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Abstract: Thermosolutal convection in a square cavity filled with a binary perfect gas 
mixture and submitted to an oriented magnetic field taking into account the effect of 
radiation heat transfer is numerically investigated. The cavity is heated and cooled along 
the active walls whereas the two other walls are adiabatic and insulated. Entropy 
generation due to heat and mass transfer, fluid friction and magnetic effect has been 
determined for laminar flow by solving numerically: The continuity, momentum energy 
and mass balance equations, using a Control Volume Finite-Element Method. The structure 
of the studied flows depends on five dimensionless parameters which are: The Grashof 
number, the buoyancy ratio, the Hartman number, the inclination angle of the magnetic 
field and the radiation parameter.  
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Nomenclature

A aspect Ratio of the cavity 
C dimensionless concentration 
C’ concentration (mol·m�3) 

'
0C  bulk concentration (mol·m�3) 

Cp isobaric specific heat (J·Kg�1·K�1)  
D species diffusivity (m2·s�1) 
g gravitational acceleration (m·s�2) 
GrT thermal Grashof number 
GrC solutal Grashof number 
H (L) height (length) of the cavity (m) 
Ha Hartmann number 
J dimensionless diffusion flux 
k * mean absorption coefficient (m�1) 
Le Lewis number 
N Buoyancy ratio 
Nu Nusselt number 

�,sΝ  dimensionless local entropy generation 

S  dimensionless total entropy generation 
Nr Radiation parameter 
P pressure (N·m�2) 
Pr Prandtl number 

TRa  Rayleigh number 
Sc Schmidt number 
Sh Sherwood number 

'
hC  hot side concentration (mol·m�3) 
'
cC  cold side concentration (mol·m�3) 
*

genS  volumetric entropy generation rate (J·m�3·s�1·K�1) 

T dimensionless temperature 
T’ temperature (K) 
t dimensionless time  
t’ time (s) 
Tc’ hot side temperature (K)  
T’f cold side temperature (K) 
T’o bulk temperature (K)  
u, v dimensionless velocity components 
V dimensionless velocity vector  
U* characteristic velocity (m·s�1) 
u’, v’ velocity components along x’, y’ respectively (m·s�1)  
x, y, z dimensionless Coordinates  
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x’, y’, z’ Cartesian coordinates (m) 

Greek Symbols 

� magnetic field’s angle with horizontal direction (°) 
Tα  thermal diffusivity (m2·s�1) 

� inclination angle of the cavity (°) 
�T thermal expansion coefficient (K�1) 
�c compositional expansion coefficient (mol�1·m3) 

iλ  irreversibility distribution ratio, (i = 1, 2, 3, 4) 
� dynamic viscosity (kg·m�1·s�1) 
� fluid density (kg·m�3) 
�e electrical conductivity (��1·m�1) 
�0 Stephan-Boltzmann constant 
� kinematic viscosity (m2·s�1) 
	T’ temperature difference (K)  
	C’ concentration difference (mol·m�3) 

1. Introduction 

The study of radiative and magnetic field effects has important applications in physics and 
engineering. Hydromagnetic flow and heat transfer problems have received considerable attention, due 
to their applications in many industrial fields. The radiative flows of an electrically conducting fluid 
with high temperature in the presence of a magnetic field are encountered in various propulsion 
devices for satellites and interplanetary spacecraft, electrical power generation, astrophysical flows, 
solar power technology, space vehicle re-entry, nuclear engineering applications and other industrial 
areas. The unsteady flow past a moving plate in the presence of free convection and radiation was 
studied by Mansour [1]. The effect of suction/injection on the flow and heat transfer for a continuous 
moving plate in a micro polar fluid in the presence of rendition was studied by El-Arabawy [2]. 
Ibrahim et al. [3] studied radiative and thermal dispersion effects on non-Darcy natural convection 
with lateral mass flux for a non-Newtonian fluid from a vertical flat plate in a saturated porous 
medium. Dolapc and Pakdemirli [4] studied approximate symmetries of creeping flow equations of a 
second grade fluid. Transient radiative hydromagnetic free convection flow past an impulsively started 
vertical plate with uniform heat and mass fluxes was studied by Ramachandra et al. [5,6]. The 
magnetic field parameter has retarding effect on the velocity, temperature and concentration increase 
with increasing value of the magnetic field parameter. The time required to reach the steady state 
increases as radiation parameter increases [5]. For small values of the radiation parameter, the velocity 
and temperature of the fluid sharply increase as the time increases. The local and average Nusselt 
number increase with increasing value of radiation parameter.  

Thermal radiation effects on MHD flow past an impulsively started vertical plate in the presence of 
heat source/sink was investigated [6]. Heat due to viscous dissipation was considered. As the radiation 
parameter increases, both the velocity and temperature increase, whereas the concentration decreases. 
An increase in the magnetic parameter decelerates the velocity. A rise in dissipative heat induces a 
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substantial rise in both velocity and temperature. As the heat absorption/generation parameter 
increases, the velocity increases whereas the temperature decreases. An increase in the Schmidt 
number leads to a decrease in the velocity and concentration. Rani et al. [7] studied numerically the 
effects of radiation, magnetic field, variable viscosity and variable thermal conductivity on similarity 
solutions of mixed convection at a vertical flat plate embedded in a porous medium. In absence of a 
magnetic field, the parameter C takes the value unity, and for increasing intensity of the magnetic 
field, the parameter takes values smaller than unity. Reduced flow can be expected for smaller values 
of C or for increased intensity of the magnetic field as the Lorentz force (due to the magnetic field) 
obstructs the flow. When transfer of heat by radiation is neglected, the parameter Rd that describes 
radiation takes zero value and when increasing intensity of thermal radiation, the parameter takes 
larger values. Solutions are found for the values 0, 0.5 and 10 of the parameter Rd. Increasing values of 
the parameter Rd can increase thermal boundary layer thickness. Shateyi [8] investigated thermal 
radiation and buoyancy effects on heat and mass transfer over a semi-infinite stretching surface with 
suction and blowing. It was found that when the Grashof number increases, the fluid velocity also 
increases. However, this same effect was found to decrease both thermal and concentration boundary 
layers. The flow is appreciably influenced by thermal radiation. It was observed that increasing the 
thermal radiation parameter produces significant increase in the thermal conditions of the fluid 
temperature which induces more fluid in the boundary layer through buoyancy effect, causing the 
velocity of the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer 
thicknesses increase as a result of increasing radiation. However, the concentration boundary layer 
thickness decreases as a result of increasing the thermal radiation parameter. It was also observed that 
increasing the Schmidt number, induces reduction in the distribution of concentration in the boundary 
layer. Natural convection of an electrically conducting and radiating fluid in the presence of an 
external magnetic field is numerically investigated by Akiyama and Chong [9]. The two opposing side 
walls are differentially heated with a specified temperature difference, while the top and bottom walls 
are insulated. Basically three types of fluids are considered: opaque, transparent and participating 
fluids. The results are presented in the form of isotherms and streamline contours, mid-plane velocity 
profiles, and total heat transfer rates across the enclosure. The main conclusions are as follows: In case 
of the opaque fluid, the effect of an imposed magnetic field is to suppress the convection. If the fluid is 
not opaque in the absence of an external magnetic field, the flow structure and the temperature field in 
an enclosure are considerably affected by the radiation. In the framework of the same radiation 
environment, the thermo-fluid dynamics behavior of a radiating fluid is substantially altered together 
with the strength of the imposed magnetic field. For the transparent fluid, the effect of the magnetic 
field is as follows: in the mid-region apart from the adiabatic walls, the applied magnetic field affects 
the degree of tilting of a streamline axis appreciably. The radiation effect on a thermal field is localized 
near the adiabatic walls. Inversely, the thermal distribution in the mid-region is affected by the 
magnetic field rather than the radiation. In terms of the participating fluid, as the magnetic field 
becomes stronger, the unicellular flow originally turns into the flow with the inner core including two 
convective rolls. The overall flow in the enclosure is suppressed by the retarding effect of the Lorentz 
force. Nevertheless the axis of the resulting streamline is not slanted even in the presence of a strong 
magnetic field. On the other hand, the thermal distribution in the participating fluid is seriously 
affected by not only the external magnetic field but radiation, even in the region far from the insulated 
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walls. In general terms, it was found that the main effect of the external magnetic field is to reduce the 
overall heat transfer rate across the enclosure. More specifically, regardless the fluid type, the 
distribution of conductive Nusselt number decreases for both hot and cold walls in accordance with the 
increase in the strength of the magnetic field. A similar trend is observed with the radiative Nusselt 
number distribution. As a consequence, the increase in Hartmann number leads to the decrease in the 
local Nusselt number distribution, thereby resulting in the decrease of the average Nusselt number. 

Combined heat and mass transfer has attracted considerable attention due to its importance in 
various fields such as in engineering as well as geophysical applications. Comprehensive reviews of 
this area have been made by many researches, some of them are Nield and Bejan [10] and Trevisan 
and Bejan [11]. The efficient utilization of energy is the primary objective in the design of any 
thermodynamic system, which can be achieved by entropy generation minimization. Theoritical 
method of entropy generation has been used to treat external and internal irreversibilities. In 
thermosolutal convection, irreversibilities are mainly due to heat transfer, mass transfer and fluid flow. 
Second law analysis in heat transfer and thermal design was described in details by Bejan [12,13]. 
Generally speaking, the irreversibility phenomena, which are expressed by entropy generation, are 
related to heat transfer, mass transfer, viscous dissipation, chemical reactions, magnetic field, etc. 
Magherbi et al. [14] numerically studied entropy generation in convective heat and mass transfer 
through an oriented square cavity for the case of aiding buoyancy forces. They showed that maximum 
value of entropy generation increases with thermal Grashof number and it was obtained at an 
inclination angle of the cavity � = 45° for GrT = 104. Entropy generation increases with the buoyancy 
forces that induce an augmentation of exchanged heat between the flow and the walls. Hidouri et al. [15] 
studied the influence of Soret effect on entropy generation in double diffusive convection for the case 
of a binary perfect gas mixture for both aiding and opposing buoyancy forces through a square cavity. 
They showed that entropy generation takes a minimum value for the case of opposing buoyancy forces 
with equal intensity (i.e., N = �1) when thermal Grashof values GrT 
 105. In a similar way, the 
influence of Dufour effect on entropy generation in convective heat and mass transfer for a binary 
perfect gas mixture was numerically studied by Magherbi et al. [16]. They showed that entropy 
generation takes also a minimum value when N = �1 for values of thermal Grashof number GrT 
 104. 

The purpose of this paper is to investigate radiative and magnetic effects on entropy generation in 
thermosolutal convection with heat and mass transfer flow in 2D approximation for both aiding and 
opposing buoyancy forces, which is in our knowledge, has not been studied yet. Thus, this study is a 
complementary study to those of Hidouri et al. [15] and Magherbi et al. [16]. In this case, the enclosure 
is subjected to an oriented magnetic field. Effects of the thermal Rayleigh number, the buoyancy ratio, 
the Hartmann number, the Radiation parameter and the inclination angle of the magnetic field on 
entropy generation in steady-unsteady states as well as on local irreversibility are studied. 

2. Problem Statement 

A two-dimensional square vertical cavity is submitted to an oriented magnetic field, B as shown in 
Figure 1. The two vertical left and right walls are at different but uniform temperatures and 
concentrations (T’h, C’h) and (T’c, C’c), while the two horizontal walls are insulated and adiabatic. 
Radiatively, fluid nonparticipating medium and all surfaces are gray; the radiative heat flux in y 
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direction is negligible as compared to that in the x direction. The fluid, consists of a binary mixture of 
air and a diffusing species and considered as a Newtonian, Boussinesq incompressible fluid whose 
properties are described by its kinematic viscosity �, its thermal and solutal diffusivities, �T and D, and 
its thermal and solutal volumetric expansion coefficients �T and �c. The mass density of the fluid 
varies linearly with temperature and concentration, such that: 

ρ = ρo [1 � βT (T’ � T’o) � βc (C’ � C’o)] (1)

where: 

βT = �
�
�

�
�
�

∂
∂

−  
' 

    
T Po

1 ρ
ρ  (2)

βc = �
�
�

�
�
�

∂
∂

−  
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C Po

1 ρ
ρ  (3)

Figure 1. Schematic view of the Physical model. 

 

3. Analysis 

3.1. Governing Equations 

The continuity, momentum, energy and species conservation equations in dimensionless form for 
the considered problem are given by: 
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with: 

ugradVuJ u Pr. −=  
(9)

vgradVvJ v Pr. −= (10)

TgradNrVTJT )1(. +−= (11)

Cgrad
Le

VCJ C
1. −=

 
(12)

The used dimensionless variables are given by: 
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L
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; 	T’ = T’h � T’c; 	C’ = C’h � C’c (14)
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3.2. Initial and Boundary Conditions 

The initial and boundary conditions appropriate to the laminar flow within the differential heated 
cavity are: 

at, t = 0 for whole space: 

u = v = 0; P = 0; C = 0.5 � x and T = 0.5 � x (17)

Adiabatic walls:  

0=
∂
∂

y
ϕ  at y = 0 and y = 1 (18)

Active walls:  

5.0=ϕ       On plane     x = 0 (19)

5.0−=ϕ     On plane     x = 1 (20)

ϕ : physical parameter representing temperature or concentration. 
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3.3. Entropy Generation 

The rate of entropy generation (which is derived from energy and entropy balances), for the case of 
heat and mass transfer in presence of an external magnetic field is given by [17]: 

2
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dv  are mass flux vector of species i in phase α , the chemical potential of species I and 
dimensional velocity vector, respectively. In a two dimensional flow and for a single diffusing species 
by considering the simplified hypothesis given in [15,16], Equation (21) can be written as follows: 
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The local entropy generation can be putted in a dimensionless form by using the dimensionless 
variables listed in Equations (13)–(16): 
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iλ  is called irreversibility distribution ratios. 1λ  is a coefficient related to viscous entropy generation, 
while 2λ and 3λ are ratios related to diffusion entropy generation by pure concentration gradients and 
mixed product of thermal and concentration gradients. 4λ  is the ratio related to magnetic entropy 
generation. 

It is important to notice that the entropy generation due to diffusion ( ST
d

SS
dd

.. Ν+Ν=Ν ) is the sum of 
a pure term ( SS

d
.Ν ) which involves concentration gradient only and a crossed term ( ST

d
.Ν ) with both 

thermal and concentration gradients. The dimensionless total entropy generation is the integral over the 
system volume of dimensionless local entropy generation:  

dVS lSV ⋅Ν⋅�= .  (33) 

The temperature and concentration gradients are computed along the hot wall of the cavity, and 
then used to calculate the average Nusselt and Sherwood numbers, respectively, as: 

dx
y
Tu � ⋅

∂
∂−=Ν

1

0

)(  (34) 

dx
y
CSh � ⋅

∂
∂−=

1

0

)(  (35) 

3.4. Numerical Solution 

Energy and momentum equations are solved by determination of temperature and velocity field 
which depend on choice of numerical support of resolution. In this study we used a Control Volume 
Finite-Elements Method (CVFEM) of Saabas and Baliga [18]. Standard-staggered grids are used and 
diagonals are added to form triangular elements where velocity components are calculated. For 
pressure, staggered grid is used. Pressure and velocity components are calculated at different points to 
avoid numerical oscillations. To resolve pressure-velocity components, the SIMPLE algorithm (Semi 
Implicit Method for pressure linked equations) of Patankar [19] is used then the SIMPLER algorithm 
(SIMPLE Revised) and the SIMPLEC approximation of Van doormal and Raithby in which addition 
terms of pressure and their relative to velocity are considered in conjunction with an Alternating 
Direction Implicit (ADI) scheme for performing the time evolution.  

The used numerical code, which is written in FORTRAN language, to solve the governing 
equations is validated by an important physical parameter which is Nusselt number. Calculated results 
are in good agreement with those given in literature as indicated in Table 1. As it can be seen from 
Table 2, Grids of 31 × 31, 41 × 41 and 51 × 51 nodal points for respectively Ra = 103,104 and 105 are 
found sufficiently enough to achieve convergence criterion given by equation of continuity such that: 

510)( −≤
∂
∂+

∂
∂

y
v

x
u  

The transient study is carried out with a step time 	t = 10�4 for all considered Thermal 
Rayleigh numbers.  
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Table 1. Comparison of average Nusselt number for different values of Rayleigh number 
in a square cavity with Pr = 0.71, N = 0, Ha = 0. 

Ra = Gr × Pr Davis [20] Nithyadevi et al. [21] Present Study 
103 1.118 1.123 1.099 
104 2.243 2.304 2.295 
105 4.519 4.899 4.664 

Table 2. Grid size independence study.  

Grid Size Ra Nu Er (%) 
21 × 21 

1,000 
1.1024 - 

31 × 31 1.0992 0.29 
41 × 41 1.0979 0.408 
31 × 31 

10,000 
2.3201 - 

41 × 41 2.2956 1.055 
51 × 51 2.2832 1.59 
41 × 41 

100,000 
4.7097 - 

51 × 51 4.6641 0.968 
61 × 61 4.6593 1.07 

Error percentage is given by: 

(%) ( ( 10, 10) ( , ) / ( , )) 100Er Nu x x Nu x x Nu x x= + + − ×  

where x represents the Grid size. 

4. Results and Discussions 

In this parametric study, the Prandtl number was fixed at 0.71. Thermal Rayleigh number, 
irreversibility distribution ratios and the inclination angle of the magnetic field are in the following 
ranges: 103  Ra  105; 10�7 ≤ 1λ ≤ 10�4, 10�1 ≤ 2λ ≤ 0.5; 10�5 ≤ 3λ ≤ 10�2 and 0°  �  180°, 
respectively. 2λ  and 3λ  are equal to 0 in natural convection regime.  

In absence of both magnetic field and radiation effects, Figure 2 illustrates transient entropy 
generation for different values of thermal Rayleigh number. As it can be seen, for relatively lower and 
moderate thermal Rayleigh numbers (i.e., 103  Ra  104, entropy generation quickly decreases from a 
maximum value at the beginning of the transient state), then asymptotically decreases towards a 
constant value in steady state, showing that the system evolves in the linear branch of thermodynamics 
for irreversible processes. On increasing the thermal Rayleigh number (i.e., Ra 
 105), transient 
entropy generation exhibits an oscillatory behavior showing that the system is in a spiral approach 
corresponding to non linear branch of thermodynamics for irreversible processes. As time proceeds, 
entropy generation reaches a maximum then asymptotically decreases towards a constant value in 
steady state.  
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Figure 2. Dimensionless total entropy generation versus time for: � = 0°; Ha = 0; N = 0; Nr = 0. 

 

Influence of both magnetic and radiation effects on Nusselt number and entropy generation in 
steady state for Gr = 105 is illustrated in Figures 3a and 3b. As it can be seen, magnetic and radiation 
parameters induce the decrease of heat transfer expressed by Nusselt number towards unity value. 
Thus radiation effect reduces Nusselt number and homogenizes the temperature inside the cavity by 
reducing the temperature gap between the two insulated walls. It enhances the heat transfer inside the 
cavity. Magnetic effect by Lorentz force suppresses the flow. The increase of heat transfer inside the 
enclosure induces the increase of entropy generation as illustrated in Figure 3b. It is important to 
notice that the increase of Hartmann number considerably induces the decrease of entropy generation 
regardless the radiation parameter. 

Figure 3. Average Nusselt number (a) and Dimensionless total entropy generation (b) 
versus Radiation parameter for different Hartmann numbers: Ra = 105; N = 0.  

(a) (b) 

From Figure 4a, entropy generation is mainly due to magnetic and viscous irreversibilities for the 
case where N = �1 and Ha = 25. This is due to the fact that both thermal and concentration gradients 
are at their minimum values, then entropy generation is induced by magnetic and viscous 
irreversibilities. A critical radiation parameter from which entropy generation takes a constant value is 
obtained and equal to 50. Minimum entropy generation considerably depends on both buoyancy ratio 
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and radiation parameter. As it can be seen from Figure 4b, this minimum is obtained at N = �1  
and Nr = 0, this result is in good agreement with that obtained by Hidouri et al. [15] and  
Magherbi et al. [16]. As radiation parameter increases, buoyancy ratio corresponding to minimum 
entropy generation are shifted to values smaller than �1. In this case, this minimum is obtained at  
N = �2 and �3 for Nr = 6 and 40, respectively. It is important to notice that minimum entropy 
generation increases with radiation parameter, since radiation heat transfer increases inside the 
enclosure. Entropy generation amplitude is higher for the case of aiding buoyancy forces than that of 
opposing buoyancy forces since thermal, concentration and velocity gradients are more important 
when N 0� . 

Figure 4. Dimensionless entropy generation versus radiation parameter for N = �1 and  
Ha = 25 (a) and versus buoyancy ratios for different radiation parameter values at  
Ha = 25 (b) Ra = 105; � = 0°. 

(a) (b) 

In order to illustrate the influence of magnetic, radiation and buoyancy ratio parameters on heat and 
mass transfer, Figure 5a shows that radiation parameter enhances heat transfer inside the cavity and 
Nusselt number value tends towards zero value for Nr 
 20 indicating that all heat transfer is generated 
inside the enclosure. Inversely mass transfer, which is expressed by Sherwood number, has similar 
behaviour of entropy generation. In this case, Sherwood number is minimum for N = �1 where 
velocity, thermal and concentration gradients are at their minimum values. This minimum increases 
with radiation parameter showing that mass transfer increases with radiation effects. Sherwood number 
is higher for aiding buoyancy forces than that of opposing ones as indicated by Figure 5b. Both  
heat and mass transfer decrease towards unity value for considerable Hartmann number value  
(i.e., Ha 
 100) showing that magnetic field tends to stabilize the system regardless radiation parameter 
as indicated in Figure 5c. 
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Figure 5. Average Nusselt number (a) Average Sherwood number (b) versus buoyancy 
ratio for different radiation parameters (c) Nusselt and Sherwood numbers versus 
Hartmann number for different radiation parameters: Ra = 105; � = 0°. 

 
(a) 

 
(b) 

                               
(c)
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Figure 6 illustrates the effect of radiation parameter on velocity profiles, the horizontal velocity 
component decreases at the left half of the cavity and increases at the right half with increasing of 
radiation parameter. The opposite behaviour is observed for the vertical velocity component. Thus, 
velocity shows a centrosymetric trend. Similar results are obtained for temperature and concentration 
profiles. As radiation parameter increases temperature profiles tend to linearity (see Figure 7). The 
influence of the magnetic field’s inclination angle is illustrated in Figure 8, which indicated that the 
angle of 80° corresponds to maximum values of Nusselt and Sherwood numbers and for total entropy 
generation but minimum values are found for an angle around 135°. 

Figure 6. Midsection x-component velocity at y = 0.5 (a) and midsection y-component 
velocity at x = 0.5 (b) for different Radiation parameters: Ra = 105; � = 0°; Ha = 25; N = 0. 

(a) (b) 

Figure 7. Midsection y-component temperature (a) and concentration (b) at y = 0.5 for 
different Radiation parameters Ra = 105; � = 0°; Ha = 25; N = 0. 

(a) (b) 
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Figure 8. Average Nusselt number (a) Average Sherwood number (b) and Total entropy 
generation (c) versus inclination angle of magnetic field for different radiation parameters: 
Ra = 105; � = 0°; Ha = 25 and N = 0. 

 
(a) 

 
(b) 

 
(c) 



Entropy 2011, 13                            
 

2007

Figures 9, 10 and 11 illustrate isothermal lines, stream lines and irreversibility lines. In natural 
convection (i.e., N = 0) and in absence of a magnetic effect (i.e., Ha = 0), Figure 9 shows that 
isothermal lines are confined through the bottom region of the heated wall and the upper region of the 
cooled wall, a two cells structure of the flow is observed and irreversibility is localized on the 
indicated regions. As radiation parameter increases, horizontal temperature through the active wall 
decreases as well as velocity gradients inducing a one cell structure for Nr 
 6. The irreversibility lines 
are dispersed along the active as well as the insulated walls with decreasing amplitude. Thus, 
increasing radiation effect induces homogenous behaviour of fluid flow as well as thermal gradients 
inside the cavity leading to decrease of local entropy generation. In presence of a magnetic field  
(i.e., Ha = 25), Figure 10 shows that both radiation and magnetic effects tend to stabilize the system 
even for relatively higher thermal Rayleigh number (i.e., Ra 
105). Figure 11 shows the case where 
thermal and concentration gradients have the same amplitude and act in opposite way (i.e., N = �1). In 
this case, isothermal lines are mainly parallel to active walls showing a quasi conduction mode with a 
unicellular structure and increasing two cells structure of entropy generation as radiation parameter 
enhances both heat and mass transfer inside the enclosure.  

Figure 9. Isothermal lines, Stream lines and Isentropic lines for Ha = 0; N = 0 and  
Ra = 105 with different radiation parameter at horizontal magnetic field. 
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Figure 9. Cont. 
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Figure 10. Isothermal lines, Stream lines and Isentropic lines for Ha = 25; N = 0 and  
Ra = 105 with different radiation parameter at horizontal magnetic field.  
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Figure 10. Cont. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Nr = 20 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Nr = 40 

Figure 11. Isothermal lines, Stream lines and Isentropic lines for Ha = 25; N = �1 and  
Ra = 105 with different radiation parameter at horizontal magnetic field. 
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Figure 11. Cont. 
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5. Conclusions 

Entropy generation at thermosolutal convection in presence of radiation and magnetic effects in a 
square cavity is numerically investigated by using the Control Volume Finite-Element Method 
(CVFEM). Results show that the influence of the thermal Rayleigh number, the buoyancy ratio, the 
Hartmann number, the inclination angle of the magnetic field and the radiation parameter on entropy 
generation are evaluated. It was found that increasing of Hartmann and radiation parameters leads to a 
decrease of Nusselt number until reaching unity value. Magnetic effect by Lorentz force offered a 
resistance to the flow. Entropy generation increases with radiation parameter but it decreases with 
Hartmann number. Total entropy generation is influenced by the buoyancy ratio, a minimum is 
observed for N = �1, its variation is more pronounced for the case of cooperative buoyancy forces than 
in the opposite case. Inclination angle of 80° corresponds to maximum values of Nusselt and 
Sherwood numbers and total entropy generation whereas minimum values are found for an angle of 
135°. In the presence of radiation, isothermal lines become more vertical and parallel; the flow 
structure exhibits a monocellular shape.  
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