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Abstract: The differential Shannon entropy of information theory can change under a
change of variables (coordinates), but the thermodynamic entropy of a physical system
must be invariant under such a change. This difference is puzzling, because the Shannon
and Gibbs entropies have the same functional form. We show that a canonical change of
variables can, indeed, alter the spatial component of the thermodynamic entropy just as
it alters the differential Shannon entropy. However, there is also a momentum part of the
entropy, which turns out to undergo an equal and opposite change when the coordinates are
transformed, so that the total thermodynamic entropy remains invariant. We furthermore
show how one may correctly write the change in total entropy for an isothermal physical
process in any set of spatial coordinates.
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“Since no one understands what entropy is, by
using this word you will have an advantage
over your adversary in any debate.” John von
Neumann’s advice to Claude Shannon, according to
J. Campbell [1].

1. Introduction

The Gibbs entropy of classical statistical thermodynamics is, apart from some non-essential constants,
the differential Shannon entropy [2] of the probability density function (pdf) in the phase space of the
system under consideration. However, whereas the thermodynamic entropy is not expected to depend
upon the choice of variables, the differential entropy can be changed by a transformation of variables.
In particular, the differential entropy of a spatial pdf depends on the choice of the coordinates used to
describe the spatial configuration of the system. Moreover, a change of variables can change not only the
absolute differential entropy, but also its change on a change in the pdf, as shown below. This sensitivity
to coordinates appears paradoxical, since a physically meaningful quantity ought to be independent of
the choice of spatial coordinates. A similar concern was previously expressed in a critique of the concept
of the differential entropy itself [3].

Here, we demonstrate that, for the thermodynamic entropy, a transformation of the spatial coordinates
is accompanied by a compensating change of the entropy of the canonically conjugate momenta so that
the full thermodynamic entropy remains invariant. The invariance of the full entropy stems from the fact
that the Jacobian of a canonical transformation equals unity, and explicit demonstration of this invariance
yields a simple formula for correcting a spatial entropy computed with transformed coordinates to yield
correct full entropy changes. These results have application in calculations of spatial entropy from
molecular simulations when Cartesian coordinates are transformed, for example to bond-angle-torsion
[4] coordinates.

The paper is structured as follows. Section 2 reviews the formalism of entropy in classical statistical
thermodynamics, defines a splitting of the full thermodynamic entropy into momentum and spatial parts
for the case in which the spatial coordinates used are Cartesian, and shows that then the change in
the spatial entropy equals the change in the total entropy, for an isothermal process. (Note that the
spatial entropy of the solute part of a solute-solvent system is often termed the solute’s configurational
entropy.) Sections 3 and 4 investigate the effects on the spatial and momentum entropy, respectively,
of a transformation of the Cartesian coordinates to general spatial coordinates. Section 5, discusses
how one may evaluate the change in the full thermodynamic entropy due to an isothermal process in
terms of the change in the spatial entropy evaluated in non-Cartesian coordinates. Finally, Section 6
draws conclusions.
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2. Spatial Entropy in Cartesian Coordinates

In classical statistical thermodynamics, the entropy S of a system described by coordinates q1, . . . , qs
and the canonically conjugate momenta p1, . . . , ps, briefly p and q, respectively, is given in terms of the
system’s pdf ρ(p, q) in the phase space (p, q) as [5]

S = −kB
∫
dp

∫
dq ρ(p, q) ln[hsρ(p, q)] (1)

Here, kB is Boltzmann’s constant, and the factor hs, where h = 2π~ is Planck’s constant
(quasi-classically, the number of states in a volume element ∆p∆q of the phase space (p, q) is ∆p∆q/hs,
see e.g., [6]), ensures that the argument of the logarithm is dimensionless. The probability distribution
function ρ(p, q) is given by the Boltzmann-Gibbs distribution

ρ(p, q) =
1

hsZ
e−βE(p,q) (2)

where β = 1/(kBT ), with T being the absolute temperature, E(p, q) is the system’s energy, and

Z =
1

hs

∫
dp

∫
dq e−βE(p,q) (3)

is the partition function, which is the distribution’s normalization constant divided by hs to make it
dimensionless. The entropy S can be written in terms of the partition function Z as

S =
1

T
⟨E⟩+ kB lnZ (4)

where
⟨E⟩ =

∫
dp

∫
dq ρ(p, q)E(p, q) (5)

is the mean (expectation) value of the energy E(p, q).
Let us assume that the coordinates q are Cartesian. Then the energy E(p, q) is the sum of a kinetic

energy, K, which is a function of the momenta p only, K = 1
2

∑s
i=1 p

2
i /mi, where mi are the masses

associated with degrees of freedom i, and a potential energy U = U(q), which depends only on spatial
coordinates. The probability distribution (2) and the partition function (3) now factorize as

ρ(p, q) = ρm(p)ρs(q) (6)

Z = ZmZs (7)

where,

ρm(p) =
1

hsZm
e−

1
2
β
∑

i p
2
i /mi (8)

ρs(q) =
1
Zs
e−βU(q) (9)

are momentum and spatial probability distributions with normalization constants

Zm =
1

hs

∫
dp e−

1
2
β
∑

i p
2
i /mi =

1

hs

(2πm̄
β

)s/2
, m̄ = (

∏s
i=1mi)

1/s (10)

Zs =

∫
dq e−βU(q) (11)
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which can be termed, respectively, the momentum and spatial partition functions. It should be noted that
neither of these partition functions are dimensionless; the treatment of the factor 1/hs is discussed later
in this section.

Accordingly, the full entropy (1) can now be separated as

S = Sm + Ss (12)

where Sm is a momentum entropy which can be evaluated in closed form,

Sm = −kB
∫
dp ρm(p) ln[h

sρm(p)]

= kB
s

2
[1 + ln(2πm̄/β)]− kB ln(hs)

(13)

and Ss is a spatial entropy,

Ss = −kB
∫
dq ρs(q) ln[ρs(q)] (14)

Similarly to (4), the spatial entropy Ss can be written as

Ss =
1

T
⟨U⟩+ kB lnZs (15)

where
⟨U⟩ =

∫
dq ρs(q)U(q) (16)

is the mean value of the potential energy U(q).
A factor of hs is included in the definition of the momentum entropy (13) so that the full entropy

Sm + Ss has the correct physical dimensions of energy/temperature. The association of this factor with
the momentum entropy is arbitrary (as was its inclusion in the momentum partition function (10)); it
could instead have been included in the spatial entropy. Unfortunately, the factor cannot be split so
that both parts of the full entropy are dimensionless. Thus, neither of the “partial” entropies Sm and
Ss is correctly dimensioned. Nonetheless, the troubling dimensions cancel for differences in Sm and Ss

arising from changes in the pdf, since the relevant terms appear in the arguments of logarithms, and so
such differences are physically meaningful.

It is evident from Equation (13) that the momentum entropy does not depend upon the spatial pdf
ρs(q), but only upon the momentum pdf ρm(p), which in turn depends only on the atomic masses and the
temperature. As a consequence, for an isothermal physical process with a fixed set of atoms, the change
in total entropy equals the change in spatial entropy:

∆S = ∆Ss (∆T = 0) (17)

More generally, this equation holds in any coordinate system for which the kinetic energy K is
independent of the spatial coordinates, K = K(p).

Note that the spatial entropy defined here is akin to the configurational entropy. However, the latter
usually refers specifically to the entropy associated with the conformational fluctuations of a molecule
in solution, and is therefore exclusive of the solvent entropy [9]. The spatial entropy is more general, as
it may refer to the whole system or any of its parts.
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3. Spatial Entropy under a Coordinate Transformation

It is sometimes of interest to compute the change in total entropy, ∆S, associated with an isothermal
molecular process, such as protein-ligand binding or protein-folding. Equation (17) shows that the
change in total entropy can be obtained by computing the change in the spatial entropy in Cartesian
coordinates. However, Cartesian coordinates are not always optimal for this purpose, because the
pdf in Cartesian coordinates includes many coordinate dependencies that are rather easily removed
by transforming to more natural coordinates, such as bond-angle-torsion (BAT) coordinates [4]. For
example, even the Cartesian coordinates of a single atom, (xi, yi, zi), can be strongly correlated with
each other, due to the natural tendency of each atom to move in a circular trajectory corresponding
to a bond-rotation. This motion is readily captured by a single torsional variable. For this reason,
a transformation from Cartesian coordinates to suitably defined internal coordinates of the molecular
system under consideration, plus the coordinates of the translation and rotation of the system as a whole,
is often performed.

Transforming from Cartesian coordinates q to new coordinates Q(q) (with an inverse q = q(Q)),
transforms the probability density function (pdf) ρs(q) into a pdf ρ̃s(Q) of the new coordinates Q
according to a rule of general probability theory as

ρ̃s(Q) = ρs[q(Q)]J(Q)

=
J(Q)

Zs

e−βU(Q)
(18)

where J(Q) is the Jacobian of the transformation. The differential Shannon entropy Hq of information
theory, defined as [2]

Hq = −
∫
dq ρs(q) ln[ρs(q)] (19)

can be written in terms of the new coordinates as

Hq = −
∫
dQJ(Q)ρs[q(Q)] ln{ρs[q(Q)]}

= −
∫
dQ ρ̃s(Q) ln[ρ̃s(Q)/J(Q)]

= HQ + ⟨ln J(Q)⟩ (20)

where
HQ = −

∫
dQ ρ̃s(Q) ln[ρ̃s(Q)] (21)

is the Shannon entropy of the transformed pdf ρ̃s(Q) and

⟨ln J(Q)⟩ =
∫

dQρ̃s(Q) ln[J(Q)] (22)

is the expectation value of the logarithm of the Jacobian J(Q).
Based upon Equation (20), the spatial part of the thermodynamic entropy (14) in Cartesian coordinates

q, Ss = kBHq, transforms to a different value on changing to internal coordinates Q:

S̃s = Ss − kB⟨ln J(Q)⟩ (23)
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where S̃s = kBHQ. This result may seem troubling, since the thermodynamic entropy of a physical
system should not depend on the choice of the spatial coordinates used. Nonetheless, this Jacobian
correction is real and is not even guaranteed to cancel when one computes the difference between two
entropies associated with a change in the potential function and a consequent change in the physical pdf
from ρ to some ρ′. That is, the change ∆Ss in the Cartesian spatial entropy Ss arising from a change
ρs(q) → ρ′s(q) in the pdf of q does not necessarily equal the change ∆S̃s in the transformed spatial
entropy S̃s arising from the corresponding change ρ̃s(Q) → ρ̃′s(Q) in the transformed pdf of Q. This is
because the Jacobian can vary with Q, so its contribution to the entropy for ρ (22) can differ from that
for ρ′

⟨ln J(Q)⟩′ =
∫

dQρ̃′s(Q) ln[J(Q)] (24)

Hence,

∆Ss = S ′
s − Ss

= S̃ ′
s + kB⟨ln J(Q)⟩′ − S̃s − kB⟨ln J(Q)⟩

̸= ∆S̃s

(25)

We note that a similar treatment of the transformation of spatial entropy under a change of coordinates
has been given in [7].

4. Momentum Entropy under a Coordinate Transformation

The coordinate transformation q → Q = Q(q) is called a point transformation because the new
coordinates Q are functions only of the old coordinates q; that is, they do not involve the old conjugate
momenta p. (A general point transformation may also involve an explicit dependence on time.) A
point transformation of the spatial coordinates is associated with a canonical transformation of the full
phase space coordinate system; i.e., of both the spatial and momentum coordinates, such that p, q →
P = P (p, q), Q = Q(q), with the inverses p = p(P,Q), q = q(Q). In a canonical transformation, the
new variables P,Q remain canonically conjugate, which means that

Pi =
∂L

∂Q̇i

, i = 1, . . . , s (26)

where L = L(Q, Q̇, t), with Q̇ = dQ/dt, is the system’s Lagrangian expressed in terms of Q. Classical
statistical thermodynamics is based on the Hamilton formalism of mechanics, and property (26) ensures
that the Hamilton equations in terms of P,Q retain their canonical form. Here, an important property
of a canonical transformation p, q → P,Q is that its Jacobian equals unity [8]. This means that the
phase-space volume element of an integration in the full phase space is invariant:

dp dq = dP dQ (27)

A point transformation q → Q = Q(q) itself has in general a Jacobian J(Q) ̸= 1, and so dq = J(Q) dQ.
Thus, for invariance (27) to hold, the momentum volume element dp must transform in a canonical
transformation as

dp =
1

J(Q)
dP (28)
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Using (27), we can write the full entropy (1) in terms of an integral in the new phase space variables
P,Q simply as

S = −kB
∫
dP

∫
dQ ρ̃(P,Q) ln[hsρ̃(P,Q)] (29)

where

ρ̃(P,Q) = ρ(p(P,Q), q(Q))

=
1

hsZ
e−β[K(P,Q)+U(Q)]

(30)

is the pdf of the new canonical variables P,Q. Note that because in general p = p(P,Q), the kinetic
energy K is now a function of not only the momenta P , but also of the non-Cartesian coordinates Q:
K = K(P,Q). Like any joint pdf, (30) may be factorized by means of the product rule as

ρ̃(P,Q) = ρ̃m(P |Q)ρ̃s(Q) (31)

where
ρ̃s(Q) =

∫
dP ρ̃(P,Q) (32)

is the marginal pdf of the coordinates Q, and

ρ̃m(P |Q) =
ρ̃(P,Q)

ρ̃s(Q)
(33)

is the conditional pdf of P given Q. Using (30), (28) and (10), it can be verified that the marginal pdf
(32) equals the spatial probability density (18) that was introduced in Sec. 2 under the same symbol:

ρ̃s(Q) =
1

hsZ
e−βU(Q)

∫
dP e−βK(P,Q)

=
J(Q)

hsZ
e−βU(Q)

∫
dp e−βK(p)

=
J(Q)

Z
e−βU(Q)Zm

(34)

Here, the transformation dP = J(Q) dp was performed, which reverts the kinetic energy K(P,Q) to
being a function of the Cartesian momenta p only, K = K(p), since this transformation is the inverse
of that which made the kinetic energy K(p) a function of both P and Q. (The transformation P →
p = p(P,Q) has an inverse P = P (p,Q) that is such that K(P (p,Q), Q) is in fact a function of p only.)
Since Zm/Z = 1/Zs [see Equation (7)], the last line of (34) indeed yields the spatial pdf (18).

Using (31) and the fact that, like any conditional pdf, the distribution (33) is properly normalized (i.e.,∫
dP ρ̃m(P |Q) = 1 at any Q), the full entropy (29) can be written as

S = −kB
∫
dP

∫
dQ ρ̃m(P |Q)ρ̃s(Q) ln[hsρ̃m(P |Q)]

−kB
∫
dP

∫
dQ ρ̃m(P |Q)ρ̃s(Q) ln[ρ̃s(Q)]

= kB⟨HP (Q)⟩ − kB ln(hs) + kBHQ (35)

where
⟨HP (Q)⟩ =

∫
dQ ρ̃s(Q)HP (Q) (36)
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is the mean (expectation) value with respect toQ of the Shannon entropy of the conditional pdf ρ̃m(P |Q),

HP (Q) = −
∫
dP ρ̃m(P |Q) ln[ρ̃m(P |Q)] (37)

and HQ is the Shannon entropy (21) of ρ̃s(Q). In analogy with (12), Equation (35) in turn can be
written as

S = S̃m + S̃s (38)

where
S̃m = kB⟨HP (Q)⟩ − kB ln(hs) (39)

may be termed the momentum entropy associated with the new momenta P , and

S̃s = kBHQ (40)

is the spatial entropy in the new spatial coordinates Q. Equations (12) and (38), together with (23),
straightforwardly yield the transformation of the momentum entropy:

S̃m = Sm + kB⟨ln J(Q)⟩ (41)

This relation complements the transformation (23) of the spatial entropy so that, on a point
transformation q → Q = Q(q), a change in the spatial entropy is compensated by a change in the
momentum entropy and the full entropy remains invariant: Sm + Ss = S̃m + S̃s.

5. Total Entropy in Terms of the Spatial Entropy in Non-Cartesian Coordinates

It is now easy to show how the change in the spatial entropy of a molecular system, calculated using
a non-Cartesian system of coordinates, can be corrected to provide the corresponding change in the full
thermodynamic entropy of the system, which is the quantity of physical interest. We consider the entropy
change arising from some physicochemical process which changes the phase-space pdf of the system
from ρ to ρ′. The molecular species of interest is considered to be present at a standard concentration C◦,
which corresponds to an isolated molecule in a container of volume V ◦ = 1/C◦ [9]. For an isothermal
process, and with Cartesian coordinates, the momentum pdf is unchanged, so that there is no change in
the momentum entropy, Sm. The change ∆S of the full thermodynamic entropy therefore equals the
change in the Cartesian spatial entropy Ss:

∆S = ∆(Sm + Ss) = ∆Ss (∆T = 0) (42)

If non-Cartesian coordinatesQ are used, as in many methods for calculating the spatial entropy, a change
∆S̃s in the entropy of the coordinates Q obtained in this way can be corrected to the change ∆Ss in the
Cartesian spatial entropy Ss using (23):

∆S = ∆Ss = ∆S̃s + kB∆⟨ln J(Q)⟩ (43)

Here, the correction term
∆⟨ln J(Q)⟩ = ⟨ln J(Q)⟩′ − ⟨ln J(Q)⟩ (44)
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is the difference between the means, evaluated with the changed and original spatial distributions ρ̃′s(Q)
and ρ̃s(Q), respectively, of the logarithm of the Jacobian of the transformation q → Q = Q(q). If
molecular simulations are used for the evaluation of spatial entropy, then ⟨ln J(Q)⟩ is evaluated easily
as a simple arithmetic mean,

⟨ln J(Q)⟩ = 1

n

n∑
i=1

ln J(Qi) (45)

where Qi, i = 1, . . . , n is a sample of the coordinates obtained from snapshots of the simulation
trajectory.

We now consider the specific case where Q represents bond-angle-torsion (BAT) coordinates. For
N atoms, Q comprises 3 external translational coordinates rex = (xex, yex, zex), 3 external rotational
coordinates θex, ϕex, ψex, and 3N − 6 internal coordinates of N − 1 bond lengths b = (b2, . . . , bN),
N − 2 bond angles θ = (θ3, . . . , θN), and N − 3 torsional angles ϕ = (ϕ4, . . . , ϕN), where the subscripts
indicate the atoms to which the internal coordinates correspond. The Jacobian for this transformation is
given as [4]

JBAT = sin θexb
2
2

N∏
i=3

b2i sin θi

≡ sin θexJ(b, θ) (46)

and the spatial pdf in Cartesian coordinates q = x, ρs(x), is thus transformed into the following pdf in
BAT coordinates:

ρ̃s(rex, θex, ϕex, ψex, b, θ, ϕ) = ρs(x(rex, θex, ϕex, ψex, b, θ, ϕ))JBAT

=
1

Zs

e−βU(b,θ,ϕ) sin θexJ(b, θ) (47)

Zs = 8π2V ◦
∫∫∫

db dθ dϕ e−βU(b,θ,ϕ)J(b, θ) (48)

where we have used expression (9) for ρs, along with the fact that the potential energy U(x) of a molecule
of N atoms that is not located in an external field depends only on its 3N − 6 internal BAT coordinates
(b, θ, ϕ). The right-hand side of (47) may be written as a product of two factors, one depending on only
the external coordinate θex and the other on only the internal coordinates (b, θ, ϕ). Therefore, the joint
pdf (47) can be factorized as

ρ̃s(rex, θex, ϕex, ψex, b, θ, ϕ) = ρ̃ex(rex, θex, ϕex, ψex) ρ̃in(b, θ, ϕ) (49)

where
ρ̃ex(rex, θex, ϕex, ψex) =

sin θex
8π2V ◦ (50)

and

ρ̃in(b, θ, ϕ) =
8π2V ◦

Zs

e−βU(b,θ,ϕ)J(b, θ) (51)

Here, ρ̃ex, the marginal pdf of the external coordinates, is clearly normalized because∫
V ◦
drex

∫ π

0

sin θex dθex

∫ 2π

0

dϕex

∫ 2π

0

dψex = 8π2V ◦ (52)
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and ρ̃in(b, θ, ϕ), the marginal pdf of the internal BAT coordinates, is normalized based on the definition
of Zs [Equation(48)].

The entropy of the joint pdf (49) now separates as

S̃s = S̃ex + S̃in (53)

where S̃ex and S̃in are the entropies of the marginal pdf’s ρ̃ex and ρ̃in, respectively. Using expression (50)
for ρ̃ex, the external entropy S̃ex can be written as

S̃ex = −kB
∫
V ◦
drex

∫ π

0

dθex

∫ 2π

0

dϕex

∫ 2π

0

dψex ρ̃ex ln ρ̃ex

= kB ln(8π2V ◦)− kB

∫ π

0

dθex sin θex ln(sin θex)

= kB ln(8π2V ◦)− kB⟨ln(sin θex)⟩ (54)

where ⟨ln(sin θex)⟩ is the mean of ln(sin θex) for a uniform distribution of molecular orientations. Finally,
using Equations (23), (46), (53) and (54), we have for the spatial entropy in Cartesian coordinates, Ss:

Ss = S̃ex + S̃in + kB⟨ln JBAT⟩
= kB ln(8π2V ◦)− kB⟨ln(sin θex)⟩+ S̃in + kB⟨ln[sin θexJ(b, θ)]⟩
= kB ln(8π2V ◦) + S̃in + kB⟨ln[J(b, θ)]⟩ (55)

In previous work [10], Ss has been written in terms of the BAT coordinates (b, θ, ϕ) as

Ss = kB ln(8π2V ◦)− kB

∫
db

∫
dθ

∫
dϕ J(b, θ)ρ(b, θ, ϕ) ln[ρ(b, θ, ϕ)] (56)

where ρ(b, θ, ϕ) is a distribution function of the internal BAT coordinates that becomes the normalized
marginal pdf ρ̃in(b, θ, ϕ) on multiplication by J(b, θ),

ρ(b, θ, ϕ) =
1

J(b, θ)
ρ̃in(b, θ, ϕ) (57)

Expression (56) is entirely consistent with the presented formalism, as it can be rewritten in terms of the
properly normalized marginal pdf ρ̃in(b, θ, ϕ) and J(b, θ) to give

Ss = kB ln(8π2V ◦)− kB

∫
db

∫
dθ

∫
dϕ ρ̃in(b, θ, ϕ) ln[ρ̃in(b, θ, ϕ)]

+kB

∫
db

∫
dθ

∫
dϕ ρ̃in(b, θ, ϕ) ln[J(b, θ)]

= kB ln(8π2V ◦) + S̃in + kB⟨ln[J(b, θ)]⟩ (58)

which is identical with (55). The results of [10] and other work that adopted a similar evaluation of Ss

as that in (56) are thus not affected by our findings.
The approaches outlined above for evaluating the spatial entropy in Cartesian coordinates in BAT

coordinates avoid potential shortcomings that may arise from approximating J(b, θ) as a constant equal
to its value at the equilibrium values b = b0 and θ = θ0 of the internal BAT coordinates. In particular,
although most of these coordinates are “hard” and therefore make nearly constant contributions to the
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Jacobian, this is by no means the case for the pseudo-bond and pseudo-angles often used to define the
position and orientation of one molecule relative to another in a noncovalent complex [11].

One circumstance in which the Jacobian can be approximated as constant is that in which the molecule
occupies only a single, reasonably narrow energy well with its local minimum at internal coordinates
b0, θ0, ϕ0. One may then make the approximation J(b, θ) ≈ J(b0, θ0), in which case the pdf of Equation
(51) simplifies to

ρ̃in(b, θ, ϕ) ≈
e−βU(b,θ,ϕ)∫∫∫

db dθ dϕ e−βU(b,θ,ϕ)
(59)

If, as a further approximation, the harmonic approximation is used for the potential energy U(b, θ, ϕ),
this pdf becomes a multivariate normal (Gaussian) distribution, the entropy of which can be evaluated in
closed form, yielding for the entropy of internal coordinates the following estimate:

S̃in ≈ kB
2

(3N − 6) +
kB
2

ln
(2π/β)3N−6

detF (b0, θ0, ϕ0)
(60)

where F (b0, θ0, ϕ0) is the Hessian matrix of the harmonic potential energy at the energy minimum. The
widely used quasiharmonic approximation for estimation of the configurational entropy from molecular
simulations was based in its original formulation [12] on the assumption that F ≈ Σ−1/β, where Σ is the
covariance matrix of a simulation sample of internal coordinates. Using now Equations (55) and (60),
the spatial entropy in Cartesian coordinates is obtained as

Ss ≈ kB ln(8π2V ◦) +
kB
2

(3N − 6) +
kB
2

ln
(2π/β)3N−6

detF (b0, θ0, ϕ0)
+ kB ln[J(b0, θ0)] (61)

With these approximations, an isothermal process that changes the conformation of the system
produces a change ∆Ss in the spatial entropy Ss given by

∆Ss = S ′
s − Ss ≈

kB
2

ln
detF (b0, θ0, ϕ0)

detF (b′0, θ
′
0, ϕ

′
0)

+ kB ln
J(b′0, θ

′
0)

J(b0, θ0)
(62)

where the primed quantities pertain to the changed system. Clearly, the Jacobian-dependent term may
be neglected only when the equilibrium Jacobians of the two conformations are approximately the same.
As noted above, this approximation holds to good accuracy when b′0 ≈ b0 and θ′0 ≈ θ0

Another perspective on this condition is also of interest. We first note that J2
BAT = detG−1/

∏N
i=1m

3
i ,

where G is the total kinetic-energy matrix in the BAT coordinates, and mi are the masses of the
atoms; G, like JBAT, is a function of the BAT coordinates. This expression follows from the fact that
G = BM−1BT, where M = diag(m1,m1,m1, . . . ,mN ,mN ,mN) and B is a 3N×3N matrix whose
elements are the partial derivatives ∂Qi/∂xj of all the BAT coordinates with respect to the Cartesian
coordinates, so that detB−1 = JBAT (see, e.g., [14]). Using this identity, along with, e.g., Equations
(2.34) and (3.5) of [13], one may show that

J(b, θ) =

(∑N
i=1mi∏N
i=1mi

)3/2√
det I(b, θ, ϕ)

detG(b, θ, ϕ)
(63)

where I(b, θ, ϕ) is the matrix of the instantaneous inertia tensor and G(b, θ, ϕ) is the kinetic-energy
matrix of the 3N − 6 internal degrees of freedom. Note that det I = I1I2I3, where Ii are the principal
moments of inertia. The Jacobian term in (62) therefore may be written as

kB ln
J(b′0, θ

′
0)

J(b0, θ0)
=
kB
2

ln

[
det I(b′0, θ

′
0, ϕ

′
0)

det I(b0, θ0, ϕ0)

detG(b0, θ0, ϕ0)

detG(b′0, θ
′
0, ϕ

′
0)

]
(64)
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6. Conclusions

We have addressed the situation in which one wishes to compute ∆S for a classically treated,
isothermal physical process where the phase-space probability distribution ρ(p, q) goes to ρ′(p, q). In
the biophysical context, this might be a binding or folding process. If (p, q) are Cartesian, then we can
factorize ρ(p, q) as ρm(p)ρs(q) and accordingly decompose the entropy S into Ss +Sm. The momentum
entropy, Sm, is not affected by the physical process, so ∆S = ∆Ss. (If the temperature T changes, then
there is a contribution from Sm as well, which can be computed analytically.) In practical applications,
it is often preferable to compute spatial entropy in non-Cartesian coordinates, Q, but questions arise
regarding the correct way to treat the entropy under a coordinate transformation because the differential
Shannon entropy of information theory, which has the same mathematical form as the thermodynamic
entropy, is not invariant under a change of coordinates. This lack of invariance appears problematic,
because a simple change of coordinates must not affect the change in the entropy computed for a
physical process.

This paradox is reconciled when one recognizes that the thermodynamic spatial entropy does in fact
transform in the same manner as the differential Shannon entropy, but that the change in the transformed
spatial entropy, ∆S̃s, is not in general equal to the change in total entropy, ∆S. The reason is that, in the
new coordinates, unlike in Cartesians, the physical process also produces a change ∆S̃m in the entropy
associated with the conjugate momenta, where S̃m is defined as an average of the momentum entropy
over all values of the spatial coordinates. This change in the transformed momentum entropy precisely
cancels the change in the spatial entropy associated with the transformation of coordinates, so that the
change in total entropy due to the physical process is invariant under the transformation of coordinates.

The present analysis furthermore has provided useful expressions for the total entropy change for an
isothermal physical process in terms of the spatial entropy in any set of spatial coordinates.
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