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Abstract: This paper concerns the second law analysis of a viscoelastic fluid over a 

stretching sheet subject to a transverse magnetic field with heat and mass transfer. The 

velocity, temperature and concentration profiles are obtained analytically using Kummer’s 

functions. The effects of the magnetic and viscoelastic parameters on both the longitudianl 

and the transverse velocities are investigated. The influence of Prandt number, the magnetic 

parameter and the heat source/sink parameter on the temperature is analysed. The 

concentration and its variations with the Schmidt number and the magnetic parameter is 

presented as well. The velocity, the temperature and the concentration profiles are used to 

compute the entropy generation number. This number is graphed and studied as function of 

the magnetic parameter, the Prandtl number, The Schmidt number, the Reynolds number, 

the dimensionless group, the Hartmann number, the ratio of the dimensionless concentration 

difference to the dimensionless temperature difference and the constant parameter. 

Keywords: heat transfer; magnetic field; mass transfer; second law; stretching surface; 

viscoelastic fluid 
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Nomenclature 

a  constant 

A  constant 

b  constant 

0B


 uniform magnetic field strength 

Br  Brinkman number 

PC  specific heat of the fluid 

C  concentration 

D  diffusion coefficient 
f  dimensionless function 

Ha  Hartmann number 

k  thermal conductivity of the fluid 

1k  viscoelastic parameter 

0k
 viscoelastic parameter 

l  characteristic length 

M  Kummer’s function 

Mn  magnetic parameter 

SN
 entropy generation number 

Pr  Prandlt number 

 nq
 Pochhammer’s symbol 

Q  rate of internal heat generation or absorption  

 nr
 Pochhammer’s symbol 

R  ideal gas constant 

lRe
 Reynolds number based on the characteristic length  

Sc  Schmidt number  

GS
 local volumetric rate of entropy generation  

0GS
 characteristic volumetric rate of entropy generation  

T  temperature 

u  axial velocity 

lu
 plate velocity based on the characteristic length 

0u
 plate velocity 

v  transverse velocity 

x  axial distance 

X  dimensionless axial distance 
y

 transverse distance 

  positive constant 
1Br dimensionless group  
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  heat source/sink parameter 

  proportional constant 
  dimensionless variable 

  constant parameter 

  dimensionless variable 
  dynamic viscosity of the fluid 

  kinematic viscosity of the fluid 

C  concentration difference 

T  temperature difference 

  dimensionless temperature difference  

  dimensionless temperature  

  dimensionless concentration 

  dimensionless concentration difference 
  density of the fluid 

  electric conductivity 

subscripts 

0  plate 

  far from the sheet 

1. Introduction 

The study of MHD flow of viscoelastic fluids over a continuously moving surface has a wide range 

of applications in technological and industrial manufacturing processes. This concerns the production 

of synthetic sheets, aerodynamic extrusion of plastic sheets, cooling of metallic plates, etc. 

Crane [1] considered the laminar boundary layer flow of a Newtonian fluid caused by a flat elastic sheet 

whose velocity varies linearly with the distance from the fixed point of the sheet. Rajagopal et al. [2] and 

Chang [3] presented an analysis of flow of viscoelastic fluid over stretching sheets. The heat transfer 

cases of these studies have been considered by Dandapat and Gupta [4] and Vajravelu and Rollins [5], 

while flow of viscoelastic fluid over a stretching surface under the influence of uniform magnetic field 

has been investigated by Andersson [6]. 

Thereafter, a series of studies on heat transfer effects on viscoelastic fluid have been made by many 

authors under different physical situations [7–13]. Khan and Sanjayanand [14] have derived a 

similarity solution of a viscoelastic boundary layer flow and heat transfer over an exponential  

stretching surface.  

Recently, Cortell [15] studied flow and heat transfer of a viscoelastic fluid over a stretching surface 

considering both constant sheet temperature and prescribed sheet temperature. Abel et al. [16] carried 

out a study of viscoelastic boundary layer flow and heat transfer over a stretching surface in the 

presence of non-uniform heat source and viscous dissipation considering prescribed surface 

temperature and prescribed surface heat flux.  
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Although the preceeding research works have covered a wide range of problems involving the flow 

and heat transfer of viscoelastic fluid over stretching surface they have been restricted, from z 

thermodynamic point of view, to only the first law analysis. The contemporary trend in the field of heat 

transfer and thermal design is the second law of thermodynamics analysis and its related concept of 

entropy generation minimization. 

Entropy generation is closely associated with thermodynamic irreversibility, which is encountered in 

all heat transfer processes. Different sources such as heat transfer and viscous dissipation are 

responsible for generation of entropy [17,18]. The analysis of entropy generation rate in a circular duct 

with imposed heat flux at the wall and its extension to determine the optimum Reynolds number as 

function of the Prandtl number and the duty parameter were presented by Bejan [18,19]. Sahin [20] 

introduced the second law analysis to a viscous fluid in circular duct with isothermal  

boundary conditions. 

In another paper, Sahin [21] presented the effect of variable viscosity on entropy generation rate for 

heated circular duct. A comparative study of entropy generation rate inside duct of different shapes and 

the determination of the optimum duct shape subjected to isothermal boundary condition were done by 

Sahin [22]. Narusawa [23] gave an analytical and numerical analysis of the second law for flow and 

heat transfer inside a rectangular duct.  

In more recent papers, Mahmud and Fraser [24–26] applied the second law analysis to fundamental 

convective heat transfer problems and to non-Newtonian fluid flow through a channel made of two 

parallel plates. The study of entropy generation in a falling liquid film along an inclined heated plate 

was carried out by Saouli and Aïboud-Saouli [27]. As far as the effect of a magnetic field on the 

entropy generation is concerned, Mahmud et al. [28] studied the case of mixed convection in a 

channel. The effects of magnetic field and viscous dissipation on entropy generation in a falling film 

and channel were studied by Aïboud-saouli et al. [29,30]. 

The objective of this paper is the thermodynamic analysis of a viscoelastic magnetohydrodynamic 

flow over a stretching sheet with prescribed surface temperature in the presence of heat and mass 

transfer and a uniform transverse magnetic field. 

Figure 1. Physical model for the flow. 

 

Flow 

Uniform magnetic field 

x 
O 

u=λx 

Stretching surface 

y 
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2. Mathematical Formulation and Solution 

In two-dimensional Cartesian coordinate system  y,x  we consider magneto-convection, steady, 

laminar, electrically conductor, boundary layer flow of a second grade fluid caused by a stretching 

surface in the presence of a uniform transverse magnetic field. As shown in Figure 1, the x -axis is 

taken in the direction of the main flow along the plate and the y -axis is normal to the plate with 

velocity components v,u  in these directions. 

Under the usual boundary layer approximations, the governing equations are: 

Continuity Equation: 
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Energy Equation: 

By using the usual boundary layer approximations, the equation of energy with temperature 

dependent heat source/sink in the flow direction is given by: 
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where Q is the rate of internal heat generation (positive) or absorption (negative). 

Diffusion Equation: 

2

2

y

C
D

y

C
v

x

C
u














     (4) 

The appropriate boundary conditions for velocity field are: 

0y , xuu  0 , 0v      (5a) 

y , 0u , 0
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(5b) 

The thermal conditions for the energy Equation 3 are: 
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For the diffusion Equation 4, the boundary conditions are: 

0y , 







 C

l

x
ACC

2

0     (7a) 

y , CC       (7b) 

Defining new variables 

  fxu  …,   fv      (8) 

where: 




 y

      
(9) 

and substituting into Equation 2 gives: 

                   fMnfffffkffff IV  2
1

2 2
 

(10) 

where: 



 2
0B

Mn   and 


0
1

k
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(11) 

The boundary conditions Equation 5a and Equation 5b become: 

0 , 0f , 1f       (12a) 

 , 0f , 0f      (12b) 

The solution of Equation 10, satisfying the boundary conditions (Equation 12a) and (Equation 12b) is: 

    ef ( 0 )      (13) 

11

1

k

Mn






       

(14) 

This gives the velocity components: 

  xeu        (15) 
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Introducing the dimensionless temperature as: 
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and using Equation 8 and Equation 9, then the energy equation (Equation 3) becomes: 
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where 
k

C
Pr P

 and 
PC

Q




   are respectively the Prandtl number and the heat source/sink parameter. 

The corresponding thermal boundary conditions are: 

0 , 1       (19a) 

 , 0       (19b) 

The solution of Equation 18 is written as: 
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Here  z,r,qM is the Kummer’s function defined by the following equation: 
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where  nq and  nr  are the Pochhammer’s symbols, defined by: 

      1.......21  nqqqqq
n

    (22) 

      121  nr.......rrrr n     (23) 

Defining the dimensionless concentration by the following relationship: 
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The equation of diffusion becomes: 
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   (25) 

where 
D

Sc


  is the Schmidt number. 

The relevant boundary conditions for Equation 24 are: 

0 , 1       (26a) 

 , 0       (26b) 

The solution of Equation 24 is then: 
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3. Second Law Analysis 

According to Woods [31] and Megherbi et al. [32], the local volumetric rate of entropy generation 

in the presence of a magnetic field is given by: 
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(28) 

Equation 28 clearly shows contributions of four sources of entropy generation. The first term on the 

right-hand side of Equation 28 is the local entropy generation due to heat transfer across a finite 

temperature difference; the second term is the local entropy generation due to viscous dissipation, the 

third term is the local entropy generation due to the effect of the magnetic field, whereas the fourth 

term is the local entropy generation due to mass transfer across finite concentration difference. It is 

appropriate to define dimensionless number for entropy generation rate SN  .This number is defined by 

dividing the local volumetric entropy generation rate GS  to a characteristic entropy generation rate 

0GS . For prescribed boundary condition the characteristic entropy generation rate is: 
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therefore, the entropy generation number is: 
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Using the expressions of dimensionless velocity, temperature and concentration, the entropy 

generation number is given by: 

       

   


















2

2

2
2

2

2

2

22222

2

4

4





L

llS

Re
X

f
Br

Haf
Br

ReRe
X

N

 

(31) 

where lRe  , Br , Ha  are respectively the Reynolds number, the Brinkman number and the Hartman 

number.   and   are respectively the dimensionless temperature difference and the dimensionless 

concentration difference. 
 
is a constant parameter. These parameters are given by the  

following relationships: 
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4. Results and Discussion 

The flow, heat and mass transfers in a viscoelastic fluid under the influence of a transverse uniform 

magnetic field has been solved analytically using Kummer’s functions and analytic expressions of the 

velocity, temperature and concentration have been used to compute the entropy generation.  
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Figure 2 and Figure 3 show the variations of the longitudinal velocity f´(η) and the transverse 

velocity f(η) (Equation 8) as function of η for several values of magnetic parameter Mn. It can be 

observed that f´(η) decreases with η and f(η) increases with η asymptotically for Mn keeping constant. 

For a fixed position η, both f´(η) and f(η) decreases with Mn, thus the presence of the magnetic field 

decreases the momentum boundary layer thickness and increase the power needed to stretch the sheet. 

Figure 2. Effect of the magnetic parameter on the longitudinal velocity. 

 

Figure 3. Effect of the magnetic parameter on the transverse velocity. 

 

 

The effects of the viscoelastic parameter 1k on the longitudinal velocity  f   and the transverse 

velocity  f  are illustrated in Figures 4 and 5. As it can be seen, for a fixed value of  , both  f 
 and  f  decrease as viscoelastic parameter rises. This can be explained by the fact that, as the 
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viscoelastic parameter increases, the hydrodynamic boundary layer adheres strongly to the surface, 

which in turn retards the flow in the longitudinal and the transverse directions. 

Figure 4. Effect of the viscoelastic parameter on the longitudial velocity. 

 

 

Figure 6 depicts the temperature profiles Θ(η) (Equation 19) as a function of η for different values 

of the Prandtl number Pr. As it can be noticed,  decreases with η whatever is the value of the Prandtl 

number, For a fixed value of η, the temperature Θ(η) decreases with an increase in Prandtl number, 

which means that the hydrodynamic boundary layer is thicker than the thermal boundary layer. 

Figure 5. Effect of the viscoelastic parameter on the transverse velocity. 

 

Figure 6. Effect of the Prandtl number on the temperature. 
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The temperature profiles Θ(η) as a function of η for different values of the magnetic Mn are plotted 

in Figure 7. An increase in the magnetic parameter Mn results in an increase of the temperature; this is 

due to the fact that the thermal boundary layer increases with the magnetic parameter. 

Figure 7. Effect of the magnetic parameter on the temperature. 

 

 

Figure 8 represents graphs of temperature profiles Θ(η)  as function of η for various values of the 

heat source/sink parameter β. For fixed value of η, the temperature Θ(η) augments with the heat  

source/sink parameter β. This is due to the fact that the increase of the heat source/sink parameter 

means an increase of the heat generated inside the boundary layer leading to higher temperature profile. 

Figure 8. Effect of the heat source/sink parameter on the temperature. 

 
 

Figure 9 depicts the concentration profiles Φ(η) (Equation 26) as function of η for different values 

of the Schmidt number Sc. We infer that concentration decreases with an increase in Schmidt number 

which means that the hydrodynamic boundary layer is thicker than the diffusion boundary layer. 
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Figure 9. Effect of the Schmidt number on the concentration. 

 
 

The concentration profiles Φ(η) for different values of the magnetic Mn are plotted in Figure 10. As 

it can be noticed, an increase in the magnetic parameter results in an increase of the concentration, this 

is due to the fact that the concentration boundary layer increases with the magnetic parameter. 

The influence of the magnetic parameter Mn on the entropy generation number Ns is shown on 

Figure 11. The entropy generation number Ns (Eqation 31) decreases with η for Mn keeping constant. 

For fixed value of η, the entropy generation number increases with the magnetic parameter, because the 

presence of the magnetic field creates more entropy in the fluid. Moreover, the entropy generation 

number is higher near the surface where both temperature and velocity are at their maximum values. 

This means that the surface acts as a strong source of irreversibility. 

Figure 10. Effect of the magnetic parameter on the concentration. 

 

Figure 11. Effect of the magnetic parameter on the entropy generation number. 
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Figure 12 illustrates the effect of the Prandtl number Pr on the entropy generation number Ns 

(Equation 31). The entropy generation number is higher for higher Prandtl number near the surface, 

and then, the situation is inverted as η increases. 

Figure 12. Effect of the Prandtl number on the entropy generation number. 

 

The effect of the Schmidt number Sc on the entropy generation number Ns (Equation 31) is 

illustrated in Figure 13. The entropy generation number is lower for higher Schmidt number near the 

surface, and then, the situation is inverted as η increases. 

Figure 13. Effect of the Schmidt number on the entropy generation number. 

 

 

The influence of the Reynolds number ReL on the entropy generation number Ns (second, third and 

sixth term of Equation 31) is plotted on Figure 14. For a given value of η, the entropy generation 

number increases as the Reynolds number increases. The augmentation of the Reynolds number 

increases the contribution of the entropy generation number due to fluid friction, heat and mass transfer 

in the boundary layer. 
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Figure 14. Effect of the Reynolds number on the entropy generation number. 

 

 

The effect of the dimensionless group parameter BrΩ
-1

on the entropy generation number Ns (third 

and fourth term of Equation 31) is depicted in Figure 15. The dimensionless group determines the 

relative importance of viscous effect. For a given η, the entropy generation number is higher for higher 

dimensionless group. This is due to the fact that for higher dimensionless group, the entropy generation 

numbers due to the fluid friction and to the magnetic field increase. 

Figure 15. Effect of the dimensionless group on the entropy generation number. 

 

The effect of the Hartmann number Ha on the entropy generation number Ns (fourth term of 

Equation 31) is plotted in Figure 16. For a given η, as the Hartmann number increases, the entropy 

generation number increases. The entropy generation number is proportional to the Hartmann number 

which proportional to the magnetic field. The presence of the magnetic field creates  

additional entropy. 

The effect of the parameter ΣΩ
-1 

which is the ratio of the dimensionless concentration difference to 

the dimensionless temperature difference, on the entropy generation number Ns (fifth and sixth term of 

Equation 31) is plotted in Figure 17. For a given η, as this parameter increases, the entropy generation 

number increases. This augmentation is due to the contribution of the mass transfer to the entropy 

generation number. 
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Figure 16. Effect of the Hartmann number on the entropy generation number. 

 

An augmentation of the constant parameter ε on the entropy generation number Ns (fifth and sixth 

term of Equation 31) is plotted in Figure 18. For a given η, as the constant parameter increases, the 

entropy generation number increases. This increase is the contribution of the mass transfer to the 

entropy generation number. 

Figure 17. Effect of the ratio of the dimensionless concentration difference to the 

dimensionless temperature difference on the entropy generation number. 

 

Figure 18. Effect of the constant parameter on the entropy generation number. 
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5. Conclusions 

The velocity, temperature and concentration profiles are obtained analytically and used to compute 

the entropy generation number in a viscoelastic fluid over a stretching sheet subject to a transverse 

magnetic field with heat and mass transfer. 

The effects of the magnetic parameter and the viscoelastic parameter on the longitudinal and 

transverse velocities are discussed. The influences of the Prandtl number, the magnetic parameter and 

the heat source/sink parameter on the temperature profiles are presented. The dependence of the 

concentration profiles on the Schmidt number and the magnetic parameter is also presented. As far as 

the entropy generation number is concerned, its dependence on the magnetic parameter, the Prandlt, the 

Schmidt number, the Reynolds number, the dimensionless group, the Hartmann number, the ratio of 

the dimensionless concentration difference to the dimensionless temperature difference and the 

constant parameter are illustrated and analyzed. 

From the results the following conclusions could be drawn: 

(a) The longitudinal and the transverse velocities decrease as the magnetic parameter and the 

viscoelastic paramaeter increase. 

(b) The temperature increases as the magnetic parameter and the heat source sink parameter 

increases, but it decreases as the Prandtl number increases. 

(c) The concentration augmentes as the magnetic parameter increases, however it dimishes as the 

Schmidt number increases. 

(d) The entropy generation increases with the increase of the magnetic parameter, the Prandlt 

number, The Schmidt number, the Reynolds number, the dimensionless group, the Hartmann 

number and also with ratio of the dimensionless concentration difference to the dimensionless 

temperature difference and the constant parameter. 

(e) The surface acts as a strong source of irreversibility. 

References and Notes 

1. Crane, L.J. Flow past a stretching sheet. Z. Angew. Math. Phys. 1970, 21, 645–647. 

2. Rajagopal, K.R.; Na, T.Y.; Gupta, A.S. Flow of a viscoelastic fluid over a stretching sheet.  

Rheo. Acta 1984, 23, 213–215. 

3. Chang, W.D. The non-uniqueness of the flow of viscoelastic fluid over a stretching sheet.  

Q. Appl. Math. 1989, 47, 365–366. 

4. Dandapat, B.S.; Gupta, A.S. Flow and heat transfer in a viscoelastic fluid over a stretching sheet. 

Int. J. Non-Linear Mech. 1989, 24, 215–219. 

5. Vajravelu, K.; Rollins, D. Heat transfer in a viscoelastic fluid over a stretching sheet. J. Math. 

Anal. Appl. 1991, 158, 241–255. 

6. Andersson, H.I. MHD flows of a viscoelastic fluid past a stretching surface. Acta Mech.  

1992, 95, 227–230. 

7. Lawrence, P.S.; Rao, B.N. Heat transfer in the flow of viscoelastic fluid over stretching sheet. 

Acta Mech. 1992, 93, 53–61. 



Entropy 2010, 12              

 

 

1883 

8. Idrees, M.K.; Abel, M.S. Viscoelastic flow past a stretching sheet in porous meadia and heat 

transfer with internal heat source. Indian J. Theor. Phys. 1996, 44, 233–244. 

9. Bhattacharya, B.; Pal, A.; Gupta, A.S. Heat transfer in the flow of a viscoelastic fluid over a 

stretching surface. Heat Mass Transfer 1998, 34, 41–45. 

10. Prasad, K.V.; Abel, M.S.; Khan, S.K. Momentum and heat transfer in viscoelastic fluid flow in a 

porous medium over a non-isothermal stretching sheet. Int. J. Numer. Method Heat flow 2000, 10, 

786–801. 

11. Abel, M.S.; Khan, S.K.; Prasad, K.V. Study of viscoelastic fluid flow and heat transfer over 

stretching sheet with variable viscosity. Int. J. Non-Linear Mech. 2002, 37, 81–88.  

12. Prasad, K.V.; Abel, M.S.; Khan, S.K.; Datti, P.S. Non-Darcy forced convective heat transfer in a 

viscoelastic fluid flow over a non-Isothermal stretching sheet. J. Porous Media 2002, 5, 41–47. 

13. Datti, P.S.; Prasad, K.V.; Abel, M.S.; Joshi, A. MHD viscoelastic fluid flow over a  

non-isothermal stretching sheet. Int. J. Eng. Sci. 2004, 42, 935–946. 

14. Khan, S.K.; Sanjayanand, E. Viscoelastic boundary layer flow and heat transfer over an 

exponential stretching sheet. Int. J. Heat Mass Transfer 2005, 48, 1534–1542. 

15 Cortell, R. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. 

Non-Linear Mech. 2006, 41, 78–85. 

16 Abel, M.S.; Siddheshwar, P.G.; Nandeppanavar, M.M. Heat transfer in a viscoelastic boundary 

layer low over a stretching sheet with viscous dissipation and non-uniform heat source. Int. J. 

Heat Mass Transfer 2007, 50, 960–966. 

17.  Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transfer 1982, 15, 

1–58. 

18. Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. 

19. Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer 

1979, 101, 718–725. 

20. Sahin, A.Z. Second law analysis of laminar viscous flow through a duct subjected to constant wall 

temperature. J. Heat Transfer 1998, 120, 76–83. 

21. Sahin, A.Z. Effect of variable viscosity on the entropy generation and pumping power in a laminar 

fluid flow through a duct subjected to constant heat flux. Heat Mass Transfer 1999, 35, 499–506. 

22. Sahin, A.Z. A second law comparison for optimum shape of duct subjected to constant wall 

temperature and laminar flow. Heat Mass Transfer 1998, 33, 425–430. 

23. Narusawa, U. The second-law analysis of mixed convection in rectangular ducts. Heat Mass 

Transfer 1998, 37, 197–203. 

24. Mahmud, S.; Fraser, R.A. The second law analysis in fundamental convective heat transfer 

problems. Int. J. Therm. Sci. 2003, 42, 177–186.  

25. Mahmud, S.; Fraser, R.A. Thermodynamic analysis of flow and heat transfer inside channel with 

two parallel plates. Exergy 2002, 2, 140–146. 

26. Mahmud, S.; Fraser, R.A. Inherent irreversibility of channel and pipe flows for non-Newtonian 

fluids. Int. Comm. Heat Mass Transfer 2002, 29, 577–587.  

27. Saouli, S.; Aïboud-Saouli, S. Second law analysis of laminar falling liquid film along an inclined 

heated plate. Int. Comm. Heat Mass Transfer 2004, 31, 879–886. 



Entropy 2010, 12              

 

 

1884 

28. Mahmud, S.; Tasnim, S.H.; Mamun, S.A.A. Thermodynamic analysis of mixed convection in a 

channel with transverse hydromagnetic effect. In. J. Therm. Sci. 2003, 42, 731–740. 

29. Aïboud-Saouli, S.; Saouli, S.; Settou, N.; Meza, N. Thermodynamic analysis of gravity-driven 

liquid film along an inclined heated plate with hydromagnetic and viscous dissipation effects. 

Entropy 2006, 8, 188–199. 

30. Aïboud-Saouli, S.; Saouli, S.; Settou, N.; Meza, N. Second-law analysis of laminar fluid flow in a 

heated channel with hydromagnetic and viscous dissipation effects. Appl. Ener. 2007, 84,  

279–289. 

31. Woods, L.C. Thermodynamics of Fluid Systems; Oxford University Press: Oxford, UK, 1975. 

32. Megherbi, M.; Abassi, H.; Hidouri, N.; Ben Brahim, A. Second law analysis in convective heat 

and mass transfer. Entropy 2006, 8, 1–17. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access  

article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


