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Abstract: It is demonstrated that entropy and its density play a significant role in solving
the problem of the vacuum energy density (cosmological constant) of the Universe and
hence the dark energy problem. Taking this in mind, two most popular models for
dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are
analysed. It is shown that the fundamental quantities in the first of these models may
be expressed in terms of a new small dimensionless parameter that is naturally occurring
in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit).
On this basis, the possibility of a new approach to the problem of Quantum Gravity is
discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological
constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are
reconsidered and generalized up to the Generalized Uncertainty Relation.
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1. Introduction

The Dark Energy Problem is one of the key problems in modern theoretical physics [1–20]. The
vacuum energy is still the major candidate to play a role of this energy. Provided the Dark Energy is
actually the vacuum energy, the indicated problem is reduced to getting better insight into the essence
of the vacuum energy. This problem has attracted the attention of researchers fairly recently with
understanding that a cosmological constant determining the vacuum energy density is still nonzero,
despite its smallness. As is known, the cosmological constant Λ has been first introduced in the works of
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A. Einstein [21] who has used it as an antigravitational term to obtain solutions for the equations of the
General Relativity (GR) in the stationary case. However, when A. Friedmann found the solutions for GR
in case of expanding Universe [22] and E. Hubble derived an extension of the latter, A. Einstein refused
from the cosmological constant considering its introduction to be erroneous [23]. But the situation was
not so simple. In [24] it has been stated that any contribution into the vacuum energy acts exactly as the
cosmological constant Λ and the Vacuum Energy Density is proportional to Λ. The principal problem
of the cosmological constant resides in the fact that its experimental value is smaller by a factor of 10123

than that derived using a Quantum Field Theory (QFT) [25,26].
And the theories actively developed at the present time (e.g., superstring theory, loop quantum gravity,

etc.) offer a modified quantum theory including, in particular, the fundamental length at Planck’s scale.
The estimates of Λ obtained on the basis of these theories may differ greatly from the initial ones derived
from standard QFT.

In this paper, some of the properties of the Vacuum Energy Density are studied within the scope of a
Quantum Field Theory with UV-cutoff (minimal length). Such a theory arises in the Early Universe in all
the models without exception, since the fundamental length (probably on the order of Planck’s length but
not necessarily) is acknowledged to be of a crucial importance in this case. It is shown that for this case,
the experimental and theoretical values are close and may be expressed in terms of a new small parameter
introduced in physics at Planck’s scales. Here some explanation is needed. The point is that a Quantum
Field Theory with minimal length (QFTML) or, what is the same, UV-cutoff is always originating as a
deformation of QFT. This deformation is understood as an extension of some theory with the use of one
or several additional parameters in such a way that the initial theory shows itself in the limiting process
[27]. One of such extensions generated by an additional small dimensionless parameter, in terms of
which the Dark Energy Problem is formulated and successfully solved, is described in this paper. In so
doing entropy of the Universe and its dynamics play a significant role. Additionally, within the scope of
a dynamic approach to Λ, its behaviour associated with the Generalized Uncertainty Principle is studied
for the pair “cosmological constant–volume of space-time”. In what follows, there is no differentiation
between the notions of the cosmological constant Λ and Vacuum Energy Density ρvac. Besides, it is
demonstrated that a new small parameter occurs in High Energy Gravitational Thermodynamics and
Gravitational Holography (UV-limit) as well. On this basis the possibility for a new approach to the
problem of Quantum Gravity is discussed.

2. Vacuum Energy Density and Most Popular Modern Dark Energy Models

As noted in Introduction, the Vacuum Energy is a major candidate for the Dark Energy. At the
same time, due to a factor of 10123 distinction between the experimental value ρexpvac [1] and the value
ρQFTvac calculated using standard QFT interpretation [25] (i.e., ρQFTvac ≈ m4

p) of Dark Energy as a Vacuum
Energy presents great difficulties.

ρexpvac

ρQFT
≈ 10−123 (1)

Nevertheless, there are several methods enabling one to obviate the difficulties. We can name two most
popular phenomenological models for the dark energy problem at the present time.
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2.1. Holographic Dark Energy Models

The basic relation for this model is the “energy” inequality [28–30]

EΛ ≤ EBH → l3ρΛ ≤ m2
pl (2)

Here ρΛ = Λ
4 is vacuum energy density with the UV-cutoff Λ and l is the length scale (IR-cutoff) of the

system. For the equality in (2) we have the holographic energy density

ρΛ ∼
m2
p

l2
∼ 1

(lpl)2
(3)

Also, from (2) we can get the “entropic” inequality (entropy bound)

SΛ ≤ (m2
pA)3/4 (4)

where A = 4πl2 is the area of this system in the spherically symmetric case.
The number of works devoted to the Holographic Dark Energy Models, beginning from the first

publication [28], is ever growing [31–48] to relieve us of citing the whole list.

2.2. Agegraphic Dark Energy Models

Agegraphic Dark Energy Models became the subject of study only two years ago [49]. These
relations were based on the result of Károlyházy for quantum fluctuations of time [50–52]

δt = λt2/3p t1/3 (5)

Using the uncertainty relation of “energy-time” in the flat space

∆E ∼ t−1 (6)

we can obtain the agegraphic energy density [30,53],

ρT ∼
∆E

(δt)3
∼
m2

p

T2 (7)

where T is the Universe age.
The number of publications associated with models of this type is constantly increasing too [54–60].

This is caused by their relative simplicity and by a sufficiently good coincidence between the agegraphic
energy density ρT and ρexpvac.

3. Dark Energy Problem and Quantum Theory with UV-Cutoff

By Holographic Dark Energy Models (explicitly) and by Agegraphic Dark Energy Models (implicitly)
it is suggested that QFT, where they are valid, is actually QFT with the UV-cutoff or with the
fundamental length.

As it has been repeatedly demonstrated earlier, a Quantum Mechanics of the Early Universe (Planks
Scale) is a Quantum Mechanics with the Fundamental Length (QMFL) [61]. The main approach to
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framing of QFT with UV-cutoff is that associated with the Generalized Uncertainty Principle (GUP)
[62–70] and with the corresponding Heisenberg algebra deformation produced by this principle [71–74].

Besides, QMFL has been framed first using the deformed density matrix and then in the produced
corresponding Heisenberg algebra deformation [75–84], the density matrix deformation ρ(α) in QMFL
being a starting object called the density pro-matrix and the deformation parameter (additional
parameter) α = l2min/x

2, where x is the measuring scale and lmin ∼ lp. As indicated in this paper,
the deformation parameter α varies within the limits 0 < α ≤ 1/4. Moreover, lim

α→0
ρ(α) = ρ, where

ρ is the density matrix in the well-known Quantum Mechanics (QM), and the following condition must
be fulfilled:

Sp[ρ(α)]− Sp2[ρ(α)] = α + a0α
2 + ... (8)

The explicit form of the above-mentioned deformation gives an exponential ansatz:

ρ∗(α) = exp(−α)
∑
i

ωi|i >< i| (9)

where all ωi > 0 are independent of α and their sum is equal to 1. Here the superscript * in (9) is used
only to emphasize that ρ∗(α) is a particular solution of (8).

In the corresponding deformed Quantum Theory (denoted as QFTα) for average values we have

< B >α= exp(−α) < B > (10)

where < B > is the average in well-known QFT [80,81] denoted as QFTα. All the variables associated
with the considered α-deformed quantum field theory are hereinafter marked with the superscript α.

Note that the deformation parameter α is absolutely naturally represented as a ratio between the
squared UV- and IR-limits

α = (
UV

IR
)2 (11)

where UV-limit is fixed and IR-limit is varying.
As follows from the holographic principle [85–89], maximum entropy that can be stored within a

bounded region < in 3-D space must be proportional to the value A(<)3/4, where A(<) is the surface
area of <. Of course, this is associated with the case when the region < is not an inner part of a particular
black hole. Provided a physical system contained in < is not bounded by the condition of stability to
the gravitational collapse, i.e., this system is simply non-constrained gravitationally, then according to
the conventional QFT Smax(<) ∼ V (<), where V (<) is the bulk of <. However in the Holographic
Principle case, as it has been demonstrated originally by G. ’t Hooft [85] and later by other authors (for
example R. V. Buniy and S. D. H. Hsu [90]), we have

Smax(<) ≤ A(<)3/4

lp
2 (12)

In terms of the deformation parameter α, the principal values of the Vacuum Energy Problem may be
simply and clearly defined. Let us begin with the Schwarzschild black holes, whose semi-classical
entropy is given by

S = πR2
Sch/l

2
p = πR2

Schm
2
p = πα−1

RSch
(13)
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with the assumption that in the formula for α RSch = x is the measuring scale and lp = 1/mp. Here
RSch is the adequate Schwarzschild radius, and αRSch

is the value of α associated with this radius. Then,
as it has been pointed out in [91], in case the Fischler–Susskind cosmic holographic conjecture [92] is
valid, the entropy of the Universe is limited by its “surface” measured in Planck units [91]:

S ≤ A

4
m2
p (14)

where the surface area A = 4πR2 is defined in terms of the apparent (Hubble) horizon

R =
1√

H2 + k/a2
(15)

with curvature k and scale a factors.
Again, interpreting R from (15) as a measuring scale, we directly obtain(14) in terms of α:

S ≤ πα−1
R (16)

where αR = l2p/R
2. Therefore, the average entropy density may be found as

S

V
≤ πα−1

R

V
(17)

Using further the reasoning line of [91] based on the results of the holographic thermodynamics, we can
relate the entropy and energy of a holographic system [93,94]. Similarly, in terms of the α parameter one
can easily estimate the upper limit for the energy density of the Universe (denoted here by ρhol) [95]:

ρhol ≤
3

8πR2
m2
p =

3

8π
αRm

4
p (18)

which is drastically differing from the one obtained with conventional QFT:

ρQFT ∼ m4
p (19)

Here by ρQFT we denote the energy vacuum density calculated from conventional QFT (without
fundamental length) [25]. Obviously, as αR for R determined by (15) is very small, actually
approximating zero, ρhol is by several orders of magnitude smaller than the value expected in
QFT ρQFT .

Since mp ∼ 1/lp, the right-hand side of (18) is actually nothing else but the right-hand side of
(3) in Holographic Dark Energy Models (Section 2.1). Thus, in Holographic Dark Energy Models the
principal quantity, holographic energy density ρΛ (3), may be estimated in terms of the deformation
parameter α.

In fact, the upper limit of the right-hand side of (18) is attainable as it has been demonstrated in [95]
and indicated in [91]. The “overestimation” value of r for the energy density ρQFT , compared to ρhol,
may be determined as

r =
ρQFT

ρhol
=

8π

3
α−1

R =
8π

3

R2

l2p
=

8π

3

S

Sp
(20)
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where Sp is the entropy of the Plank mass and length for the Schwarzschild black hole. It is clear that,
due to smallness of αR, the value of α−1

R is on the contrary too large. It may be easily calculated (e.g.,
see [91])

r = 5.44× 10122 (21)

in a good agreement with the astrophysical data.
Naturally, on the assumption that the vacuum energy density ρvac is involved in ρ as a term

ρ = ρM + ρvac (22)

where ρM is the average matter density, in case of ρvac we can arrive at the same upper limit (right-hand
side of the formula (18)) as for ρ.

4. Some Comments on Dynamic Character of Cosmological Constant and GUP

Generally speaking, Λ is referred to as a constant just because it is such in the equations, where it
occurs: Einstein equations [21]. But in the last few years the dominating point of view has been that Λ is
actually a dynamic quantity, now weakly dependent on time [96–98]. It is assumed therewith that, despite
the present-day smallness of Λ or even its equality to zero, nothing points to the fact that this situation was
characteristics for the Early Universe as well. Some recent results [99–102] are rather important pointing
to a potentially dynamic character of Λ. Specifically, of great interest is the Uncertainty Principle derived
in these works for the pair of conjugate variables (Λ, V ):

∆Λ ∆V ∼ h̄ (23)

where Λ is the vacuum energy density (cosmological constant). It is a dynamic value fluctuating around
zero; V is the space-time volume. Here the volume of space-time V results from the Einstein-Hilbert
action [100]:

SEH ⊃ Λ
∫
d4x
√
−g = ΛV (24)

In this case “the notion of conjugation is well-defined but approximate as implied by the expansion
about the static Fubini–Study metric” (Section 6.1 of [99]). Unfortunately, in the proof per se
(23), relying on the procedure with a non-linear and non-local Wheeler–de-Witt-like equation of the
background-independent Matrix theory, some unconvincing arguments are used, making it insufficiently
rigorous (Appendix 3 of [99]). But, without doubt, this proof has a significant result, though failing to
clear up the situation.

Let us attempt to explain (23)(certainly at an heuristic level) using simpler and more natural terms
involved with the other, more well-known, conjugate pair: “energy-time” (E, t). We use the notation of
[99,100]. In this way the four-dimensional volume will be denoted, as previously, by V .

Just from the start, the Generalized Uncertainty Principle (GUP) is used. Then a change over to the
Heisenberg Uncertainty Principle at low energies will be only natural. As is known, the Uncertainty
Principle of Heisenberg at Planck’s scales (energies) may be extended to the Generalized Uncertainty
Principle. To illustrate, for the conjugate pair “momentum-coordinate” (p, x) this fact has been noted in
many works [62,65,68,71,72]:

4x ≥ h̄

4p
+ α′l2p

4p
h̄

(25)
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In [77,83] it is demonstrated that the corresponding Generalized Uncertainty Relation for the pair
“energy-time” may be easily obtained from

∆t ≥ h̄

∆E
+ α′t2p

∆E

h̄
(26)

where lp and tp represent Planck’s length and time, respectively. Now we assume that in the space-time
volume

∫
d4x
√
−g = V the temporal and spatial parts may be separated (factored out) in the

explicit form:
V (t) ≈ tV (t) (27)

where V is the spatial part V . For the expanding Universe such an assumption is quite natural. Then it
is obvious that

∆V (t) = ∆tV (t) + t∆V (t) + ∆t∆V (t) (28)

Now we recall that for the inflation Universe the scaling factor is a(t) ∼ eHt. Consequently,
∆V (t) ∼ ∆t3f(H), where f(H) is a particular function of Hubble’s constant. From (26) it
follows that

∆t ≥ tmin ∼ tp (29)

However, it is suggested that, even though ∆t is satisfying (29), its value is sufficiently small in order
that ∆V be contributed significantly by the terms containing ∆t to the power higher than the first. In this
case the main contribution on the right-hand side of (28) is made by the first term ∆tV (t) only. Then,
multiplying the left- and right-hand sides of (26) by V , we have

∆V ≥ h̄V

∆E
+ α′t2p

∆EV

h̄
=

h̄

∆Λ
+ α′t2pV

2 ∆Λ

h̄
(30)

It is not surprising that a solution of the quadratic inequality (30) leads to a minimal volume of the
space-time Vmin ∼ Vp = l3ptp since (25) and (26) result in minimal length lmin ∼ lp and minimal time
tmin ∼ tp, respectively. (30) is of interest from the viewpoint of two limits: (1) IR-limit: t → ∞,
(2) UV-limit: t→ tmin.

In the case of IR-limit we have large volumes V and V at low ∆Λ. Because of this, the main
contribution on the right-hand side of (30) is made by the first term, as great V in the second term is
damped by small tp and ∆Λ. Thus, we arrive at

lim
t→∞

∆V ≈ h̄

∆Λ
(31)

in accordance with (23) [99]. Here, similar to [99], Λ is a dynamic value fluctuating around zero.
And for case (2) ∆Λ becomes significant

lim
t→tmin

V = V min ∼ V p = l3p; lim
t→tmin

V = Vmin ∼ Vp = l3ptp (32)

As a result, we have

lim
t→tmin

∆V =
h̄

∆Λ
+ αΛV

2
p

∆Λ

h̄
(33)

where the parameter αΛ absorbs all the above-mentioned proportionality coefficients.
For (33) ∆Λ ∼ Λp ≡ h̄/Vp = Ep/V p.
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It is easily seen that in this case Λ ∼ M4
p , in agreement with the value obtained using a naive

(i.e., without super-symmetry and the like) quantum field theory [25,26]. Despite the fact that Λ at
Planck’s scales (referred to as Λ(UV )) (33) is also a dynamic quantity, it is not directly related to
well-known Λ (23),(31) (called Λ(IR)) because the latter, as opposed to the first one, is derived from
Einstein’s equations

Rµν −
1

2
gµνR = 8πGN (−Λgµν + Tµν) (34)

However, Einstein’s equations (34) are not valid at the Planck scales and hence Λ(UV ) may be
considered as some high-energy generalization of the conventional cosmological constant, leading to
Λ(IR) in the low-energy limit.

In conclusion, it should be noted that the right-hand side of (25), (26) in fact is a series. Of course, a
similar statement is true for (33) as well.

Then, we obtain a system of the Generalized Uncertainty Relations for the Early Universe (Planck’s
scales) in the symmetric form as follows:

∆x ≥ h̄
∆p + α′

(
∆p
ppl

)
h̄
ppl + ...

∆t ≥ h̄
∆E + α′

(
∆E
Ep

)
h̄
Ep

+ ...

∆V ≥ h̄
∆Λ + αΛ

(
∆Λ
Λp

)
h̄
Λp

+ ...

(35)

The latter of relations (35) may be important when finding the general form for Λ(UV ), low-energy
limit Λ(IR), and also may be a step in the process of deriving future quantum-gravity equations, the
low-energy limit of which is represented by Einstein’s equations (34).

It should be noted that a system of inequalities (35) may be complemented by the Generalized
Uncertainty Relation in thermodynamics [77,83,103]. Let us consider the thermodynamic uncertainty
relations between the inverse temperature and interior energy of a macroscopic ensemble

∆
1

T
≥ k

∆U
, (36)

where k is the Boltzmann constant. N. Bohr [104] and W. Heisenberg [105] have been the first to point
out that such a kind of uncertainty principle should be involved in thermodynamics. The thermodynamic
uncertainty relations (36) have been proven by many authors and in various ways [106–111]; their
validity is unquestionable. Nevertheless, relation (36) has been proven in terms of the standard model of
the infinite-capacity heat bath encompassing the ensemble. But it is obvious from the above inequalities
that at very high energies the capacity of the heat bath can no longer be assumed infinite at the Planck
scale. Indeed, the total energy of the “heat bath-ensemble” pair may be arbitrarily large but finite merely
as the Universe was borne at the finite energy. Hence the quantity that can be interpreted as a temperature
of the ensemble must have the upper limit and so does its main quadratic deviation. In other words, the
quantity ∆(1/T ) must be bounded from below. But in this case an additional term should be introduced
into (36) [77,83,103]:

∆
1

T
≥ k

∆U
+ η∆U (37)
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where η is a coefficient. Dimension and symmetry reasons give

η ∼ k

E2
p

.

Similar to the previous cases, inequality (37) leads to the fundamental (inverse) temperature [77,83,103]:

Tmax =
h̄

∆tmink
∼ h̄

tpk
, βmin =

1

kTmax
=

∆tmin
h̄

(38)

In the recently published work [112] the black hole horizon temperature has been measured with the use
of the Gedanken experiment. In the process the Generalized Uncertainty Relations in thermodynamics
(37) have been also derived. Expression (37) has been considered in the monograph [113] within the
scope of the mathematical physics methods.

Besides, note that one of the first studies of the cosmological constant within the scope of the
Heisenberg Uncertainty Principle has been presented in several works [114–116] demonstrating the
inference: “vacuum fluctuation of the energy density can lead to the observed cosmological
constant” [114]. In these works, however, no consideration has been given to GUP, whereas UV-cutoff
has been derived artificially.

5. Gravitational Thermodynamics and Gravitational Holography at Low and High Energy

In the last decade several very interesting works have been published. We can primary name
the works of T. Padmanbhan [115–126], where gravitation, at least for the spaces with horizon, is
directly associated with thermodynamics, and the results obtained demonstrate a holographic character
of gravitation. Of the greatest significance is a pioneer work written by T. Jacobson [93]. For black
holes this association has been first revealed by Bekenstein and Hawking [127,128], who related the
black-hole event horizon temperature to the surface gravitation. T. Padmanbhan, in particular in [125],
has shown that this relation is not accidental and may be generalized to the spaces with horizon. As
all the foregoing results have been obtained in a semi-classical approximation, i.e., for sufficiently low
energies, the problem arises: how these results are modified when going to higher energies. In the context
of this paper, the problem may be stated as follows: since we have some infra-red (IR) cutoff L and
ultraviolet (UV) cutoff l, we naturally have a problem how the above-mentioned results on Gravitational
Thermodynamics are changed for

L→ l (39)

According to Section 3 of this paper, they should become dependent on the deformation parameter α.
After all, in the already mentioned Section 3 (11) α is indicated as nothing else but

α =
l2

L2 (40)

In fact, in several papers [129–135] it has been demonstrated that thermodynamics and statistical
mechanics of black holes in the presence of GUP (i.e., at high energies) should be modified. To illustrate,
in [134] the Hawking temperature modification has been computed in the asymptotically flat space for
this case in particular. It is easily seen that in this case the deformation parameter α arises naturally.
Indeed, modification of the Hawking temperature is of the following form (formula (10) in [134]):

TGUP = (
d− 3

4π
)
h̄r+

2α′2l2p
[1− (1−

4α′2l2p
r2

+

)1/2] (41)
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where d is the space-time dimension, and r+ is the uncertainty in the emitted particle position by the
Hawking effect expressed as

∆xi ≈ r+ (42)

and being nothing else but a radius of the event horizon; α′ is the dimensionless constant from GUP. But
as we have 2α′lp = lmin, in terms of α (41) may be written in a natural way as follows:

TGUP = (
d− 3

4π
)
h̄α−1

r+

α′lp
[1− (1− αr+)1/2] (43)

where αr+ - parameter α associated with the IR-cutoff r+. In such a manner TGUP is dependent on the
constants including the fundamental ones and on the deformation parameter α only. The dependence of
the black hole entropy on α may be derived in a similar way. For a semi-classical approximation of the
Bekenstein-Hawking formula [127,128]

S =
1

4

A

l2p
(44)

where A is the surface area of the event horizon, provided the horizon event has radius r+, then A ∼ r2
+

and (44) is clearly of the form
S = σα−1

r+
(45)

where σ is some dimensionless denumerable factor. The general formula for quantum corrections [133]
is given as

S =
A

4l2p
− πα′2

4
ln

(
A

4l2p

)
+
∞∑
n=1

cn

(
A

4l2p

)−n
+ const (46)

where the expansion coefficients cn ∝ α′2(n+1) can always be computed to any desired order of accuracy
[133], may also be written as a power series in α−1

r+
(or Laurent series in αr+)

S = σα−1
r+
− πα′2

4
ln
(
σα−1

r+

)
+
∞∑
n=1

cn
(
σα−1

r+

)−n
+ const (47)

Note that here no consideration is given to the restrictions on the IR-cutoff

L ≤ Lmax (48)

and to those corresponding to the extended uncertainty principle (EUP) that leads to a minimal
momentum [134]. This problem will be considered separately in further publications of the author.

A black hole is a specific example of the space with horizon. It is clear that for other horizon spaces
[125] a similar relationship between their thermodynamics and the deformation parameter α should
be exhibited.

Quite recently in a series of papers, and specifically in [117–123], it has been shown that Einstein
equations may be derived from the surface term of the GR Lagrangian, in fact containing the same
information as the bulk term.

And as the Einstein-Hilbert Lagrangian has the structure LEH ∝ R ∼ (∂g)2+∂2g, in the conventional
approach the surface term arising from Lsurf ∝ ∂2g has to be cancelled to get Einstein equations from
Lbulk ∝ (∂g)2 [124]. But due to the relationship between Lbulk and Lsurf [119–121,124], we have

√
−gLsuf = −∂a

(
gij
∂
√
−gLbulk

∂(∂agij)

)
(49)
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In such a manner one can suggest a holographic character of gravity in that the bulk and surface terms
of the gravitational action contain identical information. However, there is a significant difference
between the first case, when variation of the metric gab in Lbulk leads to Einstein’s equations, and the
second case associated with derivation of the GR field equations from the action principle using only the
surface term and virtual displacements of horizons [116], whereas the metric is not treated as a dynamic
variable [124].

In the case under study, it is assumed from the beginning that we consider the spaces with horizon.
It should be noted that in the Fischler–Susskind cosmic holographic conjecture it is implied that the
Universe represents spherically symmetric space-time, on the one hand, and has a (Hubble) horizon
(15), on the other hand. But proceeding from the results of [117–124], the entropy boundary is actually
given by the surface of horizon measured in Planck’s units of area [120]:

S =
1

4

AR
l2p

(50)

where AR is the horizon area corresponding to the Hubble horizon R (15).
To sum up, an assumption that space-time is spherically symmetric and has a horizon is the only

natural assumption held in the Fischler–Susskind cosmic holographic conjecture to support its validity.
Thus, the arguments in support of the Fischler–Susskind cosmic holographic conjecture are given on the
basis of the results obtained lately on Gravitational Holography and Gravitational Thermodynamics.

It should be noted that Einstein’s equations may be obtained from the proportionality of the entropy
and horizon area together with the fundamental thermodynamic relation connecting heat, entropy,
and temperature [93]. In fact [117–124], this approach has been extended and complemented by
the demonstration of holographicity for the gravitational action (see also [125]). And in the case
of the Einstein-Hilbert gravity, it is possible to interpret Einstein’s equations as the thermodynamic
identity [126]:

TdS = dE + PdV (51)

The above-mentioned results in the last paragraph have been obtained at low energies, i.e., in a
semi-classical approximation. Because of this, the problem arises how these results are changed in
the case of high energies? Or more precisely, how the results of [93,117–126] are generalized in the
UV-cutoff? It is obvious that, as in this case all the thermodynamic characteristics become dependent
on the deformation parameter α, the corresponding results should be modified (deformed) to meet the
following requirements:

(a) to be clearly dependent on the deformation parameter α at high energies;
(b) to be duplicated, with high precision, at low energies due to the limiting transition α→ 0.
(c) let us clear up what is meant by the adequate α-deformation of Einstein’s equations (General

Relativity) and by the Holographic Principle [85–89].
The problem may be more specific.
As, according to [93,125,126] and some other works, gravitation is greatly determined by

thermodynamics and at high energies the latter is a deformation of the classical thermodynamics, it is
interesting whether gravitation at high energies (or what is the same, quantum gravity or Planck scale)is
determined by the corresponding deformed thermodynamics. The formulae (43) and (47) are elements
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of the high-energy α-deformation in thermodynamics, the general pattern of which still remains to be
formed. Obviously, these formulae should be involved in the general pattern giving better insight into
the quantum gravity, as they are applicable to black mini-holes (Planck’s black holes) which may be
a significant element of such a pattern. But what about other elements of this pattern? How can we
generalize the results [93,125,126] when the IR-cutoff tends to the UV-cutoff (formula (39))? What are
modifications of the thermodynamic identity (51) in a high-energy deformed thermodynamics and how is
it applied in high-energy (quantum) gravity? What are the aspects of using the Generalized Uncertainty
Relations in thermodynamics [77,83,103] (37),(37) in this respect? It is clear that these relations also
form an element of high-energy thermodynamics.

By author’s opinion, the methods developed to solve the problem mentioned in point (c) and
elucidation of other indicted problems may form the basis for a new approach to solution of the quantum
gravity problem. And one of the keys to the quantum gravity problem is a better insight into the
high-energy thermodynamics.

6. QFT with UV-Cutoff for Different Approaches and Some Comments

(i) As shown by numerous authors (to start with [73]), the Quantum Mechanics with the fundamental
length (UV-cutoff) generated by GUP is in line with the following deformation of Heisenberg algebra

[~x, ~p] = ih̄(1 + β2~p2 + ...) (52)

and
∆xmin ≈ h̄

√
β ∼ lp (53)

In the recent works [136] it has been demonstrated that the Holographic Principle is an outcome of this
approach, actually being integrated in the approach.

We can easily show that the deformation parameter β in (52),(53) may be expressed in terms of the
deformation parameter α (see Section 3 of the text) that has been introduced in the approach associated
with the density matrix deformation. Indeed, from (52),(53) it follows that β ∼ 1/p2, and for xmin ∼ lp,
β corresponding to xmin is nothing else but

β ∼ 1/P 2
pl (54)

where Ppl is Planck’s momentum: Ppl = h̄/lp.
In this way β is changing over the following interval:

λ/P 2
pl ≤ β <∞ (55)

where λ is a numerical factor and the second member in (52) is accurately reproduced in momentum
representation (up to the numerical factor) by α = l2min/l

2 ∼ l2p/l
2 = p2/P 2

pl

[~x, ~p] = ih̄(1 + β2~p2 + ...) = ih̄(1 + a1α + a2α
2 + ...) (56)

As indicated in the previous Section (formula (45)), the parameter α has one more interesting feature:

α−1
l ∼ l2/l2p ∼ SBH (57)
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Here αl is the parameter α corresponding to l, SBH is the black hole entropy with the characteristic linear
size l (for example, in the spherically symmetric case l = R - radius of the corresponding sphere with
the surface area A), and

A = 4πl2, SBH = A/4l2p = πα−1
l (58)

This note is devoted to the demonstration of the fact that in case of the holographic principle validity
in terms of the new deformation parameter α in QFTα, considered above and introduced as early
as 2002 [137–139], all the principal values associated with the Vacuum (Dark) Energy Problem may
be defined simply and naturally. At the same time, there is no place for such a parameter in the
conventional QFT, whereas in QFT with the fundamental length, specifically inQFTα, it is quite natural
[75,76,78,80,81,83].

(ii) It should be noted that smallness of αR (Section 3) leads to a very great value of r in (20),(21).
Besides, from (20) it follows that there exists some minimal entropy Smin ∼ Sp, and this is possible only
in QFT with the fundamental length.

(iii) This Section is related to Section 3 in [115] as well as to Sections 3 and 6 in [116]. The constant
lΛ introduced in these works is such that in the case under consideration Λ ≡ l−2

Λ is equivalent to R, i.e.,
αR ≈ αlΛ with αlΛ = l2p/l

2
Λ. Then the expression on the right-hand side of (18) is the major term of

the formula for ρvac, and its quantum corrections are nothing else but a series expansion in terms of αlΛ
(or αR)

ρvac ∼
1

l4p

(
lp
lΛ

)2

+
1

l4p

(
lp
lΛ

)4

+ · · · = αlΛm
4
p + ... (59)

In the first variant presented in [115] and [116] the right-hand side of (59) (formulae (12),(33)) in
[115] and [116], respectively)reveals an enormous additional term m4

p ∼ ρQFT for renormalization. As
indicated in the previous Section, it may be, however, ignored because the gravity is described by a pure
surface term. And in the case under study, owing to the Holographic Principle, we may proceed directly
to (59). Moreover, in QFTα there is no need in renormalization as from the start we are concerned with
the ultraviolet-finiteness.

Moreover, a series expansion of (59) in terms of α is a complete analogue of the expansion in terms
of the same parameter, re-determining the measuring procedure in QMFLα [76,78,80,83]:

Sp[ρ(α)]− Sp2[ρ(α)] = α + a′0α
2 + ... (60)

As indicated in [84], the same expansion may be used to obtain quantum corrections to the semi-classical
Bekenstein-Hawking formula (50) for the black hole entropy.

(iv) Besides, the Heisenberg algebra deformations are introduced due to the involvement of a minimal
length in quantum mechanics. These deformations are stable in the sense of [140]. But this is not true for
the unified algebra of Heisenberg and Poincare. This algebra does not carry the indicated immunity. It is
suggested that the Lie algebra for the interface of the gravitational and quantum realms is in its stabilized
form. Now it is clear that such a stability should be raised to the status of a physical principle. In a
very interesting work of Ahluwalia-Khalilova [140] it has been demonstrated that the stabilized form
of the Poincare–Heisenberg algebra [141,142] carries three additional parameters: “the length scale
pertaining to the Planck/unification scale, the second length scale associated with cosmos, and a new
dimensionless constant with the immediate implication that ‘point particle’ ceases to be a viable physical
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notion. It must be replaced by objects which carry a well-defined, representation space dependent,
minimal spatiotemporal extent”.

Thus, within the scope of a Quantum Field Theory with the UV-cutoff (fundamental length), closeness
of the theoretical and experimental values for ρvac is adequately explained. In this case an important
role is played by new parameters appearing in the corresponding Heisenberg Algebra deformation.
Specifically, by the new small dimensionless parameter α, in terms of which one can adequately interpret
both the smallness of ρvac and its modern experimental value. Besides, it is shown that the Generalized
Uncertainty Principle (GUP) may be an instrument in studies of a dynamic character of the cosmological
constant Λ.

7. Conclusions

In conclusion it should be noted that in a series of the author’s works [75–84] a minimal α-deformation
of QFT has been formed. By “minimal” it is meant that no space-time noncommutativity was required,
i.e., there was no requirement for noncommutative operators associated with different spatial coordinates

[Xi, Xj] 6= 0, i 6= j (61)

However, all the well-known deformations of QFT associated with GUP (for example, [71–73]) contain
(61) as an element of the corresponding deformed Heisenberg algebra. Because of this, it is necessary to
extend (or modify) the above-mentioned minimal α-deformation of QFT (QFTα) [75–84] to some new
deformation Q̃FT

α
compatible with GUP, as it has been noted in [143].

Besides, in this paper consideration has been given to QFT with a minimal length, i.e., with the
UV-cutoff. Consideration of QFT with a minimal momentum (or IR-cutoff) (48) necessitates an adequate
extension of the α-deformation in QFT with the introduction of new parameters significant in the
IR-limit. Proceeding from point (c) of Section 5, the problem may be stated as follows:

(c) Provided the α-deformation of GR describes the ultraviolet (quantum-gravity) limit of GR, it is
interesting to examine the deformation type describing adequately the infrared limit of GR. It seems that
some indications of a nature of such deformation may be found from the works devoted to the infrared
modification of gravity [144,145].
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