separated 

into steady plus fluctuating values of the velocity components. The velocity fluctuations around the 

mean values of the velocity components will thus be of primary interest, while the mean values of the 

velocity components will be obtained from assumed stream functions for the axial and span-wise 

flow parameters. 

The equations for the velocity fluctuations may be written as follows [11]: 
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In these equations, ν is the kinematic viscosity. The pressure term may be transformed as: 


 2 p

xl
2  2

Ul

xm

um

xl


ul

xm

um

xl

     (2) 

As Townsend [11] points out, the pressure is determined by the velocity and temperature fields and 

is not a local quantity but depends on the entire field of velocity and temperature. The elimination of 

the pressure fluctuation term introduces nonlinear coupling between the velocity coefficients. In our 

work here, we will introduce an internal feedback mechanism that will model the nonlinear interaction 

process but will allow the resulting equations to be integrated in time. Expanding the velocity 

fluctuations in terms of a sum of Fourier components: 

ui(x)  ai (k)exp(ik x) . (3) 

The variation with time of each Fourier component of the fluctuation field is then given by the 

equation for each of the velocity wave vector amplitudes: 

dai(k)

dt
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 (4) 

The equations for the rate of change of the wave numbers are: 

dki

dt
 

Ul

xi

kl .      (5) 

The equations for the fluctuating velocity components may then be transformed by Fourier 

expansion into a form similar to Lorenz-type equations, as shown by Hellberg and Orszag [12] and 

Isaacson [13]. The equations resulting from the transformation process have been presented in other 

publications and references to them may be found in Isaacson [13]. 

At this point, we wish to introduce our first approximation to the set of first-order nonlinear 

differential equations describing the equations of motion of the fluctuating velocity components. We 
substitute the term )1(

1
F  as the coefficient of the nonlinear terms in the equations for the time rate of 

change of the ai(k) coefficients. In this expression (Pyragas [14,15]):  

)(
11

tkKF  . (6) 

where K1 is the adjustable weight of the perturbation and k(t) is the magnitude of the time-dependent 

wave vector given by: 

k(t)  (kx
2  ky

2  kz
2)1/ 2 .      (7) 

The magnitude of the wave vector, k(t), is computed at each time step in the integration process. 
The value for K1 has been set to 3105   which allows the computations to remain stable throughout the 

time step range for each of the area ratios examined. 
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The three deterministic equations for the velocity coefficients may then be written as: 
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Note that the perturbation factor (1 F1)  is applied to the nonlinear terms in the equations for 
dt

da
y  

and 
dt

daz , and not to one of the directly accessible dependent variables. This is a significant change 

from the practice in the study of synchronization and chaos (Pyragas [15]). The form of the 

perturbation factor and the application of the factor to the nonlinear terms are motivated by the 

perturbation analysis of the wave functions in non-relativistic quantum mechanics. This has been 

demonstrated by a specific example reported in Landau and Lifshitz [10]. The application of the 

perturbation factor in this fashion implies that the nonlinear terms in the first-order equations for the 

velocity fluctuations represent transition probabilities from an initial state to a secondary state. This 

observation is relevant to the inclusion of the activated spectral entropy concept in the interpretation of 

the final results (Glasstone, Laidler, and Eyring [16]). 

The equations for the mean velocity gradients in the x-y and y-z planes of the shear layer are 

obtained from stream functions as used by Stuart [17] and Kirchoff [18] (see reference [13]). These 

relationships allow the gradients of the various mean velocities to be evaluated at specified locations 

within the shear layer. 

The theoretical modeling of the internal free-shear layer consists of six simultaneous first-order 

differential equations, three linear equations accounting for continuity of mass and three non-linear, 

coupled equations describing the equations of motion. The numerical method includes computation of 

the velocity profiles, the mean velocity gradients, the thermodynamic and viscous properties of the 

fluid involved, with the solution yielding the velocity-fluctuation wave-vectors in three-dimensions for 

each of the imposed increases in area ratio, 
A2

A1

, across the sudden expansion. From the conservation of 

mass from area A1 to area A2, and assuming incompressible flow, the velocity ratio from the entrance 

to the exit of the expansion region, 
U1

U2

, may be approximated as: 

U1

U2


1
A1

A2

      (11) 
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This relationship provides the initial conditions for the fluctuating velocity components for each set 

of area ratios reported in the experimental results: 

   ax (0) 
1
A1

A2

;  ay (0)  0.0;  az(0)  0.0 .   (12) 

The set of area ratios for the sudden expansion are:  

A1

A2

  {0.90, 0.80, 070, 0.60, 050, 0.40, 0.30}.     (13) 

These values yield the initial fluctuating axial velocity ratios as:  

ax (0)   {1.11, 1.25, 1.43, 1.67, 2.00, 2.50, 3.33}.    (14) 

The squares of these values represent the magnitude of the input fluctuating kinetic energy for each 

area ratio that is then available for dissolution into the final entropy values.  

These equations are integrated using a fourth-order Runge-Kutta technique with source codes as 

presented by Press, et al. [19]. First, the three first-order differential equations for the wave numbers 

are integrated in time with the resulting series stored to files on the hard drive. A total of 24,576 time 

steps are included in the integration process. Then, the three first-order differential equations for the 

fluctuation velocity terms are solved, with the resulting time-series again stored in files. These data 

files thus become available for the spectral analysis as described in the next section. 

2.2. The Prediction of Spectral Entropy from the Deterministic Results 

There are a number of methods of analysis that may be used to predict the spectral entropy from the 

nonlinear tine series results of the deterministic computations. Several that may be mentioned include 

the method of Singular Spectrum Analysis (SSA), the Principal Component Analysis (PCA) and the 

Maximum Entropy Method (MEM). 

The method of Singular Spectrum Analysis (SSA) is well described by Golyandina et al. [20], and, 

as an example, applied to the forecasting of industrial production in several European economies by 

Hassani et al. [21]. Singular value decomposition (SVD) techniques are used extensively in the SSA 

method, with a series of useful computer source codes given in Press et al. [22]. 

Kantz and Schreiber [23] describe the Principal Component Analysis (CPA) method for the 

analysis of nonlinear time series data. These investigators have developed a package of computer 

software with the general title “Nonlinear Time Series Analysis”, as a publicly available computer 

package under the name TISEAN.  

Maindonald and Braun [24] present an example-based approach to the use of the R computing 

environment for a statistical methodology that emphasizes the use of graphical presentations It is 

designed for use by investigators who wish to do statistical analyses on their own data. This computing 

environment is publicly available through the Comprehensive R Archive Network (CRAN). 

Finally, the Maximum Entropy Method (MEM) (Press et al. [25]) is also used extensively. Our use 

of this method traces back to the presentation by Chen [26], in which the method, known as Burg’s 

method, was applied to the extraction of spectral energy densities from seismic nonlinear time series 
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data. Chen [26] presented the first source code for the improvement of Burg’s method in the extraction 

of the desired spectral information from the data.  

One of the significant advantages of the maximum entropy method over the use of the filtered fast 

Fourier transform (FFT) method is the enhancement of the spectral peaks in the spectral energy density 

distribution. Our previous experience with the maximum entropy method and the existence of useful 

source codes for the analysis of the predicted time series led to our use of this method for the 

evaluation of the spectral entropy for each segment in the series of segments representing the complete 

nonlinear time series data. We refer interested readers to References [21–25] for information 

concerning acquisition of the various software and computer resources. 

The method of analysis used for our study is the prediction of the distribution of the spectral 

entropy of the computed nonlinear time series. The individual fluctuating histories for the vertical and 

transverse velocity components are combined into one time series by adding the squares of each 

component for each time step. The total time series is divided into 768 segments with 32 data sets per 

segment. The maximum entropy method, (Press, et al. [25]), is then applied to each segment of 32 data 
sets to obtain 16 spiked values of the power spectral density, fr , for each particular segment. The 

probability values of each set of particular spectral densities for each segment is then computed from 


 

 /
r

rrr ffP . The methods of Powell and Percival [27], Grassberger and Procaccia [28], and Cohen 

and Procaccia [29] are then applied to the probability distributions for each segment to develop the 

spectral entropy for the given segment. The spectral entropy (dimensionless) is defined as: 

r
r

rj PPspents ln_        (15) 

for the j-th segment. This procedure is applied to each of the 768 segments over the total time range. 

To determine the over-all predicted spectral entropy change across the expansion, it is necessary to 

introduce the activation spectral entropy for each of the area ratios computed. The simple method of 

taking the overall average of the spectral entropy across the range of time steps and denoting this as the 
base spectral entropy, s1 _ spent , and then taking the average of all spectral entropy values, denoted by 

s2 _ spent , above the activation spectral entropy, yields the predicted change in dimensionless spectral 

entropy across the expansion as: 

S _ spent  (s2 _ spent)  (s1 _ spent) .    (16) 

To bring this computed value for the increase in spectral entropy across the expansion into 

agreement with the experimentally inferred value for the entropy increase requires the incorporation of 

precise values for the threshold spectral entropy above which the average is to be taken. If the 

threshold spectral entropy is too high, then only high values of spectral entropy will be included in the 

average and the overall predicted spectral entropy change is too high. If the threshold value for the 

spectral entropy is too low, then low values of spectral entropy are included in the average, and the 

predicted change is too low. By the ad hoc selection of these threshold values for the spectral entropy in 

the averaging process, the predicted increase in spectral entropy across the sudden expansion is brought 

into close agreement with the inferred entropy increase for the expansion as a function of area ratio.  
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3. Results and Discussion 

The results for the integration of the equations for the wave numbers represent the conservation of 
mass in the overall set of equations. Figure 2 presents the perturbation factor F1 as a function of time 

step through the first portion the overall time range. These results show the periodic behavior for the 

forcing function. Note that this forcing function is internal to the set of six equations describing the 

overall flow, but represent an externally applied forcing function for the three equations describing the 

equations of motion. 

Figure 2. The periodic internal driving force obtained from the solution for the wave 
vectors from the continuity equations for an area ratio A1 / A2  0.30. 
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Figure 3 indicates the behavior of the vertical velocity component, ay , with a moderate aperiodic 

behavior in the first part of the time series, with a transition to significant oscillations in the next part 

of the time series.  

Figure 3. The vertical component of the fluctuating velocity ay  as a function of the time 

step for an area ratio A1 / A2  0.30. 
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Figure 4 presents the time series for the span-wise component, az , which also represents this type of 

behavior. The span-wise fluctuating velocity component also indicates a transition to a significant level 

of oscillations, thus indicating the possible creation of ordered structures in the y-z plane in this region 

of the time series. 
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Figure 4. The span-wise component of the fluctuating velocity az  as a function of the time 

step for an area ratio A1 / A2  0.30. 
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It is interesting to note that Prichard and Theiler [30], in a study of the behavior of the Rössler 

attractor, observed that the local entropy is apparently large when the particular parameter is large. We, 

however, find that the spectral entropy is dependent on the degree of order within the flow element, 

with lower values of the spectral entropy representing a higher degree of order within the element. The 

spectral entropy does not seem to be dependent on the magnitude of the respective fluctuating velocity 

components, but rather increases as the degree of disorder increases. 
Figure 5 presents the phase plane plot of the vertical component of velocity, ay , versus the axial 

velocity component, ax , over the initial time frame of 1,000 time steps. The portion of the results on 

the right-hand side of the figure represents a Duffing-like equation behavior (Lynch [31]), indicating a 

close coupling between the axial velocity component and the vertical velocity component. Then, the 

vertical velocity component accelerates to a constant velocity, as the axial velocity component 

decrease. This would indicate an almost organized motion of the system in the vertical direction. 

Figure 5. The phase plane representation of the vertical fluctuating velocity ay against the 

horizontal fluctuating velocity ax  over 1,000 time steps for an area ratio A1 / A2  0.30. 
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Figure 6 presents the phase plane results for the span-wise velocity component, az , versus the 
vertical velocity component, ay , which indicates a nearly periodic rotational behavior in the vertical 

and span-wise plane. 
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Figure 6. The phase plane representation of the span-wise velocity fluctuations az  against 
the vertical velocity fluctuations ay over 1,000 time steps for an area ratio A1 / A2  0.30. 
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During a previous study of the behavior of an internal free shear layer within a flow cavity in a 

subsonic wind tunnel (Isaacson [13]), a number of photographs of the flow structures along the shear 

layer were obtained. The flow conditions were not reported. 
Figure 7 shows vertical flow structures in the physical domain that perhaps indicate an ordered 

value for the fluctuating vertical velocity. Note that Figure 5 presents results obtained from the Fourier 

analysis of the shear layer equations that indicate a nearly constant fluctuating vertical velocity across 

a significant time frame of the integration. Figure 8 presents a close-up of the first flow structure 

shown in Figure 7. Figure 8 indicates a possible vortex tube-type structure, inclined to the vertical 

span-wise plane. Again, the Fourier analysis results presented in Figure 6 indicate a periodic behavior 

for the az  versus ay  phase plane. However, the physical flow structures shown in Figures 7 and 8 

cannot be deduced from the fluctuating wave results presented in Figures 5 and 6. 

Figure 7. The flow is from right to left across the sharp edge lower baffle of an internal 

cavity. The flow conditions were not reported. 
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Figure 8. An expanded view of the forward structure shown in Figure 7. The leftward slant 

of the structure may be due to the axial velocity of the mainstream flow. 

 
 

As the time step continues, the fluctuation in the axial velocity component reaches a negative value, 

causing a transition of the vertical velocity component to a significantly larger fluctuation in value 

(Figure 9). It appears that as the fluctuating vertical and span-wise velocity components reach the 

region of increasing negative axial fluctuating velocity values, the system has reached a transition 

region, where the flow undergoes a significant change in behavior. Beyond this transition region, all 

three components of the flow velocity show large fluctuations in value (Figure 10). 

Figure 9. The phase plane representation of the vertical velocity ay  versus the horizontal 

velocity ax  over 3,000 time steps for an area ratio A1 / A2  0.30. 
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Figure 10. The phase plane representation of the span-wise velocity az  versus the 

horizontal velocity ax  over 3,000 time steps for an area ratio A1 / A2  0.30.  
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To obtain a numerical representation of this complex flow behavior, concepts from information 

theory as developed by Tribus [32] are applied. From the basic formalism of information theory as 

developed by Jaynes [7], Tribus expresses first the maximum of the entropy as described by the 

expression, Sx   pi
i

 ln pi, where pi  represents the probability of finding the system in a given state i. 

Second, a Lagrangian multiplier is applied to the reality condition, dpi
i

  0. Finally, a second 

Lagrangian multiplier is applied to the conservation of overall energy of the system,  i
i

 dpi  0. 

Application of the formalism presented by Tribus [32] leads to the distribution function for pi  in terms 

of a single Lagrangian multiplier, , specified as the “temper” of the expected value of the energy of 

the system. The connection between the microscopic distribution function and the macroscopic 

concepts of thermodynamics is then made through an evaluation of the “pressure” of an ideal gas 

against the walls of the container of the system. Experimental comparison of the behavior of the 

“pressure” of the gas with the ideal gas equation yields the final result that  
1

kT
, where k is 

Boltzmann’s constant and T is the temperature of the system. More general considerations yield the 

result that thermal equilibrium between systems defines the equality of the “temperature” of the 

systems. The essential point is that recourse must be made to experimental observations to bring the 

concepts of information theory to agreement with macroscopic thermodynamics. 

To establish a similar form for the set of equations describing the flow through a sudden expansion, 

we employed the following procedure: First, the physics of the internal shear layer were represented in 

the form of six first-order differential equations. The first three equations represent the conservation of 

mass through the system. Second, the integration of the equations of motion and the computation of 

the kinetic energy associated with the vertical and span-wise velocity fluctuations were computed. 

Third, local spectral entropy was computed for regions across the entire time span of the computation. 

Figure 11 indicates that during the first of the time steps, the spectral entropy decreases, indicating an 

increase in information within the flow structures. The spectral entropy then increases over a relatively 

short time span as the flow transitions to the next region. In this region, the spectral entropy again 

decreases, again indicating an increase in the information content within the flow in that region. As the 

time steps continue, the flow transitions to the significant aperiodic behavior indicated in the 

remainder of Figure 11.  

This region of spectral entropy values contributes to the predicted spectral entropy of the overall 

flow into the sudden expansion. Note that these values of the spectral entropy occur when the 

fluctuating axial velocity is in the negative range and produces the most vigorous part of the aperiodic 

motion. Prichard and Theiler [30] indicate that the most energetic of the fluctuating components of 

velocity will contribute to the spectral entropy through this region and that they will be subjected to the 

folding and stretching of the flow elements as they lose information to spectral entropy. This region is 

thus a region of “dissolution” where the incoming low spectral entropy flow is transformed into a high 

spectral entropy region. This region thus provides a flow reservoir of high spectral entropy elements 

which, through a “scrambling” process, reach the level of physical scales that ultimately dissipate into 

background thermodynamic entropy. Mathieu and Scott [33] have discussed this “scrambling” process 
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in much more detail. Sagaut and Camdon [34] have described the flow of high spectral entropy 

elements into the dissipation region as a “streaming” process. 

Figure 11. Spectral entropy results for the fluctuating ay  and az  velocity components by 

the maximum entropy method. A1 / A2  0.30. 
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It is interesting to note that for the area ratios which produce the lowest inlet velocities, the results 

for the ay  versus ax  phase plane indicate weak oscillations primarily in the positive ax  region. As the 

flow inlet velocity is increased, the flow oscillations in the positive ax  region become stronger. For an 

area ratio of A1 / A2  0.70, Figure 12 presents the phase plane representation of the vertical velocity 

component ay  versus the axial velocity component ax  for 3,000 time steps. The vertical fluctuations 

for this case also show a transition region toward the negative ax  region. However, these results 

indicate that the fluctuating vertical velocity component returns to the region of positive axial velocity 

fluctuations in a more orderly oscillation pattern. 

Figure 12. The phase plane representation of the ay  fluctuating velocity component versus 

the ax  fluctuating velocity component for a count of 3,000 time steps for an area ratio 

A1 / A2  0.70. 
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The spectral entropy results for the area ratio 
A1

A2

 0.70 are presented in Figure 13 and cover the 

entire time step range. Although these results appear to be similar to the results presented in Figure 11, 
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it must be noted that the flow behavior is different. The initial fluctuating vertical velocities occur 

again in the positive fluctuating axial velocity range. Then, the fluctuating vertical velocities again 

transition toward the negative axial velocity region. However, instead of crossing into the negative 

axial velocity region, the fluctuating vertical velocity vectors return to the positive fluctuating axial 

velocity vector region. Hence, the results for the low inlet axial velocity indicate a different behavior 

with considerably reduced average spectral entropy content. These results imply the existence of a 

transition region in the flow as the inlet flow velocity is increased from the initial low values to the 

higher values. 
Even though the maximum spectral entropy values for the case of area ratio A1 / A2  0.70 in  

Figure 13 are similar to those for the area ratio of A1 / A2  0.30, it becomes necessary to take a much 

lower value of the spectral entropy threshold, or activation spectral entropy, to provide a predicted 

value of spectral entropy increase to correspond with the experimentally inferred value. 

Figure 13. Spectral entropy results for the fluctuating ay  and az  velocity components by 

the maximum entropy method for the area ratio A1 / A2  0.70. 
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As the inlet flow velocity is increased to an area ratio A1 / A2  0.30, the oscillations of the ay  

component in the negative fluctuating axial velocity region are quite pronounced, with a significant 

spectral entropy produced. Thus, the activation spectral entropy values are strong functions of the inlet 

axial flow kinetic energy. It should be noted that once the entropy increase across the flow region has 

been determined, all other thermodynamic parameters could be determined by the methods of classical 

gas dynamics (Saad [35]). 

The computed spectral entropy value across the expansion for each applied area ratio required the 

introduction of the threshold spectral entropy value. All of the spectral entropy values above the 

threshold were then averaged over the time step range to get the computed value to come into 

agreement with the inferred experimental entropy. The corresponding threshold spectral entropy 

values, or activation spectral entropies, are shown in Figure 14. The introduction of the activation 

spectral entropy above which the average of the spectral entropy values come into agreement with the 

experimentally-inferred values of overall entropy increase implies the existence of a potential barrier 

for the production of spectral entropy components which contribute to the overall irreversibility of the 

expansion process. Thus, thus, those more disordered structures which cross this threshold provide a 



Entropy 2011, 13 

 

417

reservoir of such disordered structures, which then decay into structures of the scale that dissipate into 

background thermodynamic entropy. 

Figure 14. Values of the activation spectral entropy as a function of the area ratio, ./ 21 AA  
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With the inclusion of the activation spectral entropy in the computations for the spectral entropy 

values across the range of expansion area ratios, the results for the computed spectral entropy values 

are brought into agreement with the implied measured entropy values. 

3. Experimental Values for the Increase of Entropy 

The experimental results for the loss of stagnation pressure across a dump combustor as measured 

by Barclay [8], and as correlated by Oates [9] serve as the benchmark against which we compare our 

theoretical predictions. The flow configurations that were used in the experimental project were 

circular ducts of different area ratios with abrupt expansions. The flow consisted of air and the flow 

was subsonic throughout. The inferred entropy changes across the expansion were obtained from the 

experimental results through the following analysis.  

The Gibbs equation of thermodynamics may be written, in terms of stagnation properties, as: 

.tttt dPvdhdsT   (17) 

In this equation, Tt  is the stagnation temperature, s is the entropy, ht  is the stagnation enthalpy, vt  

is the stagnation specific volume, and Pt  is the stagnation pressure. For the adiabatic flow of an ideal 

gas, this may be integrated to the following expression, with R as the appropriate gas constant: 

(s2  s1)

R
 ln(

Pt 2

Pt1

). (18) 

Hence, given the experimental value for the decrease in stagnation pressure across the expansion, 

we may evaluate the experimental increase of entropy as: 

S _exprmtl = 
s2  s1

R
.     (19) 

This expression yields the dimensionless change in entropy for a given change in stagnation 

pressure from thermodynamic state 1 to thermodynamic state 2. 
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The series of experiments conducted by Barclay [8] yielded values for the loss in stagnation 
pressure across a “dump” combustor. The flow geometry consisted of a circular pipe of area A1 with a 

sudden expansion into a downstream circular pipe of area A2, with the experiments conducted for a 

range of area ratios from 
0.2  A1 / A2 1.0.      (20) 

Oates [9] reports that the experimental results may be expressed as: 

(s2  s1)

R
 {[1 (

A1

A2

)]2  [1 (
A1

A2

)]6}

2

M1
2 .    (21) 

In this equation,   is the ratio of specific heats and M1is the Mach number of the flow at area A1. 

This expression is used to obtain the dimensionless entropy increase across the sudden expansion for 
the range of area ratios 0.2  A1 / A2 1.0. These results then serve as the test base against which the 

theoretical calculations are compared. The comparisons of the results are presented in Figure 15 and 

represent the overall results for this study. 

Figure 15. Comparison of the computed spectral entropy increase with the experimental 

increase in entropy obtained from the measured loss of stagnation pressure as a function of 
the area ratio A1/A2.  
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The introduction of the threshold spectral entropy, which we have called the activation spectral 

entropy is the ad hoc connection of the deterministic numerical predictions of the spectral entropy 

content with the experimentally inferred increase in entropy across the sudden expansion. We 

anticipate that future developments will provide a rational connection between the deterministic 

numerical results and the actual irreversible processes that occur in physical systems. 

Table 1 presents the computed results for the increase of spectral entropy for each of the area ratios 

in the expansion process together with the inferred increase in entropy for the corresponding 
experimental area ratios. In Table 1, A1 / A2 is the ratio of the inlet area to the exit area, s1 _ spent  is the 

overall average of the spectral entropy series, s2 _ act  is the activation spectral entropy, s2 _ spent  is 

the spectral entropy average above the activation spectral entropy, S _spent is the predicted spectral 

entropy increase, and S _exprmtl is the experimentally inferred value of the entropy increase. 
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Table 1. Summary of predicted entropy increases and corresponding experimentally 

inferred entropy values for the flow through a sudden expansion. 

A1/A2 s1_spent s2_act s2_spent ΔS_spent ΔS_exprmtl 
0.30 0.1271 0.2250 0.2802 0.1531 0.1531 
0.40 0.1097 0.1650 0.2119 0.1022 0.1025 
0.50 0.1255 0.0983 0.1913 0.0658 0.0669 
0.60 0.0748 0.0450 0.1161 0.0413 0.0414 
0.70 0.1303 0.0375 0.1529 0.0226 0.0229 
0.80 0.0929 0.0153 0.1029 0.0100 0.0101 
0.90 0.1232 0.0012 0.1258 0.0026 0.0025 

4. Conclusions 

The complete set of equations for the fluctuating velocity wave vectors within the internal  

free-shear layer downstream of the separation point in a sudden expansion has been reduced to a set of 

equations similar to the Lorenz equations with the introduction of an internal feedback control 

parameter for the non-linear terms in the equations. The results of the computations indicate the 

development of, initially, a region with behavior similar to Duffing-like oscillations, a second region 

with organized vertical and span-wise components of flow, and a region of complete transition into 

large fluctuating components. It should be noted that the computed values for the spectral entropy for 

each of the given area ratios is the spectral entropy of the squared values of the fluctuating vertical and 

span-wise velocity components at the peak of their aperiodic trajectories. The flow behavior then 

undergoes a “streaming” or a “dissolution” into the range of ultimate dissipation of the turbulent 

kinetic energy into background thermodynamic entropy. The results for the numerical calculations of 

spectral entropy increase across the sudden expansion are brought into agreement with the 

experimentally inferred entropy increase by the ad hoc introduction of a threshold spectral entropy 

value, which we have designated the activation spectral entropy. 
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