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Abstract: The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum

Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing

its implications for cosmology using renormalization group improved Einstein equations, we

find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation

is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological

constant and ends automatically when the renormalization group evolution has reduced the

vacuum energy to the level of the matter energy density. The quantum gravity effects also

provide a natural mechanism for the generation of entropy. It could easily account for the

entire entropy of the present Universe in the massless sector.
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1. Introduction

After the introduction of the effective average action and its functional renormalization group equation

for gravity [1], detailed investigations of the nonperturbative renormalization group (RG) behavior of

Quantum Einstein Gravity (QEG) have become possible [1–21]. The exact RG equation underlying

this approach defines a Wilsonian RG flow on a theory space which consists of all diffeomorphism

invariant functionals of the metric gμν . The approach turned out to be an ideal setting for investigating

the Asymptotic Safety scenario in gravity [22–29] and, in fact, substantial evidence was found for
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the nonperturbative renormalizability of Quantum Einstein Gravity. The theory emerging from this

construction (“QEG”) is not a quantization of classical general relativity. Instead, its bare action

corresponds to a nontrivial fixed point of the RG flow and is therefore a prediction. The effective average

action [1,30–39] has crucial advantages as compared to other continuum implementations of the Wilson

RG. In particular, it is closely related to the standard effective action and defines a family of effective

field theories {Γk[gμν ], 0 ≤ k < ∞} labeled by the coarse graining scale k. The latter property opens the

door to a rather direct extraction of physical information from the RG flow, at least in single-scale cases:

If the physical process or phenomenon under consideration involves only a single typical momentum

scale p0, it can be described by a tree-level evaluation of Γk[gμν ], with k = p0. The precision which

can be achieved by this effective field theory description depends on the size of the fluctuations relative

to the mean values. If they are large, or if more than one scale is involved, it might be necessary to go

beyond the tree analysis. The RG flow of the effective average action, obtained by different truncations of

theory space, has been the basis of various investigations of “RG improved” black hole and cosmological

spacetimes [40–54]. We shall discuss some aspects of this method below.

The purpose of this article is to review the main features of renormalization group improved

cosmologies based upon a RG trajectory of QEG with realistic parameter values. As a direct consequence

of the nontrivial RG fixed point which underlies Asymptotic Safety, the early Universe is found to

undergo a phase of adiabatic inflationary expansion; it is a pure quantum effect and requires no inflaton

field. Furthermore, we shall see that the quantum gravity effects provide a novel mechanism for the

generation of entropy; in fact, they could easily account for the entire entropy of the present Universe in

the massless sector.

Our presentation follow [55] and [56] to which the reader is referred for further details. A related

investigation of “asymptotically safe inflation”, using different methods, has been performed by S.

Weinberg [57].

2. Entropy and the Renormalization Group

A special class of RG trajectories obtained from QEG in the Einstein-Hilbert approximation [1],

namely those of the “Type IIIa” [4], possess all the qualitative properties one would expect from the RG

trajectory describing gravitational phenomena in the real Universe we live in. In particular they can have

a long classical regime and a small, positive cosmological constant in the infrared (IR). Determining

its parameters from observations, one finds [55] that, according to this particular QEG trajectory, the

running cosmological constant Λ(k) changes by about 120 orders of magnitude between k-values of the

order of the Planck mass and macroscopic scales, while the running Newton constant G(k) has no strong

k-dependence in this regime. For k > mPl, the non-Gaussian fixed point (NGFP) which is responsible

for the Asymptotic Safety of QEG controls their scale dependence. In the deep ultraviolet (k → ∞),

Λ(k) diverges and G(k) approaches zero.

An immediate question is whether there is any experimental or observational evidence that would

hint at this enormous scale dependence of the gravitational parameters, the cosmological constant in

particular. Clearly the natural place to search for such phenomena is cosmology. Even though it is

always difficult to give a precise physical interpretation to the RG scale k, it is fairly certain that any

sensible identification of k in terms of cosmological quantities will lead to a k which decreases during
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the expansion of the Universe. As a consequence, Λ(k) will also decrease as the Universe expands. The

purely qualitative assumption of a positive and decreasing cosmological constant already supplies an

interesting hint as to which phenomena might reflect a possible Λ-running.

To make the argument as simple as possible, let us first consider a Universe without matter, but with

a positive Λ. Assuming maximal symmetry, this is nothing but de Sitter space, of course. In static

coordinates its metric is

ds2 = −(1 + 2ΦN(r))dt
2 + (1 + 2ΦN(r))

−1dr2 + r2(dθ2 + sin2 θdφ2)

with

ΦN(r) = −1

6
Λ r2.

In the weak field and slow motion limit ΦN has the interpretation of a Newtonian potential, with a

correspondingly simple physical interpretation. The left panel of Figure 1 shows ΦN as a function of

r; for Λ > 0 it is an upside-down parabola. Point particles in this spacetime, symbolized by the black

dot in Figure 1, “roll down the hill” and are rapidly driven away from the origin and from any other

particle. Now assume that the magnitude of |Λ| is slowly (“adiabatically”) decreased. This will cause

the potential ΦN(r) to move upward as a whole at decreasing slope. So the change in Λ increases

the particle’s potential energy. This is the simplest way of understanding that a positive decreasing
cosmological constant has the effect of “pumping” energy into the matter degrees of freedom. More

realistically one will describe the matter system in a hydrodynamics or quantum field theory language

and one will include its backreaction onto the metric. But the basic conclusion, namely that a slow

decrease of a positive Λ transfers energy into the matter system, will remain true.

Figure 1. The quasi-Newtonian potential corresponding to de Sitter space is shown. The

curve moves upward as the cosmological constant decreases.

r

ΦN

We are thus led to suspect that, because of the decreasing cosmological constant, there is a continuous

inflow of energy into the cosmological fluid contained in an expanding Universe. It will “heat up”

the fluid or, more exactly, lead to a slower decrease of the temperature than in standard cosmology.

Furthermore, by elementary thermodynamics, it will increase the entropy of the fluid. If during the time

dt an amount of heat dQ > 0 is transferred into a volume V at the temperature T , the entropy changes

by an amount dS = dQ/T > 0. To be as conservative (i.e., close to standard cosmology) as possible,

we assume that this process is reversible. If not, dS is even larger.
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In standard Friedmann-Robertson-Walker (FRW) cosmology the expansion is adiabatic, the entropy

(within a comoving volume) is constant. Therefore it has always been somewhat puzzling where the

huge amount of entropy contained in the present Universe comes from. Presumably it is dominated by

the CMBR photons which contribute an amount of about 1088 to the entropy within the present Hubble

sphere. (We use units such that kB = 1. ) In fact, if it is really true that no entropy is produced during

the expansion then the Universe would have had an entropy of at least 1088 immediately after the initial

singularity which for various reasons seems quite unnatural. In scenarios which invoke a “tunneling

from nothing”, for instance, spacetime was “born” in a pure quantum state, so the very early Universe

is expected to have essentially no entropy. Usually it is argued that the entropy present today is the

result of some sort of “coarse graining” which, however, typically is not considered an active part of the

cosmological dynamics in the sense that it would have an impact on the time evolution of the metric, say.

Following [55] we shall argue that in principle the entire entropy of the massless fields in the present

universe can be understood as arising from the mechanism described above. If energy can be exchanged

freely between the cosmological constant and the matter degrees of freedom, the entropy observed today

is obtained precisely if the initial entropy at the “big bang” vanishes. The assumption that the matter

system must allow for an unhindered energy exchange with Λ is essential, see [44,55].

We shall model the matter in the early Universe by a gas with nb bosonic and nf fermionic massless

degrees of freedom, all at the same temperature. In equilibrium its energy density, pressure, and entropy

density are given by the usual relations (neff = nb +
7
8
nf)

ρ = 3 p =
π2

30
neff T 4 (1a)

s =
2π2

45
neff T 3 (1b)

so that in terms of U ≡ ρ V and S ≡ s V ,

T dS = dU + p dV (1c)

In an out-of-equilibrium process of entropy generation the question arises how the various

thermodynamical quantities are related then. To be as conservative as possible, we make the assumption

that the irreversible inflow of energy destroys thermal equilibrium as little as possible in the sense that

the equilibrium relation (1) continue to be (approximately) valid.

This kind of thermodynamics in an FRW-type cosmology with a decaying cosmological constant has

been analyzed in detail by Lima [58], see also [59]. It was shown that if the process of matter creation

Λ(t) gives rise to constant specific entropy per particle, the relations of equilibrium thermodynamics are

preserved. This means that no finite thermalization time is required since the particles originating from

the decaying vacuum are created in equilibrium with the already existing ones. Under these conditions

it is also possible to derive a generalized black body spectrum which is conserved under time evolution.

Such minimally non-adiabatic processes were termed “adiabatic” (with the quotation marks) in [58,59].

3. Asymptotically Safe Inflation

There is another, more direct potential consequence of a decreasing positive cosmological constant

which we shall also explore here, namely a period of automatic inflation during the very first stages of
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the cosmological evolution. In the very early Universe the RG running of the gravitational parameters is

governed by the non-Gaussian RG fixed point which is at the heart of the Asymptotic Safety scenario as

shown in Figure 2.

Figure 2. The “realistic” RG trajectory discussed in the text, emanating from the NGFP,

is shown. In particular kT is the momentum scale k at which the flow spends most of

its “RG-time” near the GFP, so that the the dimensionful coupling constant G ≈ GNewton

approaches its classical values. The Planck scale k = mPl indicates the crossover scale from

the NGFP to the Gaussian fixed point.
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The inflationary phase we are going to describe is a rather direct consequence of the huge

cosmological constant which the NGFP enforces during the epoch governed by the asymptotic scaling

regime of the renormalization group.

It is not surprising, of course, that a positive Λ can cause an accelerated expansion, but in the classical

context the problem with a Λ-driven inflation is that it would never terminate once it has started. In

popular models of scalar driven inflation this problem is circumvented by designing the inflaton potential

in such a way that it gives rise to a vanishing vacuum energy after a period of “slow roll”.

As we shall see generic RG cosmologies based upon the QEG trajectories have an era of Λ-driven

inflation immediately after the big bang which ends automatically as a consequence of the RG running

of Λ(k). Once the scale k drops significantly below mPl, the accelerated expansion ends because the

vacuum energy density ρΛ is already too small to compete with the matter density. Clearly this is a very

attractive scenario: to neither trigger inflation nor stop it, one needs any ad hoc ingredients such as an
inflaton field or a special potential. It suffices to include the leading quantum effects in the gravity and

matter system. Furthermore, asymptotic safety offers a natural mechanism for the quantum mechanical

generation of primordial density perturbations, the seeds of cosmological structure formations.

In the following we review a concrete investigation along these lines. For further details we refer

to [44,55].
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4. The Improved Einstein Equations

The computational setting of our investigation [55] are the RG improved Einstein equations: By

means of a suitable cutoff identification k = k(t) we turn the scale dependence of G(k) and Λ(k) into

a time dependence, and then substitute the resulting G(t) ≡ G(k(t)) and Λ(t) ≡ Λ(k(t)) into the

Einstein equations Gμν = −Λ(t)gμν +8πG(t)Tμν . We specialize gμν to describe a spatially flat (K = 0)

Robertson-Walker metric with scale factor a(t), and we take Tμ
ν = diag[−ρ, p, p, p] to be the energy

momentum tensor of an ideal fluid with equation of state p = wρ where w > −1 is constant. Then the

improved Einstein equation boils down to the modified Friedmann equation and a continuity equation:

H2 =
8π

3
G(t) ρ+

1

3
Λ(t) (2a)

ρ̇+ 3H(ρ+ p) = −Λ̇ + 8π ρ Ġ

8π G
(2b)

The modified continuity equation (2b) is the integrability condition for the improved Einstein equation

implied by Bianchi’s identity, Dμ[−Λ(t)gμν+8πG(t)Tμν ] = 0. It describes the energy exchange between

the matter and gravitational degrees of freedom (geometry). For later use let us note that upon defining

the critical density ρcrit(t) ≡ 3 H(t)2/8π G(t) and the relative densities ΩM ≡ ρ/ρcrit and ΩΛ = ρΛ/ρcrit

the modified Friedmann equation (2a) can be written as ΩM(t) + ΩΛ(t) = 1.

We shall obtain G(k) and Λ(k) by solving the flow equation in the Einstein-Hilbert truncation with

a sharp cutoff [1,4]. It is formulated in terms of the dimensionless Newton and cosmological constant,

respectively: g(k) ≡ k2 G(k), λ(k) = Λ(k)/k2. We then construct quantum corrected cosmologies by

(numerically) solving the RG improved evolution equations. We shall employ the cutoff identification

k(t) = ξH(t) (3)

where ξ is a fixed positive constant of order unity. This is a natural choice since in a Robertson-Walker

geometry the Hubble parameter measures the curvature of spacetime; its inverse H−1 defines the size of

the “Einstein elevator”. Thus we have

G(t) =
g(ξH(t))

ξ2 H(t)2
, Λ(t) = ξ2 H(t)2 λ(ξH(t)) (4)

One can prove that all solutions of the coupled system of differential equations (2a, 2b) can be obtained

by means of the following algorithm:

Let
(
g(k), λ(k)

)
be a prescribed RG trajectory and H(t) a solution of

Ḣ(t) = −1

2
(3 + 3w)H(t)2

[
1− 1

3
ξ2 λ(ξH(t))

]
(5)

Let ρ(t) be defined in terms of this solution by

ρ(t) =
3 ξ2

8π g(ξH(t))

[
1− 1

3
ξ2 λ(ξH(t))

]
H(t)4 (6)

Then the pair
(
H(t), ρ(t)

)
is a solution of the system (2a), (2b) for the time dependence of G and Λ

given by (4) and the equation of state p = wρ, provided H(t) �= 0.
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5. RG Trajectory with Realistic Parameter Values

Before we start solving the modified field equations let us briefly review how the type IIIa trajectories

of the Einstein-Hilbert truncation can be matched against the observational data [40]. This analysis

is fairly robust and clear-cut; it does not involve the NGFP. All that is needed is the approximate RG

flow about the Gaussian fixed point (GFP) which is located at g = λ = 0. In its vicinity one has

[1] Λ(k) = Λ0 + ν Ḡ k4 + · · · and G(k) = Ḡ + · · · . Or, in terms of the dimensionless couplings,

λ(k) = Λ0/k
2 + ν Ḡ k2 + · · · , g(k) = Ḡ k2 + · · · . In the linear regime of the GFP, Λ displays

a running ∝ k4 and G is approximately constant. Here ν is a positive constant of order unity [1,4].

These equations are valid if λ(k) 	 1 and g(k) 	 1. They describe a 2-parameter family of RG

trajectories labeled by the pair (Λ0, Ḡ). It will prove convenient to use an alternative labeling (λT, kT)

with λT ≡ (4νΛ0Ḡ)1/2 and kT ≡ (Λ0/νḠ)1/4. The old labels are expressed in terms of the new

ones as Λ0 = 1
2
λT k2

T and Ḡ = λT/2 ν k
2
T. It is furthermore convenient to introduce the abbreviation

gT ≡ λT/2 ν. When parameterized by the pair (λT, kT) the trajectories assume the form

Λ(k) =
1

2
λT k2

T

[
1 + (k/kT)

4
]
≡ Λ0

[
1 + (k/kT)

4
]

(7)

G(k) =
λT

2 ν k2
T

≡ gT
k2
T

or, in dimensionless form,

λ(k) =
1

2
λT

[(kT
k

)2

+
( k

kT

)2]
, g(k) = gT

( k

kT

)2

(8)

As for the interpretation of the new variables, it is clear that λT ≡ λ(k ≡ kT) and gT ≡ g(k =

kT), while kT is the scale at which βλ (but not βg) vanishes according to the linearized running:

βλ(kT) ≡ kdλ(k)/dk|k=kT = 0. Thus we see that (gT, λT) are the coordinates of the turning point

T of the type IIIa trajectory considered, and kT is the scale at which it is passed. It is convenient to refer

the “RG time” τ to this scale: τ(k) ≡ ln(k/kT). Hence τ > 0 (τ < 0) corresponds to the “UV regime”

(“IR regime”) where k > kT (k < kT).

Let us now hypothesize that, within a certain range of k-values, the RG trajectory realized in Nature

can be approximated by (8). In order to determine its parameters (Λ0, Ḡ) or (λT, kT) we must perform a

measurement of G and Λ. If we interpret the observed values Gobserved = m−2
Pl , mPl ≈ 1.2× 1019 GeV,

and Λobserved = 3ΩΛ0 H
2
0 ≈ 10−120 m2

Pl as the running G(k) and Λ(k) evaluated at a scale k 	 kT,

then we get from (7) that Λ0 = Λobserved and Ḡ = Gobserved. Using the definitions of λT and

kT along with ν = O(1) this leads to the order-of-magnitude estimates gT ≈ λT ≈ 10−60 and

kT ≈ 10−30 mPl ≈ (10−3cm)−1. Because of the tiny values of gT and λT the turning point lies in

the linear regime of the GFP.

Up to this point we discussed only that segment of the “trajectory realized in Nature” which lies inside

the linear regime of the GFP. The complete RG trajectory is obtained by continuing this segment with

the flow equation both into the IR and into the UV, where it ultimately spirals into the NGFP. While the

UV-continuation is possible within the Einstein-Hilbert truncation, this approximation breaks down in

the IR when λ(k) approaches 1/2. Interestingly enough, this happens near k = H0, the present Hubble

scale. The right panel of Figure 1 shows a schematic sketch of the complete trajectory on the g-λ–plane

and Figure 2 displays the resulting k-dependence of G and Λ.
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6. Primordial Entropy Generation

Let us return to the modified continuity equation (2b). After multiplication by a3 it reads

[ρ̇+ 3H(ρ+ p)] a3 = P̃(t) (9)

where we defined

P̃ ≡ −
(Λ̇ + 8π ρ Ġ

8π G

)
a3 (10)

Without assuming any particular equation of state equation (9) can be rewritten as

d

dt
(ρa3) + p

d

dt
(a3) = P̃(t) (11)

The interpretation of this equation is as follows. Let us consider a unit coordinate, i.e., comoving volume

in the Robertson-Walker spacetime. Its corresponding proper volume is V = a3 and its energy contents

is U = ρa3. The rate of change of these quantities is subject to (11):

dU

dt
+ p

dV

dt
= P̃(t) (12)

In classical cosmology where P̃ ≡ 0 this equation together with the standard thermodynamic relation

dU + pdV = TdS is used to conclude that the expansion of the Universe is adiabatic, i.e., the entropy

inside a comoving volume does not change as the Universe expands, dS/dt = 0.

In the following we shall write S ≡ s a3 for the entropy carried by the matter inside a unit comoving

volume and s for the corresponding proper entropy density.

When Λ and G are time dependent, P̃ is nonzero and we interpret (12) as describing the process of

energy (or “heat”) exchange between the scalar fields Λ and G and the ordinary matter. This interaction

causes S to change:

T
dS

dt
= T

d

dt
(sa3) = P̃(t) (13)

The actual rate of change of the comoving entropy is

dS

dt
=

d

dt
(sa3) = P(t) (14)

where

P ≡ P̃/T (15)

If T is known as a function of t we can integrate (13) to obtain S = S(t). In the RG improved

cosmologies the entropy production rate per comoving volume

P(t) = −
[Λ̇ + 8π ρ Ġ

8π G

]a3
T

(16)

is nonzero because the gravitational “constants” Λ and G have acquired a time dependence.

For a given solution to the coupled system of RG and cosmological equations it is sometimes more

convenient to calculate P(t) from the LHS of the modified continuity equation rather than its RHS (16):

[ρ̇+ 3H(ρ+ p)]
a3

T
= P(t) (17)
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If S has to increase with time, by (16), we need that Λ̇ + 8πĠ < 0. During most epochs of the

RG improved cosmologies we have Λ̇ ≤ 0 and Ġ ≥ 0. The decreasing Λ and the increasing G have

antagonistic effects therefore. We shall see that in the physically realistic cases Λ predominates so that

there is indeed a transfer of energy from the vacuum to the matter sector rather than vice versa.

Clearly we can convert the heat exchanged, TdS, to an entropy change only if the dependence

of the temperature T on the other thermodynamical quantities, in particular ρ and p is known.

For this reason we shall now make the following assumption about the matter system and its

(non-equilibrium!) dynamics:

The matter system is assumed to consist of neff species of effectively massless degrees of freedom
which all have the same temperature T . The equation of state is p = ρ/3, i.e., w = 1/3, and ρ depends
on T as

ρ(T ) = κ4 T 4, κ ≡ (π2 neff/30)
1/4 (18)

No assumption is made about the relation s = s(T ).
The first assumption, radiation dominance and equal temperature, is plausible since we shall find that

there is no significant entropy production any more once H(t) has dropped substantially below mPl, after

the crossover from the NGFP to the GFP.

The second assumption, Equation (18), amounts to the hypothesis formulated in the introduction.

While entropy generation is a non-adiabatic process we assume, following Lima [58], that the

non-adiabaticity is as small as possible. More precisely, the approximation is that the equilibrium
relations among ρ, p, and T are still valid in the non-equilibrium situation of a cosmology with

entropy production. In this sense, (18) is the extrapolation of the standard relation (1a) to a “slightly

non-adiabatic” process.

Note that while we used (1c) in relating P(t) to the entropy production and also postulated

Equation (1a), we do not assume the validity of the formula for the entropy density, Equation (1b), a

priori. We shall see that the latter is an automatic consequence of the cosmological equations.

To make the picture as clear as possible we shall neglect in the following all ordinary dissipative

processes in the cosmological fluid.

Using p = ρ/3 and (18) in (17) the entropy production rate can be evaluated as follows:

P(t) = κ
[
a3ρ−1/4 ρ̇+ 4 a3 H ρ3/4

]
(19)

=
4

3
κ
[
a3

d

dt
(ρ3/4) + 3 ȧ a2 ρ3/4

]

=
4

3
κ
[
a3

d

dt
(ρ3/4) + ρ3/4

d

dt
(a3)

]

Remarkably, P turns out to be a total time derivative:

P(t) =
d

dt

[4
3
κ a3 ρ3/4

]
(20)

Therefore we can immediately integrate (13) and obtain

S(t) =
4

3
κ a3 ρ3/4 + Sc (21)
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or, in terms of the proper entropy density,

s(t) =
4

3
κ ρ(t)3/4 +

Sc

a(t)3
(22)

Here Sc is a constant of integration. In terms of T , using (18) again,

s(t) =
2π2

45
neff T (t)3 +

Sc

a(t)3
(23)

The final result (23) is very remarkable for at least two reasons. First, for Sc = 0, Equation (23)

has exactly the form (1b) which is valid for radiation in equilibrium. Note that we did not postulate

this relationship, only the ρ(T )–law was assumed. The equilibrium formula s ∝ T 3 was derived
from the cosmological equations, i.e., the modified conservation law. This result makes the hypothesis

“non-adiabatic, but as little as possible” self-consistent.

Second, if limt→0 a(t)ρ(t)1/4 = 0, which is actually the case for the most interesting class of

cosmologies, then we shall find S(t → 0) = Sc by Equation (21). As we mentioned in the introduction,

the most plausible initial value of S is S = 0 which means a vanishing constant of integration Sc here.

But then, with Sc = 0, (21) tells us that the entire entropy carried by the massless degrees of freedom

is due to the RG running. So it indeed seems to be true that the entropy of the CMBR photons we

observe today is due to a coarse graining but, unexpectedly, not a coarse graining of the matter degrees

of freedom but rather of the gravitational ones which determine the background spacetime the photons

propagate on.

We close this section with various comments. As for the interpretation of the function P(t), let

us remark that it also measures the deviations from the classical laws a4ρ = const and aT = const,

respectively, since we have P = 4
3
κ d(a4ρ)3/4/dt = 4

3
κ4 d(aT )3/dt.

In the improved cosmology the “consistency condition” implies the quantity M ≡ 8πa4ρ is conserved

in time [44]. If energy transfer is permitted and the entropy of the ordinary matter grows, M increases

as well. This is obvious from
d

dt
M(t)3/4 =

3

4κ
(8π)3/4 P(t) (24)

or, in integrated form, S(t) = 4
3
κ(8π)−3/4M(t)3/4 + Sc .

In a spatially flat Robertson-Walker spacetime the overall scale of a(t) has no physical significance. If

M is time independent, we can fix this gauge ambiguity by picking a specific value of M and expressing

a(t) correspondingly. For instance, parametrized in this way, the scale factor of the classical FRW

cosmology with Λ = 0, w = 1/3 reads [44]

a(t) = [4ḠM/3]1/4
√
t (25)

If, during the expansion, M increases slowly, Equation (25) tells us that the expansion is actually faster
than estimated classically. Of course, what we actually have to do in order to find the corrected a(t) is

to solve the improved field equations and not insert M = M(t) into the classical solution, in particular

when the change of M is not “slow”. Nevertheless, this simple argument makes it clear that entropy

production implies an increase of M which in turns implies an extra increase of the scale factor. This

latter increase, or “inflation”, is a pure quantum effect. The explicit solutions to which we turn next will

confirm this picture.
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7. Solving the RG Improved Einstein Equations

In [55] we solved the improved Einstein equations (2a, 2b) for the trajectory with realistic parameter

values which was discussed in Section 5. The solutions were determined by applying the algorithm

described at the end of Section 4. Having fixed the RG trajectory, there exists a 1-parameter family of

solutions (H(t), ρ(t)). This parameter is conveniently chosen to be the relative vacuum energy density

in the fixed point regime, Ω∗
Λ = λξ2/3.

The very early part of the cosmology can be described analytically. For k → ∞ the trajectory

approaches the NGFP, (g, λ) → (g∗, λ∗), so that G(k) = g∗/k2 and Λ(k) = λ∗k2. In this case the

differential equation can be solved analytically, with the result

H(t) = α/t, a(t) = Atα, α =
[1
2
(3 + 3w)(1− Ω∗

Λ)
]−1

(26)

and

ρ(t) = ρ̂t−4, G(t) = Ĝt2, Λ(t) = Λ̂/t2.

Here A, ρ̂, Ĝ, and Λ̂ are positive constants. They depend on Ω∗
Λ which assumes values in the interval

(0, 1). If α > 1 the deceleration parameter q = α−1 − 1 is negative and the Universe is in a phase of

power law inflation. Furthermore, it has no particle horizon if α ≥ 1, but does have a horizon of radius

dH = t/(1 − α) if α < 1. In the case of w = 1/3 this means that there is a horizon for Ω∗
Λ < 1/2, but

none if Ω∗
Λ ≥ 1/2.

If w = 1/3, the above discussion of entropy generation applies. The corresponding production

rate reads

P(t) = 4κ (α− 1) A3 ρ̂3/4 t3α−4.

For the entropy per unit comoving volume we find, if α �= 1,

S(t) = Sc +
4

3
κ A3 ρ̂3/4 t3(α−1),

and the corresponding proper entropy density is

s(t) =
Sc

A3 t3α
+

4κ ρ̂3/4

3 t3
.

For the discussion of the entropy we must distinguish 3 qualitatively different cases.

(a) The case α > 1, i.e., 1/2 < Ω∗
Λ < 1: Here P(t) > 0 so that the entropy and energy content of the

matter system increases with time. By Equation (16), P > 0 implies Λ̇ + 8πρĠ < 0. Since Λ̇ < 0 but

Ġ > 0 in the NGFP regime, the energy exchange is predominantly due to the decrease of Λ while the

increase of G is subdominant in this respect.

The comoving entropy S(t) has a finite limit for t → 0, S(t → 0) = Sc, and S(t) grows

monotonically for t > 0. If Sc = 0, which would be the most natural value in view of the discussion in

the introduction, all of the entropy carried by the matter fields is due to the energy injection from Λ.

(b) The case α < 1, i.e., 0 < Ω∗
Λ < 1/2: Here P(t) < 0 so that the energy and entropy of matter

decreases. Since P < 0 amounts to Λ̇ + 8πρĠ > 0, the dominant physical effect is the increase of G
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with time, the counteracting decrease of Λ is less important. The comoving entropy starts out from an

infinitely positive value at the initial singularity, S(t → 0) → +∞. This case is unphysical probably.

(c) The case α = 1, Ω∗
Λ = 1/2: Here P(t) ≡ 0, S(t) = const. The effect of a decreasing Λ and

increasing G cancel exactly.

At lower scales the RG trajectory leaves the NGFP and very rapidly “crosses over” to the GFP at

k ≈ mPl, as it is shown in Figure 2. This is most clearly seen in the behavior of the anomalous dimension

ηN(k) ≡ k∂k lnG(k) which quickly changes from its NGFP value η∗ = −2 to the classical ηN = 0. This

transition happens near k ≈ mPl or, since k(t) ≈ H(t), near a cosmological “transition” time ttr defined

by the condition k(ttr) = ξH(ttr) = mPl. (Recall that ξ = O(1)). The complete solution to the

improved equations can be found with numerical methods only. It proves convenient to use logarithmic

variables normalized with respect to their respective values at the turning point. Besides the “RG time”

τ ≡ ln(k/kT), we use x ≡ ln(a/aT), y ≡ ln(t/tT), and U ≡ ln(H/HT).

Summarizing the numerical results one can say that for any value of Ω∗
Λ the UV cosmologies consist of

two scaling regimes and a relatively sharp crossover region near k,H ≈ mPl corresponding to x ≈ −34.5

which connects them. At higher k-scales the fixed point approximation is valid, at lower scales one has

a classical FRW cosmology in which Λ can be neglected.

As an example, Figure 3 shows the crossover cosmology with Ω∗
Λ = 0.98 and w = 1/3. The entropy

production rate P is maximum at ttr and quickly goes to zero for t > ttr; it is non-zero for all t < ttr.

By varying the Ω∗
Λ-value one can check that the early cosmology is indeed described by the NGFP

solution (5.1). For the logarithmic H vs. a- plot, for instance, it predicts U = −2(1 − Ω∗
Λ)x for

x < −34.4. The left part of the plot in Figure 3a and its counterparts with different values of Ω∗
Λ indeed

comply with this relation. If Ω∗
Λ ∈ (1/2, 1) we have α = (2 − 2Ω∗

Λ)
−1 > 1 and a(t) ∝ tα describes a

phase of accelerated power law inflation.

Figure 3. The dimensionful quantities Λ(k) and G(k) for the RG trajectory with realistic

parameter values.
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When Ω∗
Λ → 1, the slope of U(x) = −2(1 − Ω∗

Λ)x decreases and finally vanishes at Ω∗
Λ = 1. This

limiting case corresponds to a constant Hubble parameter, i.e., to de Sitter space. For values of Ω∗
Λ

smaller than, but close to 1 this de Sitter limit is approximated by an expansion a ∝ tα with a very large

exponent α.

The phase of power law inflation automatically comes to a halt once the RG running has reduced Λ to

a value where the resulting vacuum energy density no longer can overwhelm the matter energy density.

8. Inflation in the Fixed Point Regime

Next we discuss in more detail the epoch of power law inflation which is realized in the NGFP regime

if Ω∗
Λ > 1/2. Since the transition from the fixed point to the classical FRW regime is rather sharp it

will be sufficient to approximate the RG improved UV cosmologies by the following caricature: For

0 < t < ttr, the scale factor behaves as a(t) ∝ tα, α > 1. Here α = (2− 2Ω∗
Λ)

−1 since w = 1/3 will be

assumed. Thereafter, for t > ttr, we have a classical, entirely matter-driven expansion a(t) ∝ t1/2 .

8.1. Transition Time and Apparent Initial Singularity

The transition time ttr is dictated by the RG trajectory. It leaves the asymptotic scaling regime near

k ≈ mPl. Hence H(ttr) ≈ mPl and since ξ = O(1) and H(t) = α/t we find the estimate

ttr = α tPl (27)

Here, as always, the Planck mass, time, and length are defined in terms of the value of Newton’s constant

in the classical regime: tPl = �Pl = m−1
Pl = Ḡ1/2 = G

1/2
observed. Let us now assume that Ω∗

Λ is very close

to 1 so that α is large: α 
 1. Then (27) implies that the transition takes place at a cosmological time

which is much later than the Planck time. At the transition the Hubble parameter is of order mPl, but

the cosmological time is in general not of the order of tPl. Stated differently, the “Planck time” is not
the time at which H and the related physical quantities assume Planckian values. The Planck time as

defined above is well within the NGFP regime: tPl = ttr/α 	 ttr.

At t = ttr the NGFP solution is to be matched continuously with a FRW cosmology (with vanishing

cosmological constant ). We may use the classical formula a ∝ √
t for the scale factor, but we must shift

the time axis on the classical side such that a, H , and then as a result of (2a) also ρ are continuous at ttr.

Therefore a(t) ∝ (t− tas)
1/2 and H(t) = 1

2
(t− tas)

−1 for t > ttr. Equating this Hubble parameter

at t = ttr to H(t) = α/t, valid in the NGFP regime, we find that the shift tas must be chosen as

tas = (α− 1

2
)tPl = (1− 1

2α
)ttr < ttr.

Here the subscript “as” stands for “apparent singularity”. This is to indicate that if one continues the

classical cosmology to times t < ttr, it has an initial singularity (“big bang”) at t = tas. Since, however,

the FRW solution is not valid there nothing special happens at tas; the true initial singularity is located at

t = 0 in the NGFP regime (see Figure 4).
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Figure 4. The crossover epoch of the cosmology for Ω∗
Λ = 0.98. The plots a), b), c) display

the logarithmic Hubble parameter U , as well as q, ΩΛ, g and λ as a function of the logarithmic

scale factor x. A crossover is observed near x ≈ −34.5. The diamond in plot d) indicates

the point on the RG trajectory corresponding to this x-value. (The lower horizontal part of

the trajectory is not visible on this scale.) The plots e) and f) show the x-dependence of the

anomalous dimension and entropy production rate, respectively.

8.2. Crossing the Hubble Radius

In the NGFP regime 0 < t < ttr the Hubble radius �H(t) ≡ 1/H(t), i.e., �H(t) = t/α , increases

linearly with time but, for α 
 1, with a very small slope. At the transition, the slope jumps from 1/α

to the value 2 since H = 1/(2t) and �H = 2t in the FRW regime. This behavior is sketched in Figure 4.

Let us consider some structure of comoving length Δx, a single wavelength of a density perturbation,

for instance. The corresponding physical, i.e., proper length is

L(t) = a(t)Δx
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then. In the NGFP regime it has the time dependence L(t) = (t/ttr)
α L(ttr). The ratio of L(t) and the

Hubble radius evolves according to

L(t)

�H(t)
= (

t

ttr
)α−1 L(ttr)

�H(ttr)
.

For α > 1, i.e., Ω∗
Λ > 1/2, the proper length of any object grows faster than the Hubble radius. So objects

which are of “sub-Hubble” size at early times can cross the Hubble radius and become “super-Hubble”

at later times, see Figure 4.

Let us focus on a structure which, at t = ttr, is eN times larger than the Hubble radius. Before the

transition we have L(t)/�H(t) = eN (t/ttr)
α−1. Assuming eN > 1, there exists a time tN < ttr at

which L(tN) = �H(tN) so that the structure considered “crosses” the Hubble radius at the time tN . It is

given by

tN = ttr exp
(
− N

α− 1

)
(28)

What is remarkable about this result is that, even with rather moderate values of α, one can easily

“inflate” structures to a size which is by many e-folds larger than the Hubble radius during a very short
time interval at the end of the NGFP epoch.

Let us illustrate this phenomenon by means of an example, namely the choice Ω∗
Λ = 0.98 used in

Figure 3. Corresponding to 98% vacuum and 2% matter energy density in the NGFP regime, this value

is still “generic” in the sense that Ω∗
Λ is not fine tuned to equal unity with a precision of many decimal

places. It leads to the exponent α = 25, the transition time ttr = 25 tPl, and tas = 24.5 tPl.

The largest structures in the present Universe, evolved backward in time by the classical equations

to the point where H = mPl, have a size of about e60 �Pl there. We can use (28) with N = 60

to find the time t60 at which those structures crossed the Hubble radius. With α = 25 the result is

t60 = 2.05 tPl = ttr/12.2. Remarkably, t60 is smaller than ttr by one order of magnitude only. As

a consequence, the physical conditions prevailing at the time of the crossing are not overly “exotic”

yet. The Hubble parameter, for instance, is only one order of magnitude larger than at the transition:

H(t60) ≈ 12mPl. The same is true for the temperature; one can show that T (t60) ≈ 12T (ttr) where

T (ttr) is of the order of mPl. Note that t60 is larger than tPl.

8.3. Primordial Density Fluctuations

QEG offers a natural mechanism for generating primordial fluctuations during the NGFP epoch. They

have a scale free spectrum with a spectral index close to n = 1. This mechanism is at the very heart of

the Asymptotic Safety underlying the nonperturbative renormalizability of QEG. A detailed discussion

of this mechanism is beyond the scope of the present review; the reader it referred to [5,44,55]. Suffice it

to say that the quantum mechanical generation of the primordial fluctuations happens on sub-Hubble

distance scales. However, thanks to the inflationary NGFP era the modes relevant to cosmological

structure formation were indeed smaller than the Hubble radius at a sufficiently early time, for t < t60,

say (see the L(t) curve in Figure 5).
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Figure 5. Shown is the proper length L and the Hubble radius as a function of time. The

NGFP and FRW cosmologies are valid for t < ttr and t > ttr, respectively. The classical

cosmology has an apparent initial singularity at tas outside its domain of validity. Structures

of size eN�Pl at ttr cross the Hubble radius at tN , a time which can be larger than the

Planck time.
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9. Conclusions

We advocated the point of view that the scale dependence of the gravitational parameters has an

impact on the physics of the universe we live in and we tried to identify known features of the Universe

which could possibly be due to this scale dependence. We proposed three possible candidates for such

features: the entropy carried by the radiation which fills the Universe today, a period of automatic,

Λ-driven inflation that requires no ad hoc inflaton, and the primordial density perturbations. While there

is clearly no direct observational evidence for inflation it can explain super-Hubble sized perturbations.

For further details we refer to [55] while for an extension of this approach including higher order

operators in the truncated action we refer to [60].
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