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Abstract: In this paper, the energy distributions of various noises following normal,  

log-normal and Pearson-III distributions are first described quantitatively using the wavelet 

energy entropy (WEE), and the results are compared and discussed. Then, on the basis of 

these analytic results, a method for use in choosing the decomposition level (DL) in wavelet 

threshold de-noising (WTD) is put forward. Finally, the performance of the proposed 

method is verified by analysis of both synthetic and observed series. Analytic results indicate 

that the proposed method is easy to operate and suitable for various signals. Moreover, 

contrary to traditional white noise testing which depends on “autocorrelations”, the proposed 

method uses energy distributions to distinguish real signals and noise in noisy series, 

therefore the chosen DL is reliable, and the WTD results of time series can be improved. 

Keywords: time series analysis; noise; wavelet transform; decomposition level; threshold; 

wavelet energy entropy; probability distribution 

 

1. Introduction 

This paper considers the problem of de-noising in the domains of applied research and engineering 

activities, such as business, medicine, physics, earth sciences and hydraulic engineering. De-noising is 

a substantial issue in time series analysis because noise has a great influence on the real characteristics 

of time series [1-4]. Observed time series in nature usually show non-stationary and multi-temporal 
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scale characteristics. However, the traditional de-noising methods used presently are mainly based on 

model simulation or spectral analysis, and they cannot reveal these complicated characteristics of series 

and thus cannot satisfactorily meet practical needs [5-8]. Compared with them, the wavelet threshold 

de-noising (WTD) method is more effective and is especially applicable in various engineering 

activities, because it can elucidate the localized characteristics of non-stationary time series both in the 

temporal and frequency domains [9-12]. Although being theoretically powerful, in practice the WTD 

method is influenced by four basic but key issues, namely the choice of wavelet, the choice of 

decomposition level (DL), threshold estimation and choice of thresholding rules, respectively [13]. 

Many studies have been conducted in various fields to develop the WTD method. For example, 

Coifmain and Wickerhauser proposed algorithms based on Shannon entropy for best basis selection, 

which permit efficient compression of signals [14]; Berger et al. described applications of de-noising 

algorithms for removing noise from music [15] mainly based on the studies in [14]; Lou and Hu 

proposed an approach to suppress non-stationary wideband noise based on the dyadic wavelet 

transform and the simplified Karhunen-Loeve transform [16];  Dimoulas et al. designed de-noising 

algorithms based on the Wiener filtering technique, and further compared the results obtained by using 

various decomposition schemes, different mother wavelets and various thresholding options [17]. 

The authors have reviewed traditional de-noising methods and the wavelet-based de-noising 

methods in [13]. Three of their main defects were summarized; they are the probability description of 

noise, the accuracy of threshold estimation methods and the validity of thresholding rules, respectively. 

Then, the key issues of WTD except the choice of DL were discussed, and approaches to solve them 

based on entropy theory were put forward. After that, an improved WTD method was proposed, whose 

basic idea is to estimate proper thresholds and further to determine the accurate de-noising results 

according to the variations of de-noised series’ complexities and separated noise’s random characters, 

which are characterized by the wavelet energy entropy (WEE) and principle of maximum entropy 

(POME), respectively. Finally, analytic results of both synthetic and observed series verified the 

performance of the improved WTD method. To the authors’ knowledge, the issue of choice of 

decomposition level in WTD is little discussed, whether in [13] or in other studies, and no effective 

and operable approaches could be followed presently. 

In this study, the main objective is to put forward a method of choosing the decomposition level to 

develop the WTD method. Moreover, the proposed method is also based on the wavelet energy entropy 

to keep in step with the analytic process of WTD in [13]. To achieve this purpose, in Section 2, the 

WTD method is briefly introduced, and then the energy distributions of noises following various 

probability distributions are described using WEE, based on which the method of choosing DL is 

proposed. In Section 3, we verify the performance of the proposed method by doing case studies, and 

analytic results indicate that de-nosing results can be improved by using the proposed method. Finally, 

this study is summarized and concluded in the last section. 
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2. The Proposed Method of Choosing the Decomposition Level 

2.1. Wavelet Threshold De-noising 

The process of wavelet threshold de-noising (WTD) is based on discrete wavelet transform (DWT), 

especially the dyadic DWT commonly used in practice [18]. The dyadic DWT consists of log2n stages 

at most given the analyzed series with the length of n. The first stage starts from original series, and the 

results include two types of wavelet coefficients sets as “approximations” and “details” under each 

level. In each except the first stage, only approximation coefficients are analyzed. 

When we obtain the details wavelet coefficients Wj,k of DWT, a proper threshold Tj can be first 

estimated and then used to adjust Wj,k under each level j according to Equation (1) [5,19,20]: 

, ,' ( , )j k j k jW W T  (1) 

in which ρ() is the thresholding rule, such as hard-, soft-, mid-thresholding rules and Wiener 

thresholding. W’j,k is the adjusted value of Wj,k. Finally, the de-noised series can be reconstructed by 

using the adjusted W’j,k, and the difference between de-noised and original series is the separated noise. 

There are four key issues in the WTD process, the first two are the choice of wavelet and DL which 

determine the accuracy of DWT results; the last two are the estimation of thresholds and choice of 

thresholding rules. 

2.2. Autocorrelations and Energy Distributions of Noises 

In present engineering activities, the decomposition level in WTD is usually chosen by the white 

noise testing method [21]. Its idea is to first separate noisy series into sub-signals under different levels 

and then analyze their autocorrelations; once a certain sub-signal cannot pass the white noise testing, 

the corresponding level is thought as the best result. However, noise usually generates auto-correlated 

sub-signals, as shown in Table 2, and we cannot easily differentiate whether they are real deterministic 

signals or just pseudo deterministic signals caused by noise. Therefore, the white noise testing is 

invalid and its results are inaccurate and unreliable in many practical situations. 

Table 1. Probability distributions used to generate noises in this paper. 
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Differing from the white noise testing, the proposed method of choosing the DL in the following is 

based on the difference of energy distributions between real signals and noise. To orderly state these 
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contents and to clearly explain the proposed method, we first analyze the autocorrelations and energy 

distributions of noises by doing Monte-Carlo (MC) tests. The number of MC tests is 100,000 to make 

the results stable. According to practical engineering situations, all the noises which follow normal, 

lognormal and Pearson-III distributions in Table 1 are analyzed to ensure the reasonability and 

credibility of the conclusions. In dyadic DWT process of noise, the “coif5” wavelet is used as example 

considering that the results by different wavelets are just the same, and the theoretical maximum M of 

DL is calculated as: 

2 ( )[log ( )]f tM n  (2) 

where [∙] means taking the integer part of real value in square bracket. nf(t) is the length n of series f(t). 

Because all the generated noise series have the same length of 1,000, the calculated M is 9. Dyadic 

DWT noise results include the approximation coefficients under one level and the details coefficients 

under nine levels. The latter is focused on in this study because we want to provide useful suggestions 

for WTD. 

First, we reconstruct the sub-signals of noises under nine levels, and calculate the lag-1 

autocorrelation coefficient R1 and energy E by Equation (3): 
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(3) 

where n is the series’ length, and t is the data number. ( )jf t  is the mean of the sub-signal fj(t) under the 

DL j. The means of MC results are depicted in Figure 1 and summarized in Table 2. 

Figure 1. The lag-1 autocorrelation coefficient R1 and energy E of sub-signals of various 

noises under different decomposition levels (DLs). 
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Table 2. Calculation results of the lag-1 autocorrelation coefficient R1 and energy E of  

sub-signals of various noises under different decomposition levels (DLs). 

Type Index 
Decomposition level (DL) 

1 2 3 4 5 6 7 8 9 

Normal 
R1 −0.611 0.331 0.806 0.948 0.987 0.995 0.997 0.999 0.999 

E 499.59 249.87 125.29 62.64 30.95 17.30 12.21 7.24 5.86 

Lognormal 
R1 −0.612 0.332 0.806 0.948 0.987 0.996 0.998 0.999 0.999 

E 499.50 249.42 125.15 62.70 30.91 17.24 11.94 7.09 5.70 

Pearson-III 
R1 −0.611 0.331 0.806 0.948 0.987 0.996 0.997 0.999 0.999 

E 499.45 250.21 124.89 62.61 30.97 17.44 12.14 7.32 5.83 

To continue, we use the wavelet energy entropy (WEE) to describe the variation of the degrees of 

complexity of noise with DLs. Specifically, we use each value Mi of the DLs from 1 to 9 and apply 

dyadic DWT to the noise series, then reconstruct the sub-signal under each level. Finally, we calculate 

the value of WEE by Equation (4): 
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 (4) 

The WEE is defined according to the information entropy theory [22], whose value quantitatively 

reflects the series’ complexities. The bigger the value of WEE is, the more complicated the series is, 

and vice versa [23]. The analytic results of WEE of noises are depicted in Figure 2. 

Analytic results in Table 2 and Figure 1 indicate that the R1 values of noises’ sub-signals increase 

from the starting value of −0.611 to the end value of 0.999 with the increasing DL. Except the R1  

of 0.331 under the DL 2, all the absolute values of R1 of noises’ sub-signals under other DLs are bigger 

than 0.5. This indicates that the sub-signals of noises have good autocorrelations. Therefore, when we 

choose DL according to the “autocorrelations”, the results are unreasonable and unreliable in many 

practical cases. Furthermore, when we set the DL to be 9, Figure 1 shows that the energy of noises is 

mainly concentrated in small temporal scales, and it exponentially decreases with DL with the base  

of 2, which is due to the grid of dyadic DWT. Besides, Figure 2 displays that the value of WEE 

increases with the DL, so the degree of complexity of noise can be revealed and presented guardedly, 

and it obtains the maximum when using the DL 9. Finally, it can be found that for these noises which 

follow normal, lognormal and Pearson-III distributions, their energy distributions (both the values of E 

and WEE) are similar to each other. This conclusion is very favorable to the choice of DL as discussed 

in the following. 
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Figure 2. Values of wavelet energy entropy (WEE) of various noises when analyzed by 

using different decomposition levels (DLs). 

 

2.3. The Method Proposed 

According to the discussed energy distributions of noises results, we propose a method for choice of 

the decomposition levels in WTD. To clearly describe it, we first define the X, S, S
~
 and N as the noisy 

series (or original series), real series, de-noised series and noise, respectively. Theoretically speaking, 

when we apply dyadic DWT to the noisy series X, the energies of real series S in X are concentrated on 

several DLs corresponding to the deterministic components (e.g., periods, trend) of X [24], but the 

energy of noise N scatters in the whole temporal scales and rapidly decays with DLs as discussed in 

Section 2.2. Therefore, when we initially use a certain small DL and apply dyadic DWT to the analyzed 

noisy series X, the sub-signals reconstructed by using details wavelet coefficients are mainly composed 

of noise, so the WEEs of X and those of N should be similar. Along with the increasing of DLs and 

once reaching to certain value of DL
*
, the real series S in X can be identified for the first time. In this 

case, the WEE of X would be obviously different from that of N. However, if we use the DL
*
 or 

increase DL again, several real signals would be removed in the process of WTD, which are clearly 

shown in the latter examples. Therefore, the chosen DL should be DL
*
 less 1, and then the de-noised 

series S
~ 

can be obtained by WTD method. 

The analytic steps by the proposed method are depicted in Figure 3 and also explained as follows: 

(1) For the noisy series X analyzed, we first calculate the theoretical maximum M of DL by 

Equation (2), and normalize it by Equation (5): 

( )

( )

X X
X

X


  (5) 

in which X  and ( )X  are the mean and standard deviation of X, respectively. 

(2) Then, we apply dyadic DWT to X by using each value of the DLs from 1 to M, and calculate the 

values of WEE by Equation (4), based on which we obtain the WEE curve of X. 

(3) According to the practical situations and experiences, we choose an appropriate probability 

distribution to generate “normalized” noise series with the same length as that of X. Then we 

determine the WEE curve of noise by doing Monte-Carlo tests. 
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(4) Finally, we compare the values of WEE of the noisy series X with those of noise with the 

increasing of DLs. Once the value of WEE of X is obviously different from that of noise under 

certain DL
*
, the best DL can be chosen as DL

*
 less 1. Besides, the differential coefficient of 

WEE in Equation (6) can be used together to compare the WEEs of noisy series X and noise, 

because it is an extreme value under the DL
*
 and can reflect their difference more clearly; 

( ) ( ) ( 1)
( ) ( ) ( 1)

( ) ( 1)

d WEE WEE j WEE j
D j WEE j WEE j

d DL j j

 
    

 
 (6) 

where D(j) is the differential coefficient of WEE under the DL j, d(∙) means the derivation 

calculus. 

Figure 3. Steps of choosing suitable decomposition level (DL) in the process of wavelet 

threshold de-noising by using the proposed method. 

Normalize the noisy series X analyzed, and calculate 

the maximum decomposition level (DL) M 

Choose proper probability distribution to 

generate noise series N

The noisy series X

Calculate the WEE of X

Mi=M?

The chosen DL= M

No

Yes

Wavelet threshold de-noising by using the chosen DL

Mi=Mi+1

The noise series N

Initialization, Mi＝1

Dyadic DWT

Calculate the WEE of N

Are they  obviously 

different? 

No

Yes

The chosen DL=Mi-1

 

As described above, the proposed method of choosing DL in WTD is based on the difference of 

energy distributions between noisy series and noise, thus it has dependable physical basis and can 

accurately make out the real and pseudo deterministic sub-signals in noisy series. Moreover, differing 
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from other wavelet-based de-noising methods which generally need to previously know some 

inaccessible prior-information [5-8,14-17], the proposed method just needs to choose proper 

probability distribution to generate noise. Whereas this need is not crucial in practice, because the 

analytic results by using different types of noises are just the same. 

3. Case Studies 

Both synthetic series and observed series data are analyzed here to verify the performance of the 

proposed method. All of them are also analyzed by the white noise testing method for comparison. 

Other wavelet-based de-noising methods are not included here, considering that they have been 

discussed and compared with the entropy-based WTD method in [13]. Moreover, three quantitative 

indexes, SNR (signal-to-noise ratio), MSE (mean square error) and Rxy (lag-0 cross-correlation 

coefficient) in Equation (7), are used to judge the accuracy of de-noising results obtained by using 

different DLs, mainly to ensure the soundness of conclusions. Besides, the wavelet variance estimator 

is also used to compare these different de-noising results [23]. Because the energy distributions of 

various noises are just the same, the normally distributed noise is used here; 

~10 log( ( ) / ( ))SNR Var N Var S    

~( )MSE Var S S   

~
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1 1
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

 

 
(7) 

in which S  and 
~

S  is the mean of real series S and the de-noised series S
~
 respectively, and N is the 

separated noise. Var() means calculating the variance. 

3.1. Synthetic Series Analysis 

Three synthetic series are generated by the Monte-Carlo method and are shown in Figure 4. 

Figure 4. Three synthetic series data used in this paper. 

  

Among them, the SS1 series has first an upward and then a downward trend, the SS2 series has two 

periods of 100 and 500; whereas the SS3 series has a damped period. Their real values of SNR are  

−9.562, −4.012 and −3.365 respectively. Considering that the noise-contaminated degrees of them are 
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serious, we deem that the proposed method is effective provided that it is suitable for the three 

synthetic series. 

Each of the three synthetic series is analyzed by the proposed method using the “coif5” wavelet. The 

calculated WEE curves of them are depicted in Figure 5. Furthermore, they are de-noised by the WTD 

method in [13] using different DLs. The calculation results of SNR, MSE and Rxy are summarized in 

Table 3, and the wavelet variance curves of these de-noised series obtained by using different DLs are 

presented in Figure 6. 

Figure 5. Values of WEE of three synthetic series and the corresponding derivation 

coefficients when analyzed by using different decomposition levels (DLs). 

 

Table 3. De-noising results of three synthetic series by using different decomposition 

levels (DLs).  

Series Index 
Real 

value 

Decomposition level (DL) 

1 2 3 4 5 6 7 8 9 

SS1 

SNR -9.562 4.844 -2.121 -5.543 -7.466 -8.310 -9.383 -9.581 -9.530 -9.545 

MSE  0.469 0.236 0.121 0.065 0.040 0.013 0.005 0.004 0.010 

Rxy  0.665 0.782 0.870 0.922 0.949 0.983 0.993 0.995 0.987 

SS2 

SNR -4.012 7.054 0.954 -1.833 -3.983 -18.58 -19.18 -19.67 -25.38 -29.27 

MSE  1.708 0.839 0.417 0.387 1.500 1.481 1.458 1.59 1.611 

Rxy  0.760 0.858 0.921 0.921 0.640 0.650 0.661 0.660 0.706 

SS3 

SNR -3.365 7.867 1.811 -1.048 -1.792 -4.525 -10.46 -17.82 -19.45 -19.53 

MSE  0.305 0.146 0.067 0.046 0.074 0.158 0.191 0.211 0.224 

Rxy  0.775 0.871 0.934 0.953 0.918 0.817 0.817 0.794 0.768 
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Figure 6. Wavelet variance curves of the de-noised synthetic series obtained by using 

different decomposition levels (DLs). 

 

 

The analytic results in Figure 5 indicate that the chosen DLs are different for the three synthetic 

series with different real signals. Concretely, the WEEs of SS1 series are very close to those of noise 

under the DLs from 1 to 8, whereas the sub-signal under the DL 9 is part of the trend of SS1 series, so 

its WEE has big difference with that of noise. The WEEs of SS2 series and noise are very similar under 

the DLs from 1 to 4; but they show obvious differences under the DL 5 and the value of D(5) is an 

extreme value, because the sub-signal of SS2 series under the DL 5 corresponds to the period of 200. 

As for SS3 series, its WEEs are close to those of noise before the DL 4, but they are obviously different 

under the DL 5 and the value of D(5) is also an extreme value. Furthermore, analytic results in Table 3 

show that de-noising results of these synthetic series vary with the DL used. To be specific, the de-

noising result of SS1 series by using the DL 8 is the best, because the MSE with the value of 0.004 is 

the smallest, the Rxy with the value of 0.995 is the biggest, and the calculated SNR of −9.530 is very 

close to the real SNR of −9.562. For SS2 series, the values of SNR, MSE and Rxy under the DL 4 are 

−3.983, 0.387 and 0.921 respectively, all of which are the best results among those under different DLs; 

and for SS3 series, the SNR, MSE and Rxy of −1.792, 0.046 and 0.953 under the DL 4 are also the best 

results among those under different DLs. Besides, Figure 6 on one hand shows the same conclusions as 

those in Table 3; on the other hand, it shows that the wavelet variance curves of de-noised series reflect 

irregular fluctuations under small temporal scales when using the smaller DLs, which means that noise 

is not removed completely; whereas the de-noised series’ wavelet spectral densities under small scales 

are smaller than the real values when using the bigger DLs, which means that several real signals are 

removed. As a result, all the results in Figures 5, 6 and Table 3 show the same conclusion: the chosen 

DLs for the three synthetics series are 8, 4 and 4 respectively. Finally, these synthetic series are de-

noised by using the chosen DLs, and the results are presented in Figure 7. 
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Figure 7. De-noising results of the three synthetic series by using the chosen 

decomposition levels (DLs). 

 

In addition, the lag-1 autocorrelation coefficient R1 of the sub-signals of these synthetic series under 

different levels is calculated, and the results are listed in Table 4. It indicates that no matter which 

synthetic series is analyzed, their sub-signals under different DLs cannot pass the white noise testing, 

because the smallest absolute value of the R1 of them is 0.326, 0.326 and 0.341, respectively under  

the DL 2. Therefore, it can be further concluded that analytic results by the proposed method are  

more reliable. 

Table 4. Calculation results of the lag-1 autocorrelation coefficient R1 of the sub-signals of 

synthetic series under different decomposition levels (DLs). 

Series Decomposition level (DL) 

 1 2 3 4 5 6 7 8 9 

SS1 -0.646 0.326 0.804 0.940 0.990 0.998 0.998 0.996 1.000 

SS2 -0.579 0.326 0.810 0.949 0.990 0.996 0.999 0.999 0.998 

SS3 -0.642 0.341 0.814 0.937 0.987 0.994 0.996 0.999 0.998 

3.2. Observed Series Analysis 

Two observed hydrologic series, RS1 and RS2, are analyzed here to further verify the performance 

of the proposed method. Among them, RS1 presents 20 years (1978–1997) of monthly runoff series 

measured at the Dashankou hydrologic station at Kaidu River in the northwest of China, and it has two 

obvious periods of about 6 months and 12 months [4]. RS2 presents 125-day rainfall series (June 1 to 

October 3 in 2003) measured in Hanqiao Coal Mine located in the mid-eastern of China [25]. 

The two series are analyzed by using the “dmey” and “db6” wavelets, respectively [4,25]. Their 

WEE curves are shown in Figure 8. Then, they are de-noised and the results are presented in Figure 9 

and Table 5. Besides, analytic results by the white noise testing method are listed in Table 6. 
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Figure 8. Values of WEE of the two observed series and the corresponding derivation 

coefficients when analyzed by using different decomposition levels (DLs). 

 

Figure 9. De-noising results of the two observed series by using the chosen decomposition 

levels (DLs) (upper), histograms of the separated noise (mid) and the wavelet variance 

curves of the de-noised series and observed series data (lower). 
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Table 5. Calculated values of SNR of the two de-noised observed series data by using 

different decomposition levels (DLs). 

Series 

Decomposition level (DL) 

1 2 3 4 5 6 7 

RS1 30.904 26.768 20.049 18.200 17.297 16.705 16.285 

RS2 30.908 50.205 48.944 48.707 48.622 48.550  

Table 6. Calculation results of the lag-1 autocorrelation coefficient R1 of sub-signals of the 

two observed series under different decomposition levels (DLs). 

Series 

Decomposition level (DL) 

1 2 3 4 5 6 7 

RS1 -0.562 0.431 0.856 0.962 0.980 0.995 0.999 

RS2 -0.567 0.424 0.844 0.951 0.990 0.986  

 

Table 5 shows that de-noising results of the two observed series vary with the DLs used. Moreover, 

for the RS1 series, its sub-signals under the first two DLs are composed of noise, but the sub-signal 

under the DL 3 corresponds to the period of 6 months [4]. As for the RS2 series, it mainly reflects the 

daily rainfall in the rainy season in 2003 thus has no obvious periods [25], and its sub-signals under the 

DLs from 1 to 6 are mainly composed of noise, whereas the approximations wavelet coefficients under 

the DL 6 reflect the trend of RS2 series. Therefore, analytic results in Figure 8 indicate that the D(3) of 

WEE of RS1 series is an extreme value but that of RS2 series has no extreme value. As a result, the 

chosen DL for de-noising of RS1 and RS2 series is 2 and 6, and the calculated values of SNR is 26.768 

and 48.550 respectively. Besides, the results in Figure 9 indicate that: (1) because just a little noise is 

included, the original series and de-noised series are similar; (2) from the qualitative point of view, the 

noise separated form RS1 series follows normal distribution, whereas the noise separated from the RS2 

series more likely follows a positive skew distribution; (3) because the noise is reduced from the 

original series, the wavelet variance curves of de-noised series are smoother than those of original 

series, especially those under small temporal scales, by which the real characteristic of series are much 

easier to be identified. In conclusion, the chosen results of DLs for the two observed series well accord 

with their hydrologic deterministic mechanisms respectively, thus we deem that the results are 

reasonable and credible. However, analytic results by the white noise testing cannot identify the 

suitable DLs. As shown in Table 6, the smallest absolute value of R1 of the two observed series’ sub-

signals is 0.431 and 0.424 under the DL 2 respectively, which means that none of them can pass the 

white noise testing so the reasonable DL cannot be determined. 
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4. Conclusions 

WTD is a theoretically powerful de-noising method, but its effectiveness is influenced by the issue 

of choice of the decomposition level (DL) when applied in various engineering activities. In this paper, 

we have proposed a method for choosing the DL by first discussing the energy distributions of various 

noises using the wavelet energy entropy. Analytic results of both synthetic series and observed 

hydrologic series have verified the performance of the proposed method finally. In the authors’ opinion, 

more accurate de-noising results of time series data can be obtained by using the proposed method 

together with the studies in reference [13], and the WTD method could also become more applicable in 

practice. Besides, further studies using more series data with different characteristics from other 

domains may be required to strengthen these conclusions. Furthermore, we proposed the method of 

choosing DL mainly for wavelet threshold de-noising, whereas more studies should still be conducted 

to this issue in the future to improve other wavelet-based analyses, such as the wavelet compression 

and decomposition of time series data. 
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