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Abstract: The interplay between entropy and robustness of gene network is a core 

mechanism of systems biology. The entropy is a measure of randomness or disorder of a 

physical system due to random parameter fluctuation and environmental noises in gene 

regulatory networks. The robustness of a gene regulatory network, which can be measured 

as the ability to tolerate the random parameter fluctuation and to attenuate the effect of 
environmental noise, will be discussed from the robust H∞ stabilization and filtering 

perspective. In this review, we will also discuss their balancing roles in evolution and 

potential applications in systems and synthetic biology. 
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1. Introduction 

Cells are intrinsically noisy biochemical reactors; low reactant numbers can lead to significant 

statistical fluctuations in molecule numbers and reaction rates [1-3]. Fluctuations in the concentrations 

of a regulatory protein can propagate through a genetic cascade [4]. Therefore, stochastic mechanisms 

are ubiquitous in biological systems. Biochemical reactions that involve small numbers of molecules 

are intrinsically noisy, being dominated by large concentration fluctuations. Although deterministic 

models can predict the average network behaviour, they fail to incorporate the stochastic characteristic 
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of gene expression, thereby limiting their relevance when single cell behaviors deviate from the 

population average [5,6]. Recent experiments have measured this variation for thousands of different 

proteins reveal a linear relationship between variance and mean level of expression for much of the 

proteome [7,8]. 

Understanding random noises in gene networks is crucial for understanding signal fidelity in nature 

gene networks and designing noise-tolerant gene circuits. The concept of entropy arose in classical 

theoretical physics as describing a measure of randomness or disorder. The second law of 

thermodynamics states that the entropy of a closed systems increases with time. This is in effect a 

statistical law and in principle describes the most likely behaviour of the physical system. However, 

many phenomena of biology violate the second law of thermodynamics. For example, animals and 

plants are all developed from an embryo. Obviously, there should exist some mechanisms in biological 

systems to counteract the increase of entropy. In the biological world, the genetic program of a living 

cell is determined by a complex web of gene networks. The proper execution of this genetic program 

relies on faithful signal propagation from one gene to other genes. This process may be hindered by 

stochastic fluctuations arising from gene expression, because some of components in these genetic 

circuits are present at low number, which makes fluctuations in concentrations unavoidable. 

Additionally, reaction rates can fluctuate because of stochastic variation in global pool of 

housekeeping genes or because of fluctuations in environmental conditions that affect all genes. For 

example, fluctuations in number of available polymerases or in any factor that alters the cell growth 

rate will change reaction rates for all genes. Thus, it underscores the significance of entropy as a 

fundamental invariant of biological systems. However, stochastic fluctuations may also serve as a 

means of decision making during cell differentiation [9]. Therefore, the study of entropy about the 

random events in biological systems is far more important than in physical systems. Recently, this 

entropy study involves quite complex mathematical stochastic processes and pervades both medicine 

and biology. 

Even in clonal cell populations and under the most uniform experimental conditions, considerable 

variation is observed in the rates of development morphology and the concentration of each molecular 

species in each cell [9]. The molecular-level phenomena that produce these differences are deeply 

rooted in the statistical mechanical behavior of so-called “small” (or nanoscale) chemical systems, 

where concentrations of reacting species are extremely low and, consequently, fluctuations and noises 

in reaction rates are large [9]. Many genetic regulatory reactions occur at just such low concentrations. 

Genetic regulatory circuit designs use redundancy, feedback loops and other features to produce the 

needed determinism in outcome for circuits constructed from such inherent noisy elements. 

Information theory was introduced as a method for assessing the uncertainty in the state of a system 

via an entropy measure [9-15]. In a series of papers [16-18], information theory has been used to 

calibrate model parameters of transcriptional regulatory network, to use an incomplete transcriptional 

regulatory model and to estimate the associated uncertainties based on the inaccuracies in the observed 

data and the model used. The probability density p for the values of the set Λ of model parameters and 

the time course T(t) of gene expression microarray data can be represented by information theory 

formulation as p = p(T(t),Λ). We can construct p by specifying the model parameter set Λ to maximize 

the entropy  

S = -pln(p). In [19], the principle of entropy maximization is also used to infer genetic interaction 
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networks from gene expression patterns. In [17], the basin entropy, which was first introduced in [15] 

to measure the uncertainty of future behavior of a random state, can be estimated from time series and is 

therefore also applicable to random Boolean gene networks. In this work, the entropy of complex 

relevant components of Boolean gene networks is considered as a function of their connectivity, i.e., 

basin entropy is a parameter for the dynamic uncertainty or information storage capacity of a gene 

network as well as the average transient time in random relevant components as a function of their 

connectivity. Critical Boolean networks balance robustness against random perturbation with complex 

asymptotic attractor dynamics [17]. In [20], the basin entropy is considered as a quantity of the size 

distribution of the basins of attraction for a Boolean network. The authors use the basin entropy and 

distance to reference attractor to represent perturbed dynamics in random biological network models [20].  

Dynamics of cell tissues with coupled stochastic gene networks are described by a two-dimensional 

regular square lattice of identical cells [21], each a three-dimensional compartment with a gene 

regulatory network and a toggle switch. The dynamics are driven by a delayed stochastic simulation 

algorithm, nearest neighbor cells are coupled by normally distributed time-delayed reactions allowing 

interchange of proteins, and gene expression is a multiple time-delayed reaction. The synchronization 

of cells’ protein expression levels is measured by their time series entropy. It is observed that 

fluctuations in protein concentrations of coupled cells were far smaller than for uncoupled cells. 

Therefore, coupling between cells, which will decrease entropy, can also be useful to reduce noise in 

gene regulatory network dynamics. As cells are coupled strongly, a stable or synchronization state 

emerges. This case shows that coupling mechanism is able to create tissues by decreasing entropy [21]. 

In [22], based on the maximum entropy linear discriminant analysis between normal/tumoral prostates, 

a multivariable gene expression analysis method is used to reveal functional connectivity changes in 

dependent networks which are related to cell transformation as biomarkers. Entropy is also employed 

to model sexual dimorphism in growth hormone secretary dynamics by unequal auto-negative 

feedback [23]. A mathematical modeling has been used to study feedback regulation in lactose operon 

by bifurcation and entropy method via comparing experimental data [24]. The metabolism of a cell can 

be viewed as a weighted sum of elementary modes [25]. It is shown that individual weights are 

inversely correlated with entropy generated by the operation of the used pathways defined in 

elementary modes. This suggests that evolution develops cellular regulatory patterns that permit 

diversity of pathways while favoring efficient pathways are with low entropy generation. Such 

correlation provides a rational way of estimating metabolic fluxes of Escherichia coli (E. coli) based 

on thermodynamic properties of elementary modes [25]. Based on time series data with random noises, 

gene regulatory networks are inferred by using the minimum description length principle [26]. The 

attenuation and amplification of molecular noises in genetic regulatory networks are discussed from 
the perspective of H∞ filtering [27]. 

In recent years, several probabilistic graphical models are used to study regulatory programs of 

gene networks. Some gene regulatory networks can be represented by a class of piecewise affine 

network model [28,29]. Geometric uncertain properties of these symbolic dynamic can be described by 

topological entropy [28]. The location of the regulators in the modular network regulation program and 

their conditional entropy may be used to prioritize regulators for functional validation, and the 

combination of the bottom-up clustering strategy with the conditional entropy-based assignment of 

regulators can improve the handling of missing or hidden regulators [30]. A package based on four 
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entropy estimators is provided for inferring large transcriptional gene networks using mutual 

information [30]. An entropy characterization of protein interaction networks and cellular robustness is 

discussed from network topology and dynamical processes [11]. The analysis shows that knockouts of 

proteins with large contribution to network entropy are preferentially lethal. It underscores the 

significance of entropy as a fundamental invariant of the dynamical network, and as a measure of 

structure and dynamical properties of gene networks [11].  

Recently, based on S-system model, a new measure of the robustness of biochemical networks is 

provided according to the smallest singular value of system matrix [31], i.e., the uncertainties less than 

the smallest singular value could be tolerated from the worst-case point of view. A gene circuit design 

is also provided to improve the filtering ability of stochastic gene network to tolerate more intrinsic 

parameter fluctuations and to attenuate more extrinsic noises [32]. An analysis of the stability of the 

cell cycle network of Schizosaccharomyces pombe (S. pombe) is given through the computation of an 

entropy parameter [33]. In cell cycle, cell differentiation is a complex process governed by the timely 

activation of genes resulting in a specific phenotype or observable physical change. A systematic 

approach using a combination of entropy, pair-wise dependency and Bayesian approach is used to gain 

insight into dependencies and underlying gene network structure in stem cell differentiation [34]. For 
more general gene networks, the robust stabilization is discussed from the H∞ stabilization perspective 

to tolerate intrinsic random molecular noises and extrinsic random molecular noises [35,36].  

It is observed that the period and the amplitude of oscillations are more dispersed and oscillations 

become less coherent when the fluctuations increase [37]. It is also found that the entropy production 

of the whole network, characterizing the dissipation costs from the combined effects of both 

landscapes and fluxes, decreases when the fluctuation decreases [37]. These observations on entropy 

can help in designing robust gene networks with intrinsic random parameter fluctuations. The 

robustness analysis of E. coli metabolic network is given based on how to decrease the entropy 

production of whole network [38]. An entropy mechanism is provided to generate highly cooperative 

and specific binding from protein phosphorylation [39]. How to decrease the effects of intrinsic 

random noises, extrinsic random disturbances and process delay of engineered circuit is discussed 

from the robust stabilization and H∞ filtering perspectives, simultaneously [10,40-45]. 

Synthetic biology is the engineering of artificial biological systems to fulfill a particular purpose in 

the host cell [7,8,46]. Synthetic biology is foreseen to have important applications in biotechnology 

and medicine, and is expected to contribute significantly to a better understanding of the functioning of 

complex biological systems. However, the development of synthetic gene networks is still difficult and 

most newly created gene networks are non-function due to random parameter uncertainties, random 

disturbances and functional variations of intra- and extra- cellular environments. How to design a 

robust synthetic gene network that works properly in a host cell under these intrinsic random 

parameter uncertainties and external random disturbances is the most important topic in synthetic 

biology. Recently, a tuning algorithm of robust synthetic gene network is proposed to tolerate random 

noises [47]. A game theory is applied to the robust synthetic gene networks when the random noises 

with uncertain or unknown statistics is considered as a player to distort the gene network and the gene 

network is considered as another player to eliminate the effect of random noise [48]. In [49], random 

parameter fluctuations and environmental random disturbances are modeled into the stochastic 

dynamic equation of synthetic gene network, and four design specifications are also proposed in 
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design procedure to efficiently tolerate random parameter fluctuations and attenuate the random 

disturbances on the synthetic gene network in the host cell [49]. In evolution, the random transmission 

of genes from parent to offspring implies that the study of evolution as a genetic process must allow 

for this randomness [36,50,51]. In the evolutionary process, the random transmission and random 

mutation of genes provide the diversities for natural selection. Gene networks need to robustly evolve 

under these random gene transmission and gene mutation to meet the natural selection [36,50-52]. 

Therefore, the robust stability in network evolutionary process is a natural selection force. Genetic 

networks adjust their kinetic parameters by gene mutations to meet the natural selection. This intrinsic 

robustness of a genetic network can enable co-option, so that new traits (or corresponding new genetic 

networks) can be generated in the evolutionary process [36]. The underlying principles of natural 

selection in network evolution can be discussed from the systems biology perspective [52,53]. A 

stochastic dynamic process is given to discuss robust genetic regulatory networks in the evolutionary 

process from the viewpoint of nonlinear stochastic regulation theory [50,54-60]. 

2. On the Entropy Measure of Gene Regulatory Networks  

First, for simplicity, we consider a linear nominal gene regulatory network with the following 

stoichiometric equation:  

0 0 0( ) ( )X t S X t  (1)

where X0(t) = [X01(t)…X0n(t)]
T, 
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. X0(t) denotes the nominal gene expressions of 

n genes and S0 denotes the stoichiometric matrix, which collects all the kinetic parameters and decay 

rates of gene regulatory network. In vivo, the kinetic parameters and decay rates in S0 suffer from the 

random parameter fluctuations due to gene expression fluctuations in binding, transcription, splicing 

and translation processes:  

S0,ij→S0,ij +ΔSl,ijnl(t) (2)

where S0,ij denotes the nominal parameters; ΔSl,ij denotes the amplitude of random kinetic parameter 

fluctuations; nl(t) is a white noise with zero mean and unit variance, i.e., ΔSl,ij denotes the 

deterministic parts of the corresponding parameter variations, and nl(t) absorbs the stochastic property 
of intrinsic parameter fluctuations. n1(t), n2(t),…, nL(t) are independent stochastic sources of random 

parameter fluctuations, where covariances are given as: 

Cov[ΔSl,ijnl(t),ΔSl,ijnl(τ)] = ΔSl,ij
2δ(t,τ) (3) 

in which δ(t,τ) denotes the delta function, i.e., δ(t,τ) = 1 if t = τ and δ(t,τ) = 0 if t . In other words, 
ΔSl,ij denotes the corresponding standard deviation of the stochastic parameter fluctuationsΔSl,ijnl(t) 

from the random source nl(t). The reason why nl(t) in (2) are assumed to be zero mean with unit 

variance is that the mean of nl(t) could be merged in the nominal S0,ij and the variance can be absorbed 
in ΔSl,ij in (2). Therefore, without loss of generality, nl(t) are assumed white noises with zero mean 

and unit variance. 
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Suppose the gene regulatory network in (1) suffers the following random intrinsic parameter 

fluctuation and extrinsic disturbance in vivo [32,35,40,41,42,49,52]: 

0
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 and v(t) = [v1(t) …vi(t)…vn(t)]
T.  

Remark 1: Sl denotes the parameter fluctuation matrix infected by the random source, nl(t), for 

example, the alternative splicing in gene expression process. If the ij-th component of S0 is free of 
parameter fluctuation due to random source, nl(t), then ΔSl,ij in S is zero. In (4), there are L random 

fluctuation sources. G denotes the coupling matrix from environmental disturbances to the gene 

network. vi(t) denotes the environmental molecular disturbance on gene i due to upstream genes’ 

regulations or interactions with cellular context.  

For the convenience of analysis and design, the stochastic gene regulatory network can be 

represented by the following equivalent Itô stochastic differential equation [32, 35, 40-42, 49, 52]:  

  



L

l
ll tdwtXSdttGvtXStdX

1
0 )()()()()(  (5)

where wl(t) is a standard Wiener process or Brownian motion with dwl(t) = nl(t)dt. The term 

 

L

l ll tdwtXS
1

)()(  denotes the stochastic parameter fluctuations due to L random sources. Obviously, 

in vivo, a linear gene regulatory network under random parameter fluctuations and external disturbance 

can be represented by the stochastic system in (5).  

Let us denote the fluctuation of a perturbed gene network in (5) from its nominal system in (1) as: 

0( ) ( ) ( )X t X t X t 


 (6)

Then we get the fluctuation dynamic equation as: 

 0
1

( ) ( ) ( ) ( ) ( )
L

l l
l

dX t S X t Gv t dt S X t dw t


  
 

 (7) 

Since ( )X t


 in (7) is a stochastic process, it is not easy to consider it as a measure of randomness (or 

entropy) of stochastic regulatory network. Let us define the measure of randomness of the stochastic 

fluctuation equation of gene regulatory network as: 

E ( ) ( ) Tr( )T
X

randomness X t X t R    
 

 (8) 

where : E ( ) ( )T
X

R X t X t   
 

 denotes the covariance matrix of )(tX
)

. 

By Itô’s formula [57] and with   0E dtdwl , we get the following equation for randomness: 
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0
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where  )()(E: tXtXR T
X   denotes the covariance matrix of X(t) and Rv denotes the covariance of 

external noise.  

From the randomness equations in both (8) and (9), it is seen that the randomness or entropy of 

stochastic gene network is mainly due to Rv of the covariance matrix of external random noise and 

 

L

l Xl
T
l RSS

1
 due to the intrinsic random parameter fluctuations. 

In the nonlinear gene regulatory network case, the nominal system in (1) is modified as [61]: 

0 0 0( ) ( )X t S f X  (10)

where f(X0) denotes the nonlinear regulation function vector.  

For the nonlinear stochastic gene regulatory network with intrinsic random parameter fluctuation 

and external random disturbance in vivo, (5) is modified as [42]: 

  



L

l
lll tdwXfSdttvXgXfStdX

1
0 )()()()()()(  (11)

Let us denote: 

  0 0E ( ) ( ) ( ) ( ) :
T

f
f X f X f X f X R      , E ( ) ( ) :T

l l ff X f X R    , E ( ) ( ) :T
gg X g X R     (12)

Then, for the nonlinear stochastic gene regulatory network in (11), the randomness dynamic 

equation in (9) should be modified as: 

0
1
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Based on the Gaussian distribution assumption, the probability function of stochastic gene 

regulatory networks can be described by: 

11 1
( , ) exp ( ) ( )

2(2 ) det( )

T
X Xn

X

p X R X t R X t
R

    
 



 
 (14)

Another randomness measure, i.e., entropy, is defined as [9-14]: 

0 0( , ) ln ( , )
X X

p X R p X R     S  (15)

Therefore, the randomness and entropy of nonlinear stochastic regulatory network in (11) can be 

measured by (8) and (15), respectively. Even several researches have used the maximum entropy 

method to estimate parameters of some gene regulatory networks by several iterative searching 

methods [13,14,16-19]. In general, it is not easy to measure the randomness or entropy from (8) or (15) 

by directly solving the randomness differential equations in (11)-(13). It is still difficult to get insight 

into the systematic characteristics of gene networks from (8) and (15) for the designs of systems and 

synthetic biology. However, the effect of intrinsic parameter fluctuations  

L

l lll tdwXfS
1

)()(  is state-

dependent, and it will influence the stability of stochastic gene regulatory network. Further, the 

external random disturbance will corrupt the gene regulatory network. For more insight and easy 
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computation, the interplaying between randomness (or entropy) and robustness of stochastic gene 

network should be discussed more from the systematic and filtering point of view. More detailed 

analysis about the effect of stochastic intrinsic random noise and extrinsic random disturbance on the 

gene regulatory network and the robustness of gene regulatory network to attenuate the effect of the 

intrinsic noise and extrinsic disturbance to counteract the entropy in biological systems will be 

discussed in the following section.  

3. Measurement of Robust Stability and Filtering Ability for Stochastic Gene Regulatory 

Networks 

Consider the nonlinear stochastic gene regulatory network in (11) with intrinsic random parameter 

fluctuations and external random disturbance. Suppose a phenotype near a stable equilibrium point xe 

is of interest. For the convenience of analysis, the origin of nonlinear stochastic gene network in (11) is 

shifted to xe. In such a situation, if the shifted nonlinear stochastic system is robustly stable at the 

origin, then the equilibrium point of interest is also equivalently robustly stable. This will simplify the 

analysis procedure of robust stability and filtering of gene regulatory networks. Let us denote 

extXtX  )()(
~

, then we get the following shifted stochastic system [26]: 

 0
1

( ) ( ) ( ) ( ) ( ) ( )
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e e l l e l
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dX t S f X x g X x v t dt S f X x dw t


          (16)

i.e., the origin 0)(
~ tX  of the stochastic gene network in (16) is at the equilibrium xe of the original 

stochastic system in (11). 

The stochastic gene regulatory network in (16) is said “robust stabilization” if the stochastic 

parameter fluctuations  


L

l lell tdwxXfS
1

)()
~

(  could be tolerated at the equilibrium point 0)(
~ tX  or 

X(t) = xe. The attenuation level of external disturbance v(t) by the gene regulatory network can be 

measured by the following H∞ filtering ability [35,40,55-58]: 
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where E(･ ) denotes the expectation of (･ ), i.e., the effect of v(t) on )(
~

tX  is less than or equal to ρ2 

from the energy point of view or the attenuation level ρ is the upper bound of the filtering ability of the 

gene network. 

Before further analysis of robust stabilization and filtering problem of the stochastic gene network 

in (16), we first consider only the robust stabilization to tolerate intrinsic stochastic parameter 
fluctuation in (16) in the case free of external disturbance (i.e., 0)( tv ), i.e.: 





L

l
lelle tdwxXfSdtxXfStXd

1
0 )()

~
()

~
()(

~
 (18)

Since the stochastic parameter fluctuation in (18) is state-dependent, they will influence the stability 

of the stochastic system in (18) [57,58]. From the theory of stochastic stability [57], the stochastic gene 

network in (18) with v(t) = 0 is assumed with asymptotical stability in probability, i.e., 0)(
~

E tX   
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as t→∞, if the expectation of the time derivative of Lyapunov (energy) function )
~

(XV  is  

negative [57], i.e.: 

0
)

~
(

E 



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


dt

XdV
 (19)

where 0)
~

( XV  is the Lyapunov (energy) function of the stochastic regulatory gene network in (18). 

The inequality in (19) means that on average the energy function of stochastic gene network decreases 

with time and will asymptotically converge to 0)(
~ tX  or X(t)→xe in probability in the case v(t) = 0, 

or the stochastically asymptotical stability is achieved. 
In the case 0)( tv , only the H∞ disturbance attenuation level in (17) can be measured because the 

asymptotical stability in probability (or stochastically asymptotical stability) can not be achieved due 

to the continuous interference of stochastic external disturbances, i.e., 0)(
~ tX  or X(t)→xe, can not 

be achieved in probability as t→∞ and the stochastic deviation from xe (i.e., )(
~

tX ) due to stochastic 

external disturbances can only be attenuated below a level ρ, which is the upper bound of the filtering 

ability of stochastic gene network of (16).  

First, let us consider the robust stabilization of stochastic gene network in the case v(t) = 0 in (18). 

Based the stochastic stability condition in (19), we get the following robust stability result [27]. 

Proposition 1: The stochastic gene network in (18) is asymptotically stable in probability if the 

following Hamilton-Jacobi inequality (HJI) has a position solution 0)
~

( XV : 
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 (20)

i.e., the intrinsic stochastic parameter fluctuations in (18) could be asymptotically tolerated by the gene 

regulatory network if the above inequality holds. 

Remark 2: If the gene regulatory network is free of intrinsic parameter fluctuations and external 

disturbance, based on HJI in (20), the asymptotical stability for the initial condition 0)0(
~ X  is 

guaranteed by the existence of the positive solution 0)
~

( XV  to 0)
~

(
)(

~
)

~
(

0 



exXfS
tX

XV
. Obviously, 

the asymptotical stability in probability for the intrinsic stochastic parameter fluctuation case in the 

stochastic system (18) needs more stability robustness to overcome the second term in (20). More 

effort is needed to solve 0)
~

( XV  in (20) than the case of free stochastic parameter fluctuation. 

If the stochastic gene network in (16) needs to tolerate the stochastic parameter fluctuations and 

attenuate stochastic external disturbances below an attenuation level ρ simultaneously, then we get the 

following result [27]. 

Proposition 2: If the following HJI has a positive solution 0)
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 (21)
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then (a) the stochastic gene network in (16) can achieve both the robust stochastic stabilization to 

tolerate intrinsic random parameter fluctuation and the attenuation level ρ in (17); and (b) if the 
stochastic gene network is free of stochastic external disturbances, i.e., 0)( tv , then the stochastic 

gene network will asymptotically converge to 0)(
~ tX  or X(t)→xe in probability.  

Remark 3: (i) Comparing (21) with (20), it is more difficult to find a positive solution )
~

(XV  to 

solve (21) than (20) because two extra-terms )(
~

)(
~

tXQtX T  and 






















)(
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~
()()(

)(
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~
(

4
1

2 tX
XVXgXg

tX
XV T

T

  due to the attenuation of stochastic external 

disturbance in (17). (ii) Since ρ is the upper bound of the random disturbance attenuation in (17), the 

optimal disturbance attenuation level ρ0 of the stochastic gene regulatory network in (11) or (16) could 

be found by solving the following constrained optimization problem [27,32]: 
 min

)
~

(
0

XV

  

subject to 0)
~

( XV , (21) 
(22)

i.e., ρ0 is a stochastic disturbance attenuation measure or the filtering ability of a stochastic gene 

network to attenuate the stochastic disturbance v(t) in (16) under robust stabilization to tolerate 

intrinsic parameter fluctuation at xe. If ρ0<1, then the stochastic external disturbance is attenuated by 

the gene regulatory network. If ρ0>1, then the stochastic external disturbance is amplified by the gene 

regulatory network. In some cases, extrinsic noise is enhanced by some gene networks [9]. (iii) If the 

Wiener noises wl(t) in (16) are replaced by the mutually independent Poisson noises pl(t) with mean 

E[pl(t)] = λlt and variance var[pl(t)] =  λlt as follows: 

  
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Then HJI in (21) should be modified as: 
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 (24)

which is much more complex to solve. 

In general, it is very difficult to solve HJI in (20) for robust stabilization against the intrinsic 

stochastic parameter fluctuation or (22) for the filtering ability of stochastic extrinsic noise attenuation. 

At present, there is no good method to solve the nonlinear partial differential HJI analytically or 

numerically. In this situation, the global linearization technique is employed to transform the nonlinear 

stochastic gene network in (16) to an interpolation of a set of locally linearized gene networks to 

simplify the analysis of robust stabilization and noise filtering ability of stochastic gene network. 

By the global linearization method [42,62], if all the global linearizations are bounded by a polytope 

consisting of M vertices as: 
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, )(
~

tX  (25)

where C0 denotes the convex hull of the polytope with M vertices defined in (25), then the state 

trajectories )(
~

tX  of the shifted stochastic gene network in (16) will belong to the convex combination 

of the state trajectories of the following M linearized stochastic gene networks derived from the 

vertices of the polytope [42]: 





L

l
llilii tdwtXFSdttvGtXFStXd

1
0 )()(

~
))()(

~
()(

~
, i = 1,…,M (26)

By the global linearization theory [42], if (25) holds, then every trajectory of nonlinear stochastic 

gene network in (16) is a trajectory of a convex combination of M linearized gene networks in (26). 

Therefore, if we can prove that the convex combination of M linearized gene networks in (26) can 

tolerate intrinsic stochastic parameter fluctuations and attenuate external stochastic disturbances at a 

level ρ0, then the original nonlinear stochastic gene network in (16) will have the same robust 

stabilization and disturbance attenuation property. The convex combination of M linearized gene 

networks in (26) can be written as [42,62]: 

 
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1 1
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~   (27)

where the interpolation function )
~

(Xi  satisfies 1)
~

(0  Xi  and 1)
~

(
1




M

i
i X , i.e., the trajectory of 

nonlinear gene network in (16) could be represented by the interpolated gene network in (27), which is 

the convex combination of M linearized gene networks in (26). 

In the case of free external disturbance in (16), the global linearization approach is given by: 

 
 











M

i

L

l
llilii tdwtXFSdttXFSXtXd

1 1
0 )()(

~
)(

~
)

~
()(

~   (28)

Remark 4: (i) Recently, Takagi-Sugeno (T-S) fuzzy model has been also employed to interpolate 

several linear systems at local regions to approximate the nonlinear stochastic system through smooth 

fuzzy membership functions [55]. Therefore, in the fuzzy interpolation case, the interpolated system in 

(27) could be represented by a T-S fuzzy system when )
~

(Xi  in (27) are replaced by fuzzy basis 

functions as follows [54,55]: 
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0
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where )
~

(Xi  are fuzzy basis functions with 0)
~

( Xi  and 1)
~

(
1




M

i
i X . (ii) In general, )

~
(Xi  in 

(27) could be any interpolation function, for example, cubic spline functions. 

For the global linearization system in (28) with only stochastic parameter fluctuations, we get the 

following results [27,41]. 

Proposition 3: If the following linear matrix inequalities have a positive symmetric solution P>0 

0 0
1

0
L

T T T T
i i li l l li

l

PS F F S P F S PS F


   , i = 1,… , M (30)

then the stochastic parameter fluctuations in (28) or (18) can be tolerated by the stochastic gene 

network, i.e., the stochastic gene network is asymptotically robustly stable in probability for xe under 

the parameter fluctuations.  

Remark 5: If the linear matrix inequalities (LMIs) in (30) are changed to the following: 

0
1

00  


L

l
lil

T
l

T
li

TT
ii FPSSFPSFFPS , i = 1,… , M (31)

with a positive symmetric solution P>0, then only robust stability in probability can be achieved and 

asymptotical stability in probability to xe is to be achieved.  

For the stochastic gene network with stochastic parameter fluctuations and external disturbances in 

(27) or (16), we get the following result [27,41]. 

Proposition 4: Suppose the following inequalities have a positive solution P>0 

0
1

2
1

00  


PGPGQFPSSFPSFFPS T
ii

L

l
lil

T
l

T
li

TT
ii 

, i = 1,… , M (32)

then (i) the random parameter fluctuations are tolerated and the external random disturbance is 

attenuated below a level ρ in (17); and (ii) If the stochastic gene network is free of external 
disturbance, i.e., 0)( tv , then the stochastic asymptotical stability to xe is achieved.  

Remark 6: (i) Since there are two extra-terms in (32) than in (30) due to the consideration of the 

attenuation of stochastic external disturbances, it should be more difficult to solve (32) than (30). 

Therefore, the stochastic gene network should be with more robust stability to tolerate the random 

parameter fluctuations and to attenuate the random external disturbance, simultaneously. (ii) The 

inequalities in (32) are the quadratic inequalities of P, it is not easy to solve P>0 for (32), directly. By 

Schur complements [62], they could be transformed to the following equivalent LMIs: 

0
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1
00 



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
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
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
, i = 1, …, M (33)

i.e., if the LMIs in (33) have a positive symmetric solution P>0, then the stochastic gene network can 

tolerate random parameter fluctuations and attenuate environmental random noises to a level ρ. (iii) By 

the fuzzy interpolation technique in (29), we can obtain the similar results, except the linearized 
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parameters Fi , Fli and Gi are of different values by the interpolation of the fuzzy bases )
~

(Xi  [35]. By 

the global linearization in (27) or fuzzy interpolation in (29) the optimal disturbance attenuation level 

or the filtering ability ρ0 of the stochastic gene network in (22) can be measured by solving the 

following LMI constrained optimization [27,41]: 
 min0

P

  

subject to 0P , (33) 
(34)

This constrained optimization for measuring the noise filtering ability ρ0 of stochastic gene network 

can be achieved by decreasing ρ in (33) until there doesn’t exist a positive solution P>0 via the 

software algorithm of LMI toolbox in Matlab [62]. 

Remark 7: (i) From (33), if the eigenvalues of the linearized systems matrices S0Fi are more 

negative, i.e., in the far left-hand side of s-complex domain, then the stochastic gene network has more 

robust stability to tolerate random parameter fluctuations. From (32), if ρ is small, i.e., to attenuate 

more environmental disturbances, the eigenvalues of S0Fi of stochastic gene network should be in 

more far the left-hand s-complex domain in order to attenuate environmental random noises to a small 

level ρ. (ii) Recently, the filtering ability and enhancing ability of random noises in neural firing 

system are also discussed in [63]. It is found that the activation random noise is filtered but the Na+ 

and K+ channel noises are enhanced. 

The dynamic system of a biochemical network can also be represented in the following S-system 

[61,64]: 

1 1

( ) ( ) ( )ij ij

n m n m
g h

i i j i j
j j

x t x t x t 
 

 

    , i = 1, …, n (35)

where x1(t), …, xn+m(t) are metabolites, such as substrates, enzymes, factors or products of a 

biochemical network in which x1(t), …, xn(t) denote the n-dependent variables (intermediate 

metabolites and products), and xn+1(t), …, xn+m(t) denote the independent variables (initial reactants 

and enzymes), αi and βj denote the rate constants, and gij and hij represent the kinetic parameters of the 

biochemical network. These parameters could be estimated by experimental data or microarray data. 

Suppose transient time is neglected and for simplicity we shall focus on the randomness and 

robustness of biochemical network at the steady state case. Consider the steady state of biochemical 

network in (35), we get [61]: 

1 1

( ) ( )ij ij

n m n m
g h

i j i j
j j

x t x t 
 

 

   , i = 1, …, n (36)

Taking the logarithm on both sides of (36), introducing new variables yj(t) = ln[xj(t)], aij = gij-hij,  

bi = ln(βj/αi) and after some rearrangement, we get [61]: 

11 1 1 1 1, 1 1 1,

1 1 , 1 1 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n n m n m

n nn n n n n n n n m n m

a y t a y t b a y t a y t

a y t a y t b a y t a y t

   

   

     

     

 


 
 (37)

The above equations could be represented by the following steady state equation [61]: 



Entropy 2010, 12                            

 

 

1084

ADYD(t) = b-AIYI(t) (38)

where YD(t) = [y1(t)…yn(t)]
T, b = [b1…bn]

T, YI(t) = [yn+1(t)…yn+m(t)]T, 
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

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
 in which AD denotes the system matrix of the catalytic interactions among 

the dependent variables AD and AI indicates the catalytic interactions between the dependent variables 

YD(t) and the independent variables YI(t) (i.e., the environmental medium of the metabolic system). 

From the simple algebraic steady state equation in (38), obviously, the S-system in (35) is an useful 

model for describing the phenotype of biochemical network [61]. If the inverse of AD exists, the steady 

state (or phenotype) of the biochemical network is solved by [61]: 

YD(t) = AD
-1(b-AIYI(t)) (39)

The steady state YD(t) in (39) is one of the equilibrium points of the nonlinear biochemical network 

in (35). Actually, there are many equilibrium points for (35), which represent different phenotypes. 

Only the equilibrium point (or phenotype) in (39) is favored by natural selection in evolution. 

Actually, a real biochemical network in (35) suffers from random parameter fluctuations and 

environmental disturbance. i.e.: 

αi→αi+Δαi(t), βi→βi+Δβi(t), hij→hij+Δhij(t), gij→gij+Δgij(t), YI(t)→YI(t)+ΔYI(t) (40)

Then the corresponding perturbative steady state of the biochemical network is given by [31,61]: 

(AD+ΔAD(t))(YD(t)+ΔYD(t)) = (b+Δb(t))-(AI+ΔAI(t)) (YI(t)+ΔYI(t)) (41) 

Because the biochemical networks are the backbone of physiological systems of organisms, a 

biochemical network should be sufficiently robust to tolerate the random parameter fluctuation to 

maintain its function properly. Then we find the following robust stability of biochemical network in 

S-system model [31,53,65]. 

Proposition 5: If the following robustness condition holds: 

1)(AE
2

-1
D  tAD  or   T

DD
T
DD AAtAtA  )()(E  (42)

then the phenotype of stochastically perturbed biochemical network exists as follows: 

YD(t)+ΔYD(t) = (AD+ΔAD(t))-1[(b+Δb(t))-(AI+ΔAI(t)) (YI(t)+ΔYI(t))] (43)

i.e., if the covariance of random parameter fluctuation ΔAD(t) of system matrix is less than ADAD
T, then 

the random parameter fluctuations will be tolerated and the phenotype of biochemical network is only 

with a small perturbation as (43). 

If the robustness condition in (42) is violated, the matrix in here in (43) may not exist and the steady 

state of perturbed biochemical network in (43) may cease to exist or move to another equilibrium point 

with a change of the phenotype. The random variations of Δb(t), ΔYI(t) and ΔAI(t) will influence the 
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phenotypic variation ΔYD(t) in (43). Their effects on the phenotype have been discussed by the 

following sensitivity analysis of biochemical network: 

1
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

 (44)

In order to tolerate the random variations Δb(t), ΔYI(t) and ΔAI(t) to preserve the phenotype of a 

biochemical network, the sensitivity in (44) should be below some values as follows [65]: 
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 (45)

or equivalently: 
T
DD AAsI 2

1 , T
DD

T
II AAsAA 2

2 , T
DD

T
II AAstYtY 2

3)()(   (46)

where s1, s2 and s3 are some small sensitivity values so that the phenotype YD(t)+ΔYD(t) of 

stochastically perturbed biochemical networks would not change too much in (43) in comparison with 

the nominal values in (39), i.e., ΔYD(t) in (43) should be small enough. The sensitivity criteria in (45) 

or (46) determine the ranges of sensitivities of phenotype change ΔYD(t) to random parameter and 

environmental fluctuations. For a functional biochemical network, it should satisfy the sensitivity 

criteria to prevent metabolic concentration from being changed too much by parametric and 

environmental random changes. 

4. Interplay Between Entropy and Robustness in the Evolutionary Process of Gene Networks 

Robustness is an ubiquitously observed property of biological systems [31,36,66]. Since world 

random events arise constantly in biological world, the random transmission of genes from parent to 

offspring implies that the study of evolution as a genetic process must allow for this randomness. The 

robustness is considered to be a fundamental feature to balance the entropy of complex evolvable 

biological systems. It has been pointed out that robustness facilitates evolvability and robust traits are 

often selected by evolution [36], i.e., complex biological systems must be robust against environmental 

and genetic randomness to be evolvable. Evolution often selects gene networks that might enhance the 

robustness of organisms [36]. In the past, most molecular biologists and biochemists assume that 

random fluctuations in gene networks are due to genetic mutation and natural selection. However, the 

design principles of gene networks via natural selection in evolution are still in conceptual description 

but not get in mathematical rules. The investigation of robustness of gene networks in evolution is still 

in its infancy and needs to be discovered. In fact, robustness allows changes in the structure and 

components of gene networks owing to intrinsic random noise and extrinsic random disturbances, but 

specific functions are still maintained [52,53]. 

According to the hierarchical network interplaying in Figure 1 [52], the high-level selected 

networks will specify a selection force on lower levels. Just as external environment molds the 

evolution of local adaptation of organisms by natural selection, the internal biological network 

environment of population is expected to head to the evolution of local biological networks in a 

favorable manner [67]. Once the favored organisms are selected by natural selection, the lower 

networks have to maintain proper functions of the physiological systems of favored organism. 
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Therefore, the favored organisms are the selection force of the physiological systems. Since 

biochemical networks are the backbone of the physiological systems of organisms, in order to maintain 

the favored physiological system by natural selection, a biochemical network should be sufficiently 

robust to tolerate intrinsic randomness and environmental changes in the evolutionary process. 

Therefore, the favored physiological systems specify the selection force on biochemical networks. 

Similarly, in order to maintain the robustness of the favored biochemical networks, gene networks 

should be designed with enough robustness to tolerate random variations due to random gene 

mutations in sex-chromosome and filter environmental random noises. On the other hand, changes of 

lower-level networks will feedback to influence the high-level networks in involution. Therefore, the 

natural selection actually acts on the interplaying of multiple biological networks. Hence, the 

revolution of robust adaptive design rules of biological networks by natural selection can gain much 

insight into the evolutionary mechanisms of biological networks under random intrinsic noises and 

environmental disturbances. In the evolutionary process, the stochastic gene network can be also 

represented by (5) but with a more large time scale in evolution. However, the effect of the intrinsic 

random fluctuations  

L

l ll tdwtXS
1

)()(  on the gene network is mainly due to the random genetic 

mutations of L genes in the sex-chromosome in the evolutionary process, unlike the random genetic 

mutations in the autosome of somatic cells in the previous section. v(t) denotes the environmental 

random disturbance in evolution. In this case, the equilibrium point xe denotes the trait of gene 

network. As seen in Figure 1, the genetic network lies at the lowest level of the biological network 

evolution. In order to maintain the proper function of the favored biochemical network at high-level, 

the lower-level genetic networks have to function properly. Therefore, in evolution, robust stability is 

the natural selection force specified by higher-level networks. A stochastic gene network in 

evolutionary process can be represented as (11) but the random parameter fluctuations are mainly due 

to genetic mutations of genes in sex-chromosome in the evolutionary process. Further, the time-scale 

of gene network is much larger in the evolutionary process. Therefore, the robust stability condition of 

a gene network at the equilibrium point xe (trait) is the same as (20) except the parameter fluctuations 

Sl mainly due to the random gene mutations of sex-chromosome in evolutionary process, i.e., there 

should exist a positive solution 0)
~

( XV  for HJI in (20) in the disturbance-free case [52]. If the gene 

network can tolerate the intrinsic random fluctuation and can attenuate the environmental disturbance 

to a level ρ simultaneously in the evolutionary process, then there should exist a positive solution 

0)
~

( XV  in (21) [52]. Similarly, by the global linearization technique, the robust stability of gene 

network to tolerate intrinsic genetic mutations in the evolutionary process is guaranteed for a trait if 

there exists a positive solution P>0 for LMIs in (31). In this situation, the trait of gene network is kept 

under gene mutations in evolution. The disturbance filtering ability ρ0 of a gene network in the 

evolutionary process could be measured by solving the constrained optimization problem in (34). This 

could measure the influence of environment on the gene network in the evolution process. Obviously, 

as remarks 6 and 7, if the eigenvalues of linearized gene networks are all in the far left-hand side of s-

complex domain, then a gene network has enough robustness to tolerate intrinsic random genetic 

mutation and filter environmental random disturbances to keep its trait in evolution to avoid extinction 

by natural selection. The genetic mutations, which could lead to feedback circuits to improve 

robustness and noise filtering ability, are favored by natural selection in the evolutionary process. 
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However, some gene mutations, which could make the corresponding parameter fluctuations Sl and 

coupling function g(X) small, such as those mutations to redundancy, duplicating and self-regulation 

so that it is not easy to violate robust stability conditions (20)-(21) or (31)-(32), due to these buffers, 

are also favored by natural selection [68,69]. If filtering ability ρ0<1 in (22) or (34), the eigenvalues of 

linearized gene networks should be in the far left-hand of s-complex domain side to attenuate the 

environmental random noises. The trait of this kind of gene networks is more robust in evolution. If 

ρ0>1, it is easier for the gene network to satisfy this amplification ability. In this situation, this gene 

network is much influenced by environmental random noises to easily move toward another 

equilibrium points (traits) so that the gene network is more adaptive to the environmental changes in 

the evolutionary process, especially for ρ0»1, to generate a new trait (or phenotype) to a new 

environment. This is a tradeoff between the robust stability and the adaptability of gene networks in 

the evolutionary process [52,53]. 

If the biochemical network in the evolution process is described by the S-system model in (41), the 

time scale should be enlarged and the parameter fluctuations are mainly due to genetic mutations in the 

sex-chromosome. Suppose that there exist some random parameter variations Δαi(t), Δβi(t), Δhij(t), 

Δgij(t) due to random genetic mutations and ΔYI(t) due to environmental random disturbances in the 

evolutionary process. These random parameter variations due to genetic mutations in the sex-

chromosome could be considered as design parameters in the evolutionary process. Because the 

biochemical networks are the backbone of physiological system of organisms, a biochemical network 

should be sufficiently robust to tolerate the random parameter variations and environmental changes 

due to genetic mutations to maintain its function properly in the evolutionary process (see Figure 1). 

However, if the robustness condition in (42) is violated, the steady state phenotype of the perturbed 

biochemical network in (43) may not exist or move to another equilibrium point with a change of the 

trait. The random variations Δb(t), ΔYI(t) and ΔAI(t) will influence the trait variation ΔYD(t) in (34), 

and their effects on the trait can be obtained from the sensitivities in (44). In general, the perturbed 

biochemical networks with random parameter variations that violate the robustness criterion in (42) 

will be eliminated by natural selection. Therefore, the perturbed biochemical network should satisfy 

the robustness criterion in order to guarantee not to be perturbed too much from its equilibrium point 

(the normal physiological function) in the evolutionary process. Because the violation of (42) means a 

lethal genetic mutation, the robustness criterion in (42) is the necessary condition for the survival of 

biochemical networks under natural selection [52,53]. From the robustness criterion in (42), natural 

selection favors the perturbed biochemical networks with small-variance random genetic mutation, i.e., 

with small E[ΔAD(t)ΔAD
T(t)], so that the robustness criterion is not violated. A biochemical network 

with redundancy and self-regulation can attenuate random fluctuation ΔAD(t). Furthermore, a 

biochemical network with adequate negative feedbacks can increase ADAD
T in (42) to tolerate random 

parameter fluctuations with large variance E[ΔADΔAD
T] in the evolutionary process. These robust 

adaptive designs with feedbacks are also favored by natural selection in the evolutionary process of 

biochemical networks. This is why there are so many redundancies, duplicated genes, modularities, 

self-regulations and feedback pathways in the biochemical networks in organisms [52,53,68,69,70]. A 

scale-free structure could reduce the effect of E[ΔAD(t)ΔAD
T(t)] on the stability of bio-networks and is 

also favored by natural selection in evolution [36]. 
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Figure 1. [42] The natural selection process on the interplaying of hierarchical biological 

networks with random parameter fluctuations and environmental disturbance. The high-

level biological system selection will become the selection force on low level biological 

systems. The natural selection on organisms selects its favored organisms. However, the 

random parameter fluctuations and stochastic environmental disturbance will influence the 

natural selection process of gene networks in evolution. Once the favored organisms are 

selected, the low-level biological networks have to maintain the favored physiological 

systems of the selected organisms. Hence, these favored organisms become the selection 

force to select their favored physiological systems. The favored physiological systems will 

lead to the selection force on biochemical networks. The favored biochemical networks by 

natural selection will become the selection force on genetic networks. On the other hand, 

the lower-level selected networks will feedback to influence the higher-level networks in 

evolution. Therefore, the natural selection actually acts on the interplaying of the multiple 

bionetworks. 
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The sensitivity criteria in (45) and (46) determine the ranges of the sensitivities of phenotype 

change ΔYD(t) to random parameter variations due to genetic mutations and random environmental 

changes by natural selection in the evolutionary process. For a functional biochemical network, it 

should satisfy the sensitivity criteria to prevent the metabolic concentration from being changed too 

much by random genetic mutations and environmental changes. Hence, the steady state (trait) of a 

biochemical network can be preserved while exposing the random genetic mutations and 

environmental changes to natural selection in the evolutionary process. The assumption that the three 

sensitivity criteria in (45) or (46) all hold for natural selection is derived from the fact that biochemical 

networks are the backbone of physiological systems and cannot be too sensitive to random genetic 

mutations and environmental changes, especially for some core (conserved) biochemical networks 

[52]. Actually, the sensitivity values si of sensitivity criteria in (45) or (46) are dependent on the 

biochemical network. If some sensitivity criteria in (45) or (46) are relaxed, i.e., some of the 

inequalities in (45) or (46) are with much larger value si, the phenotype of the biochemical network 

will be changed quickly with some random genetic mutations and environmental changes and will be 

more favored by natural selection. In this situation, the traits of biochemical networks are much 

influenced by random genetic mutation and environmental variations and are more easily toward 

another equilibrium points (traits) so that they may be more adaptive to environmental changes 

through random genetic mutations in the evolutionary process. In this case, new traits are more easily 

generated in order to be more adaptive to the natural selection force on biochemical networks under 

random genetic mutations and environmental variations in the evolutionary process [52,53]. The 

robustness criterion in (42) and the sensitivity criteria in (45) are called adaptive rules of natural 

selection on biochemical network via genetic mutations of sex-chromosome in the evolutionary 

process. There are many perturbed biochemical networks that can satisfy the adaptive rules of natural 

selection in the evolutionary process. If they are selected by natural selection, there are some 

differences in trait among these selected biochemical networks with random genetic mutations. After 

several generations in the evolutionary process, due to co-option of existing biochemical networks, 

diversities of the biochemical networks with conserved physiological function but with different 

structures will be developed [66]. This is the origin of the diversities of biochemical networks within 

organisms in evolution. However, if the requirements on the robustness in (42) and the sensitivities in 

(45) are stricter (or more conservative), i.e., with small si, only a few solutions (or structures) can be 

selected by natural selection to meet these requirements. This is the reason why a conserved core 

biochemical network has less diversity [53].  

5. The Balancing Roles of Entropy and Robustness in the Design of Systems Biology  

Consider nonlinear stochastically perturbed gene network in (16). If the nonlinear stochastic gene 

network in (16) cannot achieve robust stabilization with a prescribed filtering ability ρ, i.e., random 

parameter fluctuations and stochastic disturbance can not be efficiently attenuated, some feedback 

gene circuits k should be designed to improve its robust stability and filtering ability [32,35]: 

  



L

l
lellee tdwxXfSdttvxXgxXfkStXd

1
0 )()

~
()()

~
()

~
()()(

~
 (47)

By a similar method as Proposition 2, we get following robust gene circuit design result [35]. 
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Proposition 6: If we can design some gene circuits so that the following HJI has a positive solution 
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 (48)

then the robust stability and filtering ability in (17) is guaranteed, i.e., the random parameter 

fluctuation can be tolerated and random disturbance can be efficiently attenuated below a prescribed 

level ρ. 

However, it is difficult to solve the HJI in (48). The global linearization technique in (25) and (27) 

is employed to simplify the robust gene circuit design procedure. By the similar way as Proposition 4, 

we get the following robust gene circuit design method [41,52]. 

Proposition 7: If we can design some feedback gene circuits k such that the following LMIs has a 

positive symmetric solution: 

0
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, i = 1,… , M (49)

then random parameter fluctuations could be tolerated and random disturbances can be attenuated 

below a prescribed level ρ. 

By Schur complement [62], if we can design feedback gene circuit k so that the following LMIs has 

a positive matrix solution P>0: 
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
, i = 1, …, M (50)

then random parameter fluctuations can be tolerated and stochastic disturbances can be attenuated 

below a prescribed level ρ. Therefore, the robust gene circuit design principle in systems biology is to 

design some adequate feedback circuits k so that the LMIs in (50) have a common solution P>0. The 

robust design of gene network with random parameter fluctuation, stochastic environmental 

disturbance and process delays is also discussed in [40,41]. The above is an application of evolutionary 

systems biology to the robust gene network design, with the bio-designer instead of natural selection, 

selecting k in the design procedure with a more fast speed genetic searching in computer than genetic 

mutations in evolution. 

If the robust criterion in (42) and sensitivity criteria in (45) are violated by large random parameter 

fluctuations ΔAD(t), Δb(t) and enzyme change ΔYI(t) due to genetic mutation, environmental changes 

and diseases. A robust design method can be developed for biochemical networks to improve their 

robustness to compensate the effect of random parameter fluctuations and to attenuate the effect of 

random disturbances. 

In the S-system model, a robust circuit control design can be developed for a biochemical network 

in (35) by some feedback control circuits as follows [65]: 
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1 1 1 1
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x t x t x t x t x t 
 

   

      , i = 1, …, n (51)

where )(tx ikf
k  denotes a biochemical control circuit via xk(t) for regulating the production of xi(t) with a 

kinetic parameter fik and )(tx ike
k  denotes a biochemical control circuit via xk(t) for regulating the 

degradation of xi(t) with the kinetic parameter eik. The choice between regulating objects, xk(t) and xi(t) 

and the specification of kinetic parameters, fik and eik, are to be made according to the feasibility of 

biochemical circuit linkages to achieve both the robust stability to tolerate random parameter 

fluctuations ΔAD(t) and the desired sensitivities to attenuate the other random parameter fluctuations 

Δb(t), ΔAI(t) and the random disturbance ΔYI(t). Since fik and eik are the elasticities of the 

corresponding enzymes in the designed gene control circuits, the implementation of gene control 

circuits is highly dependent on the specification of elasticities of these enzymes [65]. Based on the 

robustness analysis from (35) to (46), a biochemical circuit design scheme for robust control of 

biochemical networks can be developed in the following. Consider the robust control of the 

biochemical network in (51). Using a similar procedure from (35) to (46), we obtain: 

(AD+F+ΔAD(t))(YD(t)+ΔYD(t)) = (b+Δb(t))-(AI+ΔAI(t)) (YI(t)+ΔYI(t)) (52)

where the feedback control parameter matrix is defined as: 
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 (53)

in which fik and eik are the kinetic parameters of the biochemical control circuits to be specified in (51). 

By the similar procedure to obtain the robustness criterion in (42), we get the following robust 

circuit design result. 

Proposition 8: If we can design feedback circuits F such that the following inequality holds: 

1)()(AE
2

1
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DD FFtAtA )(A)(A)()(E DD   (54)

then the phenotype of the perturbed biochemical network is preserved, i.e., the circuit control F can 

improve the robustness to tolerate the random parameter fluctuation ΔAD(t) for a biochemical network.  

Similarly, if the desired sensitivity of biochemical networks cannot be achieved to attenuate the 

random variations of other parameters and stochastic disturbances in (45) or (46), the feedback circuit 

control F could be designed as follows [65]: 
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 (55)

with some desired sensitivities s1, s2 and s3 so that the phenotypes of the perturbed biological network 

will not change too much. According to the above analysis, if we can specify the entries of fik and eik of 

F in (53) for the biochemical network in (51) to satisfy the requirement of robustness in (54) and the 

sensitivities in (55), then the biochemical network could tolerate the random parameter variations and 
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stochastic disturbances. These results are potential for application to medical technology and robust 

design of synthetic biology in future. 

6. The Balancing Roles of Entropy and Robustness in Synthetic Biology 

Synthetic biology is foreseen to have important applications in biotechnology and medicine and to 

revolutionize how we conceptualize and approach the engineering of biological systems. In short, 

synthetic biology is the engineering of artificial biological systems to fulfill a particular purpose. It 

does so through transformative innovation that makes it possible to build living machines from off-the-

shelf chemical ingredients, employing many of the same strategies that electrical engineers use to 

make computer chips [44,71,72]. Drawing up a set of the powerful techniques for the automated 

synthesis of DNA molecules and their assembly into genes and microbial genomes, synthetic biology 

envisions the redesign of nature biological systems for greater efficiency as well as the construction of 

functional “genetic circuits” and metabolic pathways, which will be inserted into the host cells for 

practical purposes [7,8,44,46,71,72]. At present, even the construction of networks of inter-regulating 

genes, i.e., the so-called genetic regulatory networks, has demonstrated the feasibility of synthetic 

biology. The design of synthetic gene networks is still a difficult problem and the most newly designed 

gene networks cannot function properly. These design failures are mainly due to both intrinsic random 

parameter fluctuation such as gene expression noise, splicing, mutation, thermal fluctuation and 

extrinsic stochastic disturbances such as changing extra-cellular environments in the host cells [44]. 

Therefore, how to design a robust synthetic gene network that can tolerate intrinsic random parameter 

fluctuations, attenuate extrinsic stochastic disturbance and also function properly in host cells is an 

important topic of synthetic biology [48,49]. 

For the convenience of illustration, a simple cross-inhibition network shown in Figure 2 is 

synthesized with two genes, a and b, that code for two repressor proteins, A and B. More specifically, 

protein B represses the expression of gene a, while protein A represses both the expression of gene b 

and at higher concentration, the expression of its own gene. This synthetic biology system can be 

modeled by the following differential equations [49]: 

1 2( ) ( ) ( ) ( )

( ) ( ) ( )
a a a b a a a a

b b b a b b

x t k r x r x x t

x t k r x x t


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 




 (56)

The state variables xa and xb denote the concentrations of proteins A and B. k’s and γ’s are the 

kinetic parameters and decay rates, respectively, and ri(xi) are the regulation functions, which capture 

the regulator effect of an effector protein on gene expression and are smooth sigmoidal function (e.g., 

Hill functions). The simple cross-inhibition synthetic network in (56) can be represented by the 

following stoichiometic matrix equation: 
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Figure 2. A two-genes synthetic network and the inhibition regulation functions ri(xi). 

 
 

However, the stoichiometric matrix in the host cell will suffer from the random parameter 

fluctuations due to gene expression noises, splicing, mutation and thermal noises: 
ka→ka+Δkana(t), γa→γa+Δγana(t),  

kb→kb+Δkbnb(t), γb→γb+Δγbnb(t) 
(58)

where Δki and Δγi denote the amplitude of fluctuations of stochastic kinetic parameters and decay rate; 

and ni(t) is white noises to denote different random sources. Then, the stochastic synthetic gene 

network under random parameter fluctuations and stochastic disturbances in the host cell can be 

represented by: 
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where x2(t) = [xa(t) xb(t)]
T and υ2(t) = [va(t) vb(t)]

T denote the state vector and external random 

disturbance vector of the synthetic gene network in the host cell, respectively. These random intrinsic 
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parameter fluctuations and stochastic external disturbances may cause the engineered gene network to 

be dysfunction in the host cell. The robust synthetic biology design is to choose two kinetic parameters 

ka and kb and two decay rates γa and γb in N2 so that the desired steady state xad and xbd can be achieved 

under random intrinsic parameter fluctuations and stochastic disturbances.  

If a synthetic gene network consists of n genes, then the stochastic gene network of (59) in the host 

cell can be extended to the following n-gene network dynamics: 

1

( ) ( ) ( ) ( ) ( )
m

i i i
i

x t Nf x M g x n t t


    (60)

where the state vector x(t) = [x1(t)… xn(t)]
T denotes the concentrations of n proteins in the synthetic 

gene network. N denotes the corresponding stoichiometric matrix of n-gene network. Mi, i = 1,…,m, 

denote fluctuation matrices due to independent random noise sources ni, i = 1,…,m, and the elements 

of Mi denote standard deviations of the corresponding random parameter fluctuations. υ(t) = 
[υ1(t)…υn(t)]

 T denotes the vector of random environmental disturbances. The stochastic system in (60) 

is used to mimic the realistic stochastic behavior of a synthetic gene network of n genes in the host 

cell. The synthetic network, however, suffers from the random parameter fluctuations and 

environmental disturbances in the context of the host cell. In [49], a robust synthetic gene network 

design has been proposed with the ability not only to tolerate these random parameter fluctuations and 

to attenuate the stochastic disturbances but also to achieve the desired steady state behaviors via the 

following four design specifications [49]: 

(i). Kinetic parameters and decay rates in N should be chosen from the following biological feasible 
range, ],[ 21 NNN  . 

(ii). Stochastic kinetic parameters and decay rate fluctuations with prescribed standard deviations in 

Mi in the state dependent terms  

m

i iii tdwxgM
1

)()(  to be tolerated by the synthetic gene network 

should be specified. 

(iii). The desired steady state xd should be achieved, where xd is the desired steady state specified by 

the designer for some design purposes of the synthetic gene network inserted in the host cell. 

(iv). The following prescribed disturbance filtering ability (i.e., the H∞ filtering) should be 

achieved: 
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 (61)

for all random υ(t), where Q≥0 is a symmetric weighting matrix and the vector xd = [x1d… xnd]
T 

denotes the desired steady states of n proteins.  

In order to simplify the design procedure and to achieve the desired steady state in the specification 
(iii), let us denote dxtxtx  )()(~ . Then we get the following shifted stochastic system from (58): 

  



m

i
idiid tdwxxgMdttxxNftxd

1

)()~()()~()(~   (62)

where dwi(t) = ni(t)dt, i.e., the origin 0)(~ tx  of the stochastic system in (62) is at the desired steady 

state xd of the original stochastic system in (60). 
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From the stochastic biology system in (62), we obtain the following robust synthetic gene network 

design result [49] 
Proposition 9: If some designed kinetic parameters and decay rates in ],[ 21 NNN   are chosen such 

that the following HJI has a positive solution 0)~( xV : 
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 (63)

then (a) the stochastic synthetic gene network in (62) can achieve both robust stabilization to tolerate 

random intrinsic parameter fluctuation and the prescribed attenuation level ρ on the stochastic 

disturbances, i.e., the design specifications (i), (ii) and (iv) are all satisfied; and (b) if the stochastic 

gene network in (62) is free of stochastic disturbance, i.e., υ(t) = 0, then the synthetic gene network in 
(62) will asymptotically converge to 0)(~ tx  or x(t)→xd in probability, or equivalently, the original 

stochastic synthetic gene network in (60) will asymptotically converge to the desired steady state xd in 

probability, i.e., the design specification (iii) is achieved. 
In general, it is very difficult to specify ],[ 21 NNN   to solve HJI in (63) for 0)~( xV  via a 

synthetic method. Therefore, based on the global linearization technique in (25), we get the following 

design result for robust stochastic synthetic gene network [49]. 
Proposition 10: Assume that some design kinetic parameters and decay rates ],[ 21 NNN   are 

chosen such that the following M inequalities have a common symmetric positive definite solution 

P>0: 
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     , j = 1,… , M (64)

then there are two results: (a) The stochastic gene network of (62) in the host cell with random 

parameter fluctuations and stochastic disturbances will be robustly stabilized to tolerate random 

parameter fluctuations and also achieves a prescribed attenuation level ρ on the stochastic disturbance, 

i.e., the design specifications (i), (ii) and (iv) are satisfied, and (b) if the synthetic gene network in (62) 

is free of stochastic disturbance, i.e., υ(t) = 0, then the stochastic synthetic gene network will 
asymptotically converge to 0)(~ tx  in probability, or equivalently, the original synthetic gene network 

in (62) will asymptotically converge to the desired steady state xd in probability, i.e., the design 

specification (iii) is achieved. 

By Schur complement [62], the inequalities in (64) could be transformed to the following LMIs: 
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 , j = 1, …, M (65)

Therefore, the robust synthetic gene network design problem by specifying ],[ 21 NNN   to solve a 

positive function 0)~( xV  for HJI in (63) with a prescribed disturbance attenuation level ρ is 

transformed into the problem of specifying ],[ 21 NNN   to solve a common P>0 for a set of 



Entropy 2010, 12                            

 

 

1096

inequalities in (64) or equivalently for a set of LMIs in (65). The LMIs in (65) can be efficiently 

solved by the so-called interior-point method via the LMI toolbox in Matlab [62]. 

Remark 8: (i) There are some differences between the robust circuit design in section 5 and the 

robust synthetic gene network design in section 6. The robust circuit design in section 5 is to construct 

some gene circuits for an existent gene network to improve its stability robustness to tolerate random 

parameter fluctuations and attenuate more stochastic disturbances. However, in the robust synthetic 

gene network design, you should engineer a complete new gene network based on design 

specifications and then these synthetic gene networks will be inserted into their host cells to perform 

their functions. In the host cells, they should have enough robust stability to tolerate random parameter 

fluctuations and attenuate stochastic disturbances from the cellular context of the host cell. (ii) Since 

the statistics of stochastic disturbances can not be easily measured in the host cell, a robust stochastic 

gene network design is proposed from the stochastic game theory point of view [48], i.e., the stochastic 

disturbances play a role to maximize the regulation error when the designer plays a role to minimize 

the worst regulation error. The above robust synthetic gene network designs can only achieve a desired 

steady state under random parameter noise and disturbance. They can not robustly track a changing 

reference signals. Recently, a robust optimal reference tracking design method for stochastic synthetic 

biology system is also developed [73]. A robust synthetic oscillator with desired amplitude, period and 

phase is also designed via GA-based design algorithm [74]. 

7. Discussion and Conclusions  

On the molecular basis of genetics, each of molecular events is subject to significant thermal 

fluctuations, genetic mutations and other random noises. Gene expression is the best viewed as 

stochastic process. Even in cases where population measurements often display significant 

heterogeneity, overall, these observations suggest that molecular events underlying cellular physiology 

or transmitting from parent to offspring in evolution are subject to random fluctuations and have led to 

the proposal of a stochastic model for gene network and biochemical network in general. Many 

molecular-level noisy phenomena are deeply rooted in the statistical mechanical behavior of the so-

called nanoscale chemical systems, where the concentrations of reacting species are low and random 

fluctuations in the reaction rates are large and should be described by stochastic equation. However, 

even though the molecular fluctuations leading to stochastic variations seem random in the individual, 

the regulatory factors can tune the random fluctuations to ensure the mean levels of heterogeneity for 

the population. In many stochastic gene networks, random fluctuations are robustly tolerated and 

stochastic disturbances are robustly filtered or attenuated. In order to resist intrinsic random noises and 

to attenuate environmental noises, gene regulatory network should be robust enough to attenuate the 

effect of these random noises. Obviously, the interplay between entropy and robustness of gene 

network is a core mechanism of systems biology, a balancing force in evolution and an important topic 

for the robust design of synthetic biology.  

In this review, an entropy measure of the stochastic gene networks is introduced at first. Some gene 

network construction methods based on the maximum entropy scheme are also surveyed. Then, the 

robust stability measure to tolerate random parameter fluctuations and the robust filtering ability to 

attenuate stochastic disturbances are also introduced for stochastic nonlinear gene networks and 
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stochastic biochemical network. The interplaying roles of entropy and robustness of gene networks and 

biochemical networks in the evolutionary process are also reviewed for random genetic mutations of 

sex-chromosome from the evolutionary timescale point of view. If a gene network or a biochemical 

network has not enough robustness to tolerate random parameter fluctuations and stochastic 

disturbance, then some gene circuit design methods are developed from the systems biology 

perspective for an existent gene network or biochemical network to improve its robustness to tolerate 

more intrinsic random fluctuations and attenuate more stochastic disturbances. These robust gene 

circuit design methods are useful for gene therapy and medical design. Finally, in order that an 

artificial synthetic gene network can function properly in the host cell, several robust synthetic gene 

network design methods to override the random parameter fluctuations and to attenuate the stochastic 

noises in the host cell are also surveyed.  

The tradeoff between the robust stability and the adaptability of stochastical gene network is 

perhaps related to the well-known statistical tradeoff problem between bias and variance [75,76]. This 

bias/variance dilemma has been recently solved by some regularization methods via selecting adequate 

regularization parameters [76]. Maybe these regularization methods can provide us other solutions for 

the tradeoff problem between robust stability and the adaptability of stochastic gene network, which 

will be our future works.  
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